
Transactions of the Association for Computational Linguistics, 1 (2013) 193–206. Action Editor: Jason Eisner.
Submitted 10/2012; Revised 3/2013; Published 5/2013. c©2013 Association for Computational Linguistics.

Jointly Learning to Parse and Perceive: Connecting
Natural Language to the Physical World

Jayant Krishnamurthy
Computer Science Department

Carnegie Mellon University
jayantk@cs.cmu.edu

Thomas Kollar
Computer Science Department

Carnegie Mellon University
tkollar@andrew.cmu.edu

Abstract

This paper introduces Logical Semantics with
Perception (LSP), a model for grounded lan-
guage acquisition that learns to map natu-
ral language statements to their referents in
a physical environment. For example, given
an image, LSP can map the statement “blue
mug on the table” to the set of image seg-
ments showing blue mugs on tables. LSP
learns physical representations for both cate-
gorical (“blue,” “mug”) and relational (“on”)
language, and also learns to compose these
representations to produce the referents of en-
tire statements. We further introduce a weakly
supervised training procedure that estimates
LSP’s parameters using annotated referents
for entire statements, without annotated ref-
erents for individual words or the parse struc-
ture of the statement. We perform experiments
on two applications: scene understanding and
geographical question answering. We find
that LSP outperforms existing, less expressive
models that cannot represent relational lan-
guage. We further find that weakly supervised
training is competitive with fully supervised
training while requiring significantly less an-
notation effort.

1 Introduction

Learning the mapping from natural language to
physical environments is a central problem for natu-
ral language semantics. Understanding this mapping
is necessary to enable natural language interactions
with robots and other embodied systems. For exam-
ple, for an autonomous robot to understand the sen-
tence “The blue mug is on the table,” it must be able
to identify (1) the objects in its environment corre-

sponding to “blue mug” and “table,” and (2) the ob-
jects which participate in the spatial relation denoted
by “on.” If the robot can successfully identify these
objects, it understands the meaning of the sentence.

The problem of learning to map from natural lan-
guage expressions to their referents in an environ-
ment is known as grounded language acquisition.
In embodied settings, environments consist of raw
sensor data – for example, an environment could be
an image collected from a robot’s camera. In such
applications, grounded language acquisition has two
subproblems: parsing, learning the compositional
structure of natural language; and perception, learn-
ing the environmental referents of individual words.
Acquiring both kinds of knowledge is necessary to
understand novel language in novel environments.

Unfortunately, perception is often ignored in work
on language acquisition. Other variants of grounded
language acquisition eliminate the need for percep-
tion by assuming access to a logical representation
of the environment (Zettlemoyer and Collins, 2005;
Wong and Mooney, 2006; Matuszek et al., 2010;
Chen and Mooney, 2011; Liang et al., 2011). The
existing work which has jointly addressed both pars-
ing and perception has significant drawbacks, in-
cluding: (1) fully supervised models requiring large
amounts of manual annotation and (2) limited se-
mantic representations (Kollar et al., 2010; Tellex et
al., 2011; Matuszek et al., 2012).

This paper introduces Logical Semantics with
Perception (LSP), a model for grounded language
acquisition that jointly learns to semantically parse
language and perceive the world. LSP models a
mapping from natural language queries to sets of ob-
jects in a real-world environment. The input to LSP
is an environment containing objects, such as a seg-
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(a) An environment containing 4
objects (image segments).

Environment:

(image on left)

Knowledge Base

Query:
“things to the right
of the blue mug”

Semantic Parse

Grounding: {(2, 1), (3, 1)}
Denotation: {2, 3}

(b) LSP predicting the environmental referents of
a natural language query.

Language Denotation

The mugs {1, 3}
The objects on the table {1, 2, 3}
There is an LCD monitor {2}
Is the blue mug right {}

of the monitor?
The monitor is behind {2}

the blue cup.

(c) Training examples for weakly su-
pervised training.

Figure 1: LSP applied to scene understanding. Given an environment containing a set of objects (left), and a
natural language query, LSP produces a semantic parse, logical knowledge base, grounding and denotation
(middle), using only language/denotation pairs (right) for training.

mented image (Figure 1a), and a natural language
query, such as “the things to the right of the blue
mug.” Given these inputs, LSP produces (1) a logi-
cal knowledge base describing objects and relation-
ships in the environment and (2) a semantic parse of
the query capturing its compositional structure. LSP
combines these two outputs to produce the query’s
grounding, which is the set of object referents of the
query’s noun phrases, and its denotation, which is
the query’s answer (Figure 1b).1 Weakly supervised
training estimates parameters for LSP using queries
annotated with their denotations in an environment
(Figure 1c).

This work has two contributions. The first con-
tribution is LSP, which is more expressive than pre-
vious models, representing both one-argument cat-
egories and two-argument relations over sets of ob-
jects in the environment. The second contribution
is a weakly supervised training procedure that esti-
mates LSP’s parameters without annotated semantic
parses, noun phrase/object mappings, or manually-
constructed knowledge bases.

We perform experiments on two different applica-
tions. The first application is scene understanding,
where LSP grounds descriptions of images in im-
age segments. The second application is geograph-
ical question answering, where LSP learns to an-
swer questions about locations, represented as poly-
gons on a map. In geographical question answering,

1We treat declarative sentences as if they were queries about
their subject, e.g., the denotation of “the mug is on the table” is
the set of mugs on tables. Typically, the denotation of a sentence
is either true or false; our treatment is strictly more general, as
a sentence’s denotation is nonempty if and only if the sentence
is true.

LSP correctly answers 34% more questions than the
most comparable state-of-the-art model (Matuszek
et al., 2012). In scene understanding, accuracy sim-
ilarly improves by 16%. Furthermore, weakly su-
pervised training achieves an accuracy within 6% of
that achieved by fully supervised training, while re-
quiring significantly less annotation effort.

2 Prior Work

Logical Semantics with Perception (LSP) is related
to work from planning, natural language processing,
computer vision and robotics. Much of the related
work focuses on interpreting natural language us-
ing a fixed formal representation. Some work con-
structs integrated systems which execute plans in re-
sponse to natural language commands (Winograd,
1970; Hsiao et al., 2003; Roy et al., 2003; Skubic
et al., 2004; MacMahon et al., 2006; Levit and Roy,
2007; Kruijff et al., 2007). These systems parse
natural language to a formal representation which
can be executed using a set of fixed control pro-
grams. Similarly, work on semantic parsing learns
to map natural language to a given formal repre-
sentation. Semantic parsers can be trained using
sentences annotated with their formal representation
(Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Kate and Mooney, 2006; Kwiatkowski et al.,
2010) or various less restrictive annotations (Clarke
et al., 2010; Liang et al., 2011; Krishnamurthy and
Mitchell, 2012). Finally, work on grounded lan-
guage acquisition leverages semantic parsing to map
from natural language to a formal representation of
an environment (Kate and Mooney, 2007; Chen and
Mooney, 2008; Shimizu and Haas, 2009; Matuszek
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Environment d Know. Base Γ
mug(1)
mug(3)
blue(1)
table(4)
on-rel(1, 4)
on-rel(3, 4)
...

(a) Perception fper produces a logical knowl-
edge base Γ from the environment d using an
independent classifier for each category and
relation.

Language z
“blue mug on table”

Logical form `

λx.∃y.blue(x) ∧
mug(x) ∧
on-rel(x, y) ∧
table(y)

(b) Semantic parsing fprs
maps language z to a log-
ical form `.

Grounding: g = {(1, 4)}, Denotation: γ = {1}

{1}

{1}

blue(x)

{1, 3}

mug(x)

{(1, 4), (3, 4)}

{(1, 4), (3, 4)}

on-rel(x, y)

{4}

table(y)

(c) Evaluation feval evaluates a logical form ` on a
logical knowledge base Γ to produce a grounding g
and denotation γ.

Figure 2: Overview of Logical Semantics with Perception (LSP).

et al., 2010; Dzifcak et al., 2009; Cantrell et al.,
2010; Chen and Mooney, 2011). All of this work as-
sumes that the formal environment representation is
given, while LSP learns to produce this formal rep-
resentation from raw sensor input.

Most similar to LSP is work on simultaneously
understanding natural language and perceiving the
environment. This problem has been addressed in
the context of robot direction following (Kollar et
al., 2010; Tellex et al., 2011) and visual attribute
learning (Matuszek et al., 2012). However, this
work is less semantically expressive than LSP and
trained using more supervision. TheG3 model (Kol-
lar et al., 2010; Tellex et al., 2011) assumes a one-
to-one mapping from noun phrases to entities and
is trained using full supervision, while LSP allows
one-to-many mappings from noun phrases to entities
and can be trained using minimal annotation. Ma-
tuszek et al. (2012) learns only one-argument cate-
gories (“attributes”) and requires a fully supervised
initial training phase. In contrast, LSP models two-
argument relations and allows for weakly supervised
supervised training throughout.

3 Logical Semantics with Perception

Logical Semantics with Perception (LSP) is a model
for grounded language acquisition. LSP accepts as
input a natural language statement and an environ-
ment and outputs the objects in the environment de-
noted by the statement. The LSP model has three
components: perception, parsing and evaluation (see
Figure 2). The perception component constructs
logical knowledge bases from low-level feature-
based representations of environments. The pars-
ing component semantically parses natural language

into lambda calculus queries against the constructed
knowledge base. Finally, the evaluation compo-
nent deterministically executes this query against the
knowledge base to produce LSP’s output.

The output of LSP can be either a denotation or
a grounding. A denotation is the set of entity refer-
ents for the phrase as a whole, while a grounding is
the set of entity referents for each component of the
phrase. The distinction between these two outputs is
shown in Figure 1b. In this example, the denotation
is the set of “things to the right of the blue mug,”
which does not include the blue mug itself. On the
other hand, the grounding includes both the refer-
ents of “things” and “blue mug.” Only denotations
are used during training, so we ignore groundings in
the following model description. However, ground-
ings are used in our evaluation, as they are a more
complete description of the model’s understanding.

Formally, LSP is a linear model f that predicts a
denotation γ given a natural language statement z in
an environment d. As shown in Figure 3, the struc-
ture of LSP factors into perception (fper), semantic
parsing (fprs) and evaluation (feval) components us-
ing several latent variables:

f(γ,Γ, `, t, z,d; θ) = fper(Γ, d; θper)+

fprs(`, t, z; θprs) + feval(γ,Γ, `)

LSP assumes access to a set of predicates that
take either one argument, called categories (c ∈ C)
or two arguments, called relations (r ∈ R).2 These
predicates are the interface between LSP’s percep-
tion and parsing components. The perception func-
tion fper takes an environment d and produces a log-

2The set of predicates are derived from our training data.
See Section 5.3.
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γ

feval

Γd
fper

ℓ z
fprs

t

Figure 3: Factor graph of LSP. The environment d
and language z are given as input, from which the
model predicts a logical knowledge base Γ, logical
form `, syntactic tree t and denotation γ.

ical knowledge base Γ that assigns truth values to
instances of these predicates using parameters θper.
This function uses an independent classifier to pre-
dict the instances of each predicate. The seman-
tic parser fprs takes a natural language statement z
and produces a logical form ` and syntactic parse
t using parameters θprs. The logical form ` is a
database query expressed in lambda calculus nota-
tion, constructed by logically combining the given
predicates. Finally, the evaluation function feval de-
terministically evaluates the logical form ` on the
knowledge base Γ to produce a denotation γ. These
components are illustrated in Figure 2.

The following sections describe the percep-
tion function (Section 3.1), semantic parser (Sec-
tion 3.2), evaluation function (Section 3.3), and in-
ference (Section 3.4) in more detail.

3.1 Perception Function

The perception function fper constructs a logical
knowledge base Γ given an environment d. The per-
ception function assumes that an environment con-
tains a collection of entities e ∈ Ed. The knowl-
edge base produced by perception is a collection of
ground predicate instances using these entities. For
example, in Figure 2a, the entire image is the envi-
ronment, and each image segment is an entity. The
logical knowledge base Γ contains the shown pred-
icate instances, where the categories include blue,
mug and table, and the relations include on-rel.

The perception function scores logical knowledge
bases using a set of per-predicate binary classifiers.
These classifiers independently assign a score to
whether each entity (entity pair) is an element of
each category (relation). Let γc ∈ Γ denote the set
of entities which are elements of category c; simi-
larly, let γr ∈ Γ denote the set of entity pairs which
are elements of the relation r. Given these sets, the
score of a logical knowledge base Γ factors into per-

relation and per-category scores h:

fper(Γ, d; θper) =
∑

c∈C
h(γc, d; θcper)

+
∑

r∈R
h(γr, d; θrper)

The per-predicate scores are in turn given by a
sum of per-element classification scores:

h(γc, d; θcper) =
∑

e∈Ed

γc(e)(θcper)
Tφcat(e)

h(γr, d; θrper) =
∑

(e1,e2)∈Ed

γr(e1, e2)(θrper)
Tφrel(e1, e2)

Each term in the above sums represents a single
binary classification, determining the score for a sin-
gle entity (entity pair) belonging to a particular cat-
egory (relation). We treat γc and γr as indicator
functions for the sets they denote, i.e., γc(e) = 1
for entities e in the set, and 0 otherwise. Similarly,
γr(e1, e2) = 1 for entity pairs (e1, e2) in the set,
and 0 otherwise. The features of these classifiers are
given by φcat and φrel, which are feature functions
that map entities and entity pairs to feature vectors.
The parameters of these classifiers are given by θcper
and θrper. The perception parameters θper contain
one such set of parameters for every category and re-
lation, i.e., θper = {θcper : c ∈ C} ∪ {θrper : r ∈ R}.

3.2 Semantic Parser
The goal of semantic parsing is to identify which
portions of the input natural language denote enti-
ties and relationships between entities in the envi-
ronment. Semantic parsing accomplishes this goal
by mapping from natural language to a logical form
that explicitly describes the language’s entity refer-
ents using one- and two-argument predicates. The
logical form is combined with instances of these
predicates to produce the statement’s denotation.

LSP’s semantic parser is defined using Combina-
tory Categorial Grammar (CCG) (Steedman, 1996).
The grammar of the parser is given by a lexicon Λ
which maps words to syntactic categories and logi-
cal forms. For example, “mug” may have the syn-
tactic category N for noun, and the logical form
λx.mug(x), denoting the set of all entities x such
that mug is true. During parsing, the logical forms
for adjacent phrases are combined to produce the
logical form for the complete statement.
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the
N/N
λf.f

mugs

N
λx.mug(x)

N : λx.mug(x)

are
(S\N)/N

λf.λg.λx.g(x) ∧ f(x)

right

N/PP
λf.λx.∃y.right-rel(x, y) ∧ f(y)

of
PP/N
λf.f

the
N/N
λf.f

monitor
N

λx.monitor(x)

N : λx.monitor(x)

PP : λx.monitor(x)

N : λx.∃y.right-rel(x, y) ∧ monitor(y)

S\N : λg.λx.∃y.g(x) ∧ right-rel(x, y) ∧ monitor(y)

S : λx.∃y.mug(x) ∧ right-rel(x, y) ∧ monitor(y)

Figure 4: Example parse of “the mugs are right of the monitor.” The first row of the derivation retrieves
lexical categories from the lexicon, while the remaining rows represent applications of CCG combinators.

Figure 4 illustrates how CCG parsing produces a
syntactic tree t and a logical form `. The top row
of the parse represents retrieving a lexicon entry for
each word. Each successive row combines a pair of
entries by applying a logical form to an adjacent ar-
gument. A given sentence may have multiple parses
like the one shown, using a different set of lexicon
entries or a different order of function applications.
The semantic parser scores each such parse, learning
to distinguish correct and incorrect parses.

The semantic parser in LSP is a linear model over
CCG parses (`, t) given language z:

fprs(`, t, z; θprs) = θTprsφprs(`, t, z)

Here, φprs(`, t, z) represents a feature function map-
ping CCG parses to vectors of feature values. φprs
factorizes according to the tree structure of the CCG
parse; it contains features for local parsing opera-
tions which are summed to produce the feature val-
ues for a tree. If the parse tree is a terminal, then:

φprs(`, t, z) = 1(lexicon entry)

The notation 1(x) denotes a vector with a single one
entry whose position is determined by x. The termi-
nal features are indicator features for each lexicon
entry, as shown in the top row of Figure 4. These
features allow the model to learn the correct syntac-
tic and semantic function of each word. If the parse
tree is a nonterminal, then:

φprs(`, t, z) = φprs(left(`, t, z))

+ φprs(right(`, t, z)) + 1(combinator)

These nonterminal features are defined over combi-
nator rules in the parse tree, as in the remaining rows
of Figure 4. These features allow the model to learn
which adjacent parse trees are likely to combine. We
refer the reader to Zettlemoyer and Collins (2005)
for more information about CCG semantic parsing.

3.3 Evaluation Function
The evaluation function feval deterministically
scores denotations given a logical form ` and a
logical knowledge base Γ. Intuitively, the evalu-
ation function simply evaluates the query ` on the
database Γ to produce a denotation. The evaluation
function then assigns score 0 to this denotation, and
score −∞ to all other denotations.

We describe feval by giving a recurrence for com-
puting the denotation γ of a logical form ` on a log-
ical knowledge base Γ. This evaluation takes the
form of a tree, as in Figure 2c. The base cases are:

• If ` = λx.c(x) then γ = γc.
• If ` = λx.λy.r(x, y), then γ = γr.

The denotations for more complex logical forms
are computed recursively by decomposing ` accord-
ing to its logical structure. Our logical forms con-
tain only conjunctions and existential quantifiers;
the corresponding recursive computations are:
• If ` = λx.`1(x) ∧ `2(x), then
γ(e) = 1 iff γ1(e) = 1 ∧ γ2(e) = 1.
• If ` = λx.∃y.`1(x, y), then
γ(e1) = 1 iff ∃e2.γ1(e1, e2) = 1.

Note that a similar recurrence can be used to com-
pute groundings: simply retain the satisfying assign-
ments to existentially-quantified variables.

3.4 Inference
The basic inference problem in LSP is to predict a
denotation γ given language z and an environment
d. This inference problem is straightforward due
to the deterministic structure of feval. The highest-
scoring γ can be found by independently maximiz-
ing fprs and fper to find the highest-scoring logical
form ` and logical knowledge base Γ. Deterministi-
cally evaluating the recurrence for feval using these
values yields the highest-scoring denotation.
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Another inference problem occurs during train-
ing: identify the highest-scoring logical form and
knowledge base which produce a particular denota-
tion. Our approximate inference algorithm for this
problem is described in Section 4.2.

4 Weakly Supervised Parameter
Estimation

This section describes a weakly supervised training
procedure for LSP, which estimates parameters us-
ing a corpus of sentences with annotated denota-
tions. The algorithm jointly trains both the pars-
ing and the perception components of LSP to best
predict the denotations of the observed training sen-
tences. Our approach trains LSP as a maximum
margin Markov network using the stochastic subgra-
dient method. The main difficulty is computing the
subgradient, which requires computing values for
the model’s hidden variables, i.e., the logical knowl-
edge base Γ and semantic parse ` that are responsi-
ble for the model’s prediction.

4.1 Stochastic Subgradient Method

The training procedure trains LSP as a maximum
margin Markov network (Taskar et al., 2004), a
structured analog of a support vector machine. The
training data for our weakly supervised algorithm is
a collection {(zi, γi, di)}ni=1, consisting of language
zi paired with its denotation γi in environment di.
Given this data, the parameters θ = [θprs, θper]
are estimated by minimizing the following objective
function:

O(θ) =
λ

2
||θ||2 +

1

n

[
n∑

i=1

ζi

]
(1)

where λ is a regularization parameter that controls
the trade-off between model complexity and slack
penalties. The slack variable ζi represents a margin
violation penalty for the ith training example, de-
fined as:
ζi = max

γ,Γ,`,t

[
f(γ,Γ, `, t, zi, di; θ) + cost(γ, γi)

]

−max
Γ,`,t

f(γi,Γ, `, t, zi, di; θ)

The above expression is the structured counterpart
of the hinge loss, where cost(γ, γi) is the margin
by which γi’s score must exceed γ’s score. We let

cost(γ, γi) be the Hamming cost; it adds a cost of 1
for each entity e such that γi(e) 6= γ(e).

We optimize this objective using the stochastic
subgradient method (Ratliff et al., 2006). To com-
pute the subgradient gi, first compute the highest-
scoring assignments to the model’s hidden variables:

γ̂, Γ̂, ˆ̀, t̂← arg max
γ,Γ,`,t

f(γ,Γ, `, t, zi, di; θj)

+ cost(γ, γi) (2)

Γ∗, `∗, t∗ ← arg max
Γ,`,t

f(γi,Γ, `, t, zi, di; θj) (3)

The first set of values (e.g., ˆ̀) are the best ex-
planation for the denotation γ̂ which most violates
the margin constraint. The second set of values
(e.g., `∗) are the best explanation for the true de-
notation γi. The subgradient update increases the
weights of features that explain the true denotation,
while decreasing the weights of features that explain
the denotation violating the margin. The subgradi-
ent factors into parsing and perception components:
gi = [giprs, g

i
per]. The parsing subgradient is:

giprs = φprs(ˆ̀, t̂, zi)− φprs(`
∗, t∗, zi)

The subgradient of the perception parameters θper
factors into subgradients of the category and relation
classifier parameters. Recall that θper = {θcper : c ∈
C}∪{θrper : r ∈ R}. Let γ̂c ∈ Γ̂ be the best margin-
violating set of entities for c, and γc∗ ∈ Γ∗ be the
best truth-explaining set of entities. Similarly define
γ̂r and γr∗. The subgradients of the category and
relation classifier parameters are:

gi,cper =
∑

e∈Edi

(γ̂c(e)− γc∗(e))φcat(e)

gi,rper =
∑

(e1,e2)∈Edi

(γ̂r(e1, e2)− γr∗(e1, e2))φrel(e1, e2)

4.2 Inference: Computing the Subgradient
Solving the maximizations in Equations 2 and 3 is
challenging because the weights placed on the de-
notation γ couple fprs and fper. Due to this cou-
pling, exactly solving these problems requires (1)
enumerating all possible logical forms `, and (2) for
each logical form, finding the highest-scoring logi-
cal knowledge base Γ by propagating the weights on
γ back through feval.

We use a two-step approximate inference algo-
rithm for both maximizations. The first step per-
forms a beam search over CCG parses, producing
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k possible logical forms `1, ..., `k. The second step
uses an integer linear program (ILP) to find the best
logical knowledge base Γ given each parse `i. In
our experiments, we parse with a beam size of 1000,
then solve an ILP for each of the 10 highest-scoring
logical forms. The highest-scoring parse/logical
knowledge base pair is the approximate maximizer.

Given a logical form ` output by beam search, the
second step of inference computes the best values
for the logical knowledge base Γ and denotation γ:

max
Γ,γ

fper(Γ, d; θper) + feval(γ, `,Γ) + ψ(γ) (4)

Here, ψ(γ) =
∑

e∈Ed
ψeγ(e) represents a set of

weights on the entities in the predicted denotation γ.
For Equation 2, ψ represents cost(γ, γi). For Equa-
tion 3, ψ is a hard constraint encoding γ = γi (i.e.,
ψ(γ) = −∞ when γ 6= γi and 0 otherwise).

We encode the maximization in Equation 4 as an
ILP. For each category c and relation r, we create bi-
nary variables γc(e1) and γr(e1, e2) for each entity
in the environment, e1, e2 ∈ Ed. We similarly create
binary variables γ(e) for the denotation γ. Using the
fact that fper is a linear function of these variables,
we write the ILP objective as:

fper(Γ, d; θper) + ψ(γ) =
∑

e1∈Ed

∑

c∈C
wce1γ

c(e1)

+
∑

e1,e2∈Ed

∑

r∈R
wre1,e2γ

r(e1, e2) +
∑

e1∈Ed

ψe1γ(e1)

where the weights wce1 and wre1,e2 determine how
likely it is that each entity or entity pair belongs to
the predicates c and r:

wce1 = (θcper)
Tφcat(e1)

wre1,e2 = (θrper)
Tφrel(e1, e2)

The ILP also includes constraints and additional
auxiliary variables that represent feval. These con-
straints couple the denotation γ and the logical
knowledge base Γ such that γ is the result of evaluat-
ing ` on Γ. ` is recursively decomposed as in Section
3.3, and each intermediate set of entities in the recur-
rence is given its own set of |Ed| (or |Ed|2) variables.
These variables are then logically constrained to en-
force `’s structure.

5 Evaluation

Our evaluation performs three major comparisons.
First, we examine the performance impact of weakly

supervised training by comparing weakly and fully
supervised variants of LSP. Second, we examine the
performance impact of modelling relations by com-
paring against a category-only baseline, which is an
ablated version of LSP similar to the model of Ma-
tuszek et al. (2012). Finally, we examine the causes
of errors by performing an error analysis of LSP’s
semantic parser and perceptual classifiers.

Before describing our results, we first describe
some necessary set-up for the experiments. These
sections describe the data sets, features, construc-
tion of the CCG lexicon, and details of the models.
Our data sets and additional evaluation resources are
available online from http://rtw.ml.cmu.edu/

tacl2013_lsp/.

5.1 Data Sets

We evaluate LSP on two applications: scene un-
derstanding (SCENE) and geographical question an-
swering (GEOQA). These data sets are collections
{(zi, γi, di, `i,Γi)}ni=1, consisting of a number of
natural language statements zi with annotated deno-
tations γi in environments di. For fully supervised
training, each statement is annotated with a gold
standard logical form `i, and each environment with
a gold standard logical knowledge base Γi. Statistics
of these data sets are shown in Table 1, and example
environments and statements are shown in Figure 5.

The SCENE data set consists of segmented images
of indoor environments containing a number of or-
dinary objects such as mugs and monitors. Each
image is an environment, and each image segment
(bounding box) is an entity. We collected natural
language descriptions of each scene from members
of our lab and Amazon Mechanical Turk, asking
subjects to describe the objects in each scene. The
authors then manually annotated the collected state-
ments with their denotations and logical forms. In
this data set, each image contains the same set of ob-
jects; note that this does not trivialize the task, as the
model only observes visual features of the objects,
which are not consistent across environments.

The GEOQA data set consists of several maps
containing entities such as cities, states, national
parks, lakes and oceans. Each map is an envi-
ronment, and its component entities are given by
polygons of latitude/longitude coordinates marking
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Data Set Statistics SCENE GEOQA

# of environments 15 10
Mean entities / environment d 4.1 6.9
Mean # of entities in denotation γ 1.5 1.2
# of statements 284 263
Mean words / statement 6.3 6.3
Mean predicates / log. form 2.6 2.8
# of preds. in annotated worlds 46 38

Lexicon Statistics

# of words in lexicon 169 288
# of lexicon entries 712 876
Mean parses / statement 15.0 8.9

Table 1: Statistics of the two data sets used in our
evaluation, and of the generated lexicons.

their boundaries.3 Furthermore, each entity has one
known name (e.g., “Greenville”). In this data set,
distinct entities occur on average in 1.25 environ-
ments; repeated entities are mostly large locations,
such as states and oceans. The language for this
data set was contributed by members of our research
group, who were instructed to provide a mixture of
simple and complex geographical questions. The
authors then manually annotated each question with
a denotation (its answer) and a logical form.

5.2 Features
The features of both applications are intended to
capture properties of entities and relations between
them. As such, both applications share a set of phys-
ical features which are functions of the bounding
polygons of each entity. Example category features
(φcat) are the area and perimeter of the entity, and
an example relation feature (φrel) is the distance be-
tween entity centroids.

The SCENE data set additionally includes visual
appearance features in φcat to capture visual proper-
ties of objects. These features include a Histogram
of Oriented Gradients (HOG) (Dalal and Triggs,
2005) and an RGB color histogram.

The GEOQA data set additionally includes dis-
tributional semantic features to distinguish between
different types of entities (e.g., states vs. lakes)
and to capture non-spatial relations (e.g., capitals
of states). These features are derived from phrase
co-occurrences with entity names in the Clueweb09

3Polygons were extracted from OpenStreetMap, http://
www.openstreetmap.org/.

web corpus.4 The category features φcat include in-
dicators for the 20 contexts which most frequently
occur with an entity’s name (e.g., “X is a city”).
Similarly, the relation features φrel include indica-
tors for the 20 most frequent contexts between two
entities’ names (e.g., “X in eastern Y ”).

5.3 Lexicon Induction

One of the inputs to the semantic parser (Section 3.2)
is a lexicon that lists possible syntactic and seman-
tic functions for each word. Together, these per-
word entries define the set of possible logical forms
for every statement. Each word may have mul-
tiple lexicon entries to capture uncertainty about
its meaning. For example, the word “right” may
have entries N : λx.right(x) and N/PP :
λf.λx.∃y.right-rel(x, y)∧ f(y). The semantic
parser learns to distinguish among these interpreta-
tions to produce good logical forms.

We automatically generated lexicons for both
applications using part-of-speech tag heuristics.5

These heuristics map words to lexicon entries con-
taining category and relation predicates derived
from the word’s lemma. Nouns and adjectives pro-
duce lexicon entries containing either categories or
relations (as shown above for “right”). Mapping
these parts-of-speech to relations is necessary for
phrases like “to the right of,” where the noun “right”
denotes a relation. Verbs and prepositions pro-
duce lexicon entries containing relations. Additional
heuristics generate semantically-empty lexicon en-
tries, allowing words like determiners to have no
physical interpretation. Finally, there are special
heuristics for forms of “to be” and, in GEOQA, to
handle known entity names. The complete set of
lexicon induction heuristics is available online.

The automatically generated lexicon makes it dif-
ficult to compare semantic parses across models,
since the correctness of a semantic parse depends on
the learned perceptual classifiers. To facilitate such
a comparison (Section 5.6), we filtered out lexicon
entries containing predicates which were not used in
any of the annotated logical forms. Statistics of the
filtered lexicons are shown in Table 1.

4http://www.lemurproject.org/clueweb09/
5We used the Stanford POS tagger (Toutanova et al., 2003).
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Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
λx.∃y.monitor(x) ∧ left-rel(x, y) ∧ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
λx.∃y.mug(x) ∧ left-rel(x, y) ∧ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
λx.∃y.object(x) ∧ on-rel(x, y) ∧ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
λx.blue(x) ∧ cup(x) ∧ comp.(x) ∧ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
λx.∃y.city(x) ∧ in-rel(x, y) ∧ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
λx.∃y, z.city(x) ∧ east-rel(x, y) (MB,GB,NC)}
∧ y = GB ∧ in-rel(y, z) ∧ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
λx.∃y.city(x) ∧ on-rel(x, y) ∧ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like λf.λg.λx.∃y.r(x, y) ∧ g(x) ∧
f(y) to λf.λg.λx.∃y.g(x) ∧ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,Γi)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using λ = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using λ = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under λ ≤ 0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation γi for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form λx.∃y.left-rel(x, y) ∧ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the
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Denotation γ 0 rel. 1 rel. other total

LSP-CAT 0.94 0.45 0.20 0.51
LSP-F 0.89 0.81 0.20 0.70
LSP-W 0.89 0.77 0.16 0.67

Grounding g 0 rel. 1 rel. other total

LSP-CAT 0.94 0.37 0.00 0.42
LSP-F 0.89 0.80 0.00 0.65
LSP-W 0.89 0.70 0.00 0.59

% of data 23 56 21 100

(a) Results on the SCENE data set.

Denotation γ 0 rel. 1 rel. other total

LSP-CAT 0.22 0.19 0.07 0.17
LSP-F 0.64 0.53 0.21 0.48
LSP-W 0.64 0.58 0.21 0.51

Grounding g 0 rel. 1 rel. other total

LSP-CAT 0.22 0.19 0.00 0.16
LSP-F 0.64 0.53 0.17 0.47
LSP-W 0.64 0.58 0.15 0.50

% of data 8 72 20 100

(b) Results on the GEOQA data set.

Table 2: Model performance on the SCENE and GEOQA datasets. LSP-CAT is an ablated version of LSP
that only learns categories (similar to Matuszek et al. (2012)), LSP-F is LSP trained with annotated seman-
tic parses and logical knowledge bases, and LSP-W is LSP trained on sentences with annotated denotations.
Results are separated by the number of relations in each test natural language statement.

number of possible sets grows exponentially in the
number of entities in the environment. Say an en-
vironment has 5 entities and a logical form has two
variables; then there are 25 possible denotations and
225 possible groundings. To quantify this difficulty,
note that selecting a denotation uniformly at random
achieves 6% accuracy on SCENE, and 1% accuracy
on GEOQA; selecting a random grounding achieves
1% and 0% accuracy, respectively.

Table 2 shows results for both applications us-
ing exact match accuracy. To better understand the
performance of each model, we break down perfor-
mance according to linguistic complexity. We com-
pute the number of relations in the annotated logical
form for each statement, and show separate results
for 0 and 1 relations. We also include an “other”
category to capture sentences with more than one
relation (very infrequent), or that include quanti-
fiers, comparatives, or other linguistic phenomena
not captured by LSP.

The results from these experiments suggest three
conclusions. First, we find that modelling relations
is important for both applications, as (1) the major-
ity of examples contain relational language, and (2)
LSP-W and LSP-F dramatically outperform LSP-
CAT on these examples. The low performance of
LSP-CAT suggests that many denotations cannot
be predicted from only the first noun phrase in a
statement, demonstrating that both applications re-
quire an understanding of relations. Second, we find
that weakly supervised training and fully supervised

training perform similarly, with accuracy differences
in the range of 3%-6%. Finally, we find that LSP-W
performs similarly on both the denotation and com-
plete grounding tasks; this result suggests that when
LSP-W predicts a correct denotation, it does so be-
cause it has identified the correct entity referents of
each portion of the statement.

5.6 Component Error Analysis

We performed an error analysis of each model com-
ponent to better understand the causes of errors. Ta-
ble 3 shows the accuracy of the semantic parser from
each trained model. Each held-out sentence zi is
parsed to produce a logical form `, which is marked
correct if it exactly matches our manual annotation
`i. A correct logical form implies a correct ground-
ing for the statement when the parse is evaluated in
the gold standard logical knowledge base. These re-
sults show that both LSP-W and LSP-F have rea-
sonably accurate semantic parsers, given the restric-
tions on possible logical forms. Common mistakes
include missing lexicon entries (e.g., “borders” is
POS-tagged as a noun, so the GEOQA lexicon does
not include a verb for it) and prepositional phrase
attachments (e.g., 6th example in Figure 5).

Table 4 shows the precision and recall of the in-
dividual perceptual classifiers. We computed these
metrics by comparing each annotated predicate in
the held-out environment with the model’s predic-
tions for the same predicate, treating each entity (or
entity pair) as an independent example for classifi-
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SCENE GEOQA

LSP-CAT 0.21 0.17
LSP-W 0.72 0.71
LSP-F 0.73 0.75

Upper Bound 0.79 0.87

Table 3: Accuracy of the semantic parser from each
trained model. Upper bound is the highest accu-
racy achievable without modelling comparatives and
other linguistic phenomena not captured by LSP.

cation. Fully supervised training appears to produce
better perceptual classifiers than weakly supervised
training; however, this result conflicts with the full
system evaluation in Table 2, where both systems
perform equally well. There are two causes for this
phenomenon: uninformative adjectives and unim-
portant relation instances.

Uninformative adjective predicates are responsi-
ble for the low performance of the category classi-
fiers in SCENE. Phrases like “LCD screen” in this
domain are annotated with logical forms such as
λx.lcd(x) ∧ screen(x). Here, lcd is uninfor-
mative, since screen already denotes a unique ob-
ject in the environment. Therefore, it is not impor-
tant to learn an accurate classifier for lcd. Weakly
supervised training learns that lcd is meaningless,
yet predicts the correct denotation for λx.lcd(x) ∧
screen(x) using its screen classifier.

The discrepancy in relation performance occurs
because the relation evaluation weights every rela-
tion equally, whereas in reality some relations are
more frequent. Furthermore, even within a single
relation, each entity pair is not equally important –
for example, people tend to ask what is in a state, but
not what is in an ocean. To account for these factors,
we define a reweighted relation metric using the an-
notated logical forms containing only one relation,
of the form λx.∃y.c1(x) ∧ r(x, y) ∧ c2(y). Using
these logical forms, we measure the performance of
r on the set of x, y pairs such that c1(x)∧c2(y), then
average this over all examples. Table 4 shows that,
using this metric, both training regimes have similar
performance. This result suggests that weakly su-
pervised training adapts LSP’s relation classifiers to
the relation instances which are empirically impor-
tant for grounding natural language.

SCENE GEOQA
Categories P R F1 P R F1

LSP-CAT 0.40 0.86 0.55 0.78 0.25 0.38
LSP-W 0.40 0.84 0.54 0.85 0.63 0.73
LSP-F 0.98 0.96 0.97 0.89 0.63 0.74

Relations P R F1 P R F1

LSP-W 0.40 0.42 0.41 0.34 0.51 0.41
LSP-F 0.99 0.87 0.92 0.70 0.46 0.55

Relations (rw) P R F1 P R F1

LSP-W 0.98 0.98 0.98 0.86 0.72 0.79
LSP-F 0.98 0.95 0.96 0.89 0.66 0.76

Table 4: Perceptual classifier performance, mea-
sured against the gold standard logical knowledge
bases. LSP-CAT is excluded from the relation eval-
uations, since it does not learn relations. Relations
(rw) is the reweighted metric (see text for details).

6 Conclusions

This paper introduces Logical Semantics with Per-
ception (LSP), a model for mapping natural lan-
guage statements to their referents in a physical en-
vironment. LSP jointly models perception and lan-
guage understanding, simultaneously learning (1)
to map from environments to logical knowledge
bases containing instances of both one-argument
categories and two-argument relations, and (2) to
semantically parse natural language. Furthermore,
we introduce a weakly supervised training proce-
dure that trains LSP using only sentences with anno-
tated denotations, without annotated semantic parses
or noun phrase/entity mappings. An experimen-
tal evaluation reveals that this procedure performs
nearly as well fully supervised training, while re-
quiring significantly less annotation effort. Our ex-
periments also find that LSP’s ability to learn rela-
tions improves performance over comparable prior
work (Matuszek et al., 2012).
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