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Abstract

Machine translation (MT) draws from several

different disciplines, making it a complex sub-

ject to teach. There are excellent pedagogical

texts, but problems in MT and current algo-

rithms for solving them are best learned by

doing. As a centerpiece of our MT course,

we devised a series of open-ended challenges

for students in which the goal was to im-

prove performance on carefully constrained

instances of four key MT tasks: alignment,

decoding, evaluation, and reranking. Students

brought a diverse set of techniques to the prob-

lems, including some novel solutions which

performed remarkably well. A surprising and

exciting outcome was that student solutions

or their combinations fared competitively on

some tasks, demonstrating that even newcom-

ers to the field can help improve the state-of-

the-art on hard NLP problems while simulta-

neously learning a great deal. The problems,

baseline code, and results are freely available.

1 Introduction

A decade ago, students interested in natural lan-

guage processing arrived at universities having been

exposed to the idea of machine translation (MT)

primarily through science fiction. Today, incoming

students have been exposed to services like Google

Translate since they were in secondary school or ear-

lier. For them, MT is science fact. So it makes sense

to teach statistical MT, either on its own or as a unit

∗ The first five authors were instructors and the remaining au-

thors were students in the worked described here. This research

was conducted while Chris Callison-Burch was at Johns Hop-

kins University.

in a class on natural language processing (NLP), ma-

chine learning (ML), or artificial intelligence (AI). A

course that promises to show students how Google

Translate works and teach them how to build some-

thing like it is especially appealing, and several uni-

versities and summer schools now offer such classes.

There are excellent introductory texts—depending

on the level of detail required, instructors can choose

from a comprehensive MT textbook (Koehn, 2010),

a chapter of a popular NLP textbook (Jurafsky and

Martin, 2009), a tutorial survey (Lopez, 2008), or

an intuitive tutorial on the IBM Models (Knight,

1999b), among many others.

But MT is not just an object of academic study.

It’s a real application that isn’t fully perfected, and

the best way to learn about it is to build an MT sys-

tem. This can be done with open-source toolkits

such as Moses (Koehn et al., 2007), cdec (Dyer et

al., 2010), or Joshua (Ganitkevitch et al., 2012), but

these systems are not designed for pedagogy. They

are mature codebases featuring tens of thousands of

source code lines, making it difficult to focus on

their core algorithms. Most tutorials present them

as black boxes. But our goal is for students to learn

the key techniques in MT, and ideally to learn by

doing. Black boxes are incompatible with this goal.

We solve this dilemma by presenting students

with concise, fully-functioning, self-contained com-

ponents of a statistical MT system: word alignment,

decoding, evaluation, and reranking. Each imple-

mentation consists of a naı̈ve baseline algorithm in

less than 150 lines of Python code. We assign them

to students as open-ended challenges in which the

goal is to improve performance on objective eval-

uation metrics as much as possible. This setting

mirrors evaluations conducted by the NLP research
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community and by the engineering teams behind

high-profile NLP projects such as Google Translate

and IBM’s Watson. While we designate specific al-

gorithms as benchmarks for each task, we encour-

age creativity by awarding more points for the best

systems. As additional incentive, we provide a web-

based leaderboard to display standings in real time.

In our graduate class on MT, students took a va-

riety of different approaches to the tasks, in some

cases devising novel algorithms. A more exciting re-

sult is that some student systems or combinations of

systems rivaled the state of the art on some datasets.

2 Designing MT Challenge Problems

Our goal was for students to freely experiment with

different ways of solving MT problems on real data,

and our approach consisted of two separable com-

ponents. First, we provided a framework that strips

key MT problems down to their essence so students

could focus on understanding classic algorithms or

invent new ones. Second, we designed incentives

that motivated them to improve their solutions as

much as possible, encouraging experimentation with

approaches beyond what we taught in class.

2.1 Decoding, Reranking, Evaluation, and

Alignment for MT (DREAMT)

We designed four assignments, each corresponding

to a real subproblem in MT: alignment, decoding,

evaluation, and reranking.1 From the more general

perspective of AI, they emphasize the key problems

of unsupervised learning, search, evaluation design,

and supervised learning, respectively. In real MT

systems, these problems are highly interdependent,

a point we emphasized in class and at the end of each

assignment—for example, that alignment is an exer-

cise in parameter estimation for translation models,

that model choice is a tradeoff between expressivity

and efficient inference, and that optimal search does

not guarantee optimal accuracy. However, present-

ing each problem independently and holding all else

constant enables more focused exploration.

For each problem we provided data, a naı̈ve solu-

tion, and an evaluation program. Following Bird et

al. (2008) and Madnani and Dorr (2008), we imple-

mented the challenges in Python, a high-level pro-

1http://alopez.github.io/dreamt

gramming language that can be used to write very

concise programs resembling pseudocode.2,3 By de-

fault, each baseline system reads the test data and

generates output in the evaluation format, so setup

required zero configuration, and students could be-

gin experimenting immediately. For example, on re-

ceipt of the alignment code, aligning data and eval-

uating results required only typing:

> align | grade

Students could then run experiments within minutes

of beginning the assignment.

Three of the four challenges also included unla-

beled test data (except the decoding assignment, as

explained in §4). We evaluated test results against a

hidden key when assignments were submitted.

2.2 Incentive Design

We wanted to balance several pedagogical goals: un-

derstanding of classic algorithms, free exploration

of alternatives, experience with typical experimental

design, and unhindered collaboration.

Machine translation is far from solved, so we ex-

pected more than reimplementation of prescribed al-

gorithms; we wanted students to really explore the

problems. To motivate exploration, we made the as-

signments competitive. Competition is a powerful

force, but must be applied with care in an educa-

tional setting.4 We did not want the consequences

of ambitious but failed experiments to be too dire,

and we did not want to discourage collaboration.

For each assignment, we guaranteed a passing

grade for matching the performance of a specific tar-

get algorithm. Typically, the target was important

but not state-of-the-art: we left substantial room for

improvement, and thus competition. We told stu-

dents the exact algorithm that produced the target ac-

curacy (though we expected them to derive it them-

selves based on lectures, notes, or literature). We

did not specifically require them to implement it, but

the guarantee of a passing grade provided a power-

ful incentive for this to be the first step of each as-

signment. Submissions that beat this target received

additional credit. The top five submissions received

full credit, while the top three received extra credit.

2http://python.org
3Some well-known MT systems have been implemented in

Python (Chiang, 2007; Huang and Chiang, 2007).
4Thanks to an anonymous reviewer for this turn of phrase.
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This scheme provided strong incentive to continue

experimentation beyond the target algorithm.5

For each assignment, students could form teams

of any size, under three rules: each team had to pub-

licize its formation to the class, all team members

agreed to receive the same grade, and teams could

not drop members. Our hope was that these require-

ments would balance the perceived competitive ad-

vantage of collaboration against a reluctance to take

(and thus support) teammates who did not contribute

to the competitive effort.6 This strategy worked: out

of sixteen students, ten opted to work collaboratively

on at least one assignment, always in pairs.

We provided a web-based leaderboard that dis-

played standings on the test data in real time, iden-

tifying each submission by a pseudonymous han-

dle known only to the team and instructors. Teams

could upload solutions as often as they liked before

the assignment deadline. The leaderboard displayed

scores of the default and target algorithms. This in-

centivized an early start, since teams could verify

for themselves when they met the threshold for a

passing grade. Though effective, it also detracted

from realism in one important way: it enabled hill-

climbing on the evaluation metric. In early assign-

ments, we observed a few cases of this behavior,

so for the remaining assignments, we modified the

leaderboard so that changes in score would only be

reflected once every twelve hours. This strategy

trades some amount of scientific realism for some

measure of incentive, a strategy that has proven

effective in other pedagogical tools with real-time

feedback (Spacco et al., 2006).

To obtain a grade, teams were required to sub-

mit their results, share their code privately with the

instructors, and publicly describe their experimen-

tal process to the class so that everyone could learn

from their collective effort. Teams were free (but not

required) to share their code publicly at any time.

5Grades depend on institutional norms. In our case, high grades

in the rest of class combined with matching all assignment tar-

get algorithms would earn a B+; beating two target algorithms

would earn an A-; top five placement on any assignment would

earn an A; and top three placement compensated for weaker

grades in other course criteria. Everyone who completed all

four assignments placed in the top five at least once.
6The equilibrium point is a single team, though this team would

still need to decide on a division of labor. One student contem-

plated organizing this team, but decided against it.

Some did so after the assignment deadline.

3 The Alignment Challenge

The first challenge was word alignment: given a par-

allel text, students were challenged to produce word-

to-word alignments with low alignment error rate

(AER; Och and Ney, 2000). This is a variant of a

classic assignment not just in MT, but in NLP gen-

erally. Klein (2005) describes a version of it, and we

know several other instructors who use it.7 In most

of these, the object is to implement IBM Model 1

or 2, or a hidden Markov model. Our version makes

it open-ended by asking students to match or beat an

IBM Model 1 baseline.

3.1 Data

We provided 100,000 sentences of parallel data from

the Canadian Hansards, totaling around two million

words.8 This dataset is small enough to align in

a few minutes with our implementation—enabling

rapid experimentation—yet large enough to obtain

reasonable results. In fact, Liang et al. (2006) report

alignment accuracy on data of this size that is within

a fraction of a point of their accuracy on the com-

plete Hansards data. To evaluate, we used manual

alignments of a small fraction of sentences, devel-

oped by Och and Ney (2000), which we obtained

from the shared task resources organized by Mihal-

cea and Pedersen (2003). The first 37 sentences

of the corpus were development data, with manual

alignments provided in a separate file. Test data con-

sisted of an additional 447 sentences, for which we

did not provide alignments.9

3.2 Implementation

We distributed three Python programs with the

data. The first, align, computes Dice’s coefficient

(1945) for every pair of French and English words,

then aligns every pair for which its value is above an

adjustable threshold. Our implementation (most of

7Among them, Jordan Boyd-Graber, John DeNero, Philipp

Koehn, and Slav Petrov (personal communication).
8http://www.isi.edu/natural-language/download/hansard/
9This invited the possibility of cheating, since alignments of the

test data are publicly available on the web. We did not adver-

tise this, but as an added safeguard we obfuscated the data by

distributing the test sentences randomly throughout the file.
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Listing 1 The default aligner in DREAMT: thresh-

olding Dice’s coefficient.

for (f, e) in bitext:

for f_i in set(f):

f_count[f_i] += 1

for e_j in set(e):

fe_count[(f_i,e_j)] += 1

for e_j in set(e):

e_count[e_j] += 1

for (f_i, e_j) in fe_count.keys():

dice[(f_i,e_j)] = \

2.0 * fe_count[(f_i, e_j)] / \

(f_count[f_i] + e_count[e_j])

for (f, e) in bitext:

for (i, f_i) in enumerate(f):

for (j, e_j) in enumerate(e):

if dice[(f_i,e_j)] >= cutoff:

print "%i-%i " % (i,j)

which is shown in Listing 1) is quite close to pseu-

docode, making it easy to focus on the algorithm,

one of our pedagogical goals. The grade program

computes AER and optionally prints an alignment

grid for sentences in the development data, showing

both human and automatic alignments. Finally the

check program verifies that the results represent

a valid solution, reporting an error if not—enabling

students to diagnose bugs in their submissions.

The default implementation enabled immediate

experimentation. On receipt of the code, students

were instructed to align the first 1,000 sentences and

compute AER using a simple command.

> align -n 1000 | grade By varying the

number of input sentences and the threshold for an

alignment, students could immediately see the effect

of various parameters on alignment quality.

We privately implemented IBM Model 1 (Brown

et al., 1993) as the target algorithm for a passing

grade. We ran it for five iterations with English

as the target language and French as the source.

Our implementation did not use null alignment

or symmetrization—leaving out these common im-

provements offered students the possibility of dis-

covering them independently, and thereby rewarded.
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Figure 1: Submission history for the alignment challenge.

Dashed lines represent the default and baseline system

performance. Each colored line represents a student, and

each dot represents a submission. For clarity, we show

only submissions that improved the student’s AER.

3.3 Challenge Results

We received 209 submissions from 11 teams over a

period of two weeks (Figure 1). Everyone eventually

matched or exceeded IBM Model 1 AER of 31.26.

Most students implemented IBM Model 1, but we

saw many other solutions, indicating that many truly

experimented with the problem:

• Implementing heuristic constraints to require

alignment of proper names and punctuation.

• Running the algorithm on stems rather than sur-

face words.

• Initializing the first iteration of Model 1 with

parameters estimated on the observed align-

ments in the development data.

• Running Model 1 for many iterations. Most re-

searchers typically run Model 1 for five itera-

tions or fewer, and there are few experiments

in the literature on its behavior over many iter-

ations, as there are for hidden Markov model

taggers (Johnson, 2007). Our students carried

out these experiments, reporting runs of 5, 20,

100, and even 2000 iterations. No improve-

ment was observed after 20 iterations.
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• Implementing various alternative approaches

from the literature, including IBM Model 2

(Brown et al., 1993), competitive linking

(Melamed, 2000), and smoothing (Moore,

2004).

One of the best solutions was competitive linking

with Dice’s coefficient, modified to incorporate the

observation that alignments tend to be monotonic by

restricting possible alignment points to a window of

eight words around the diagonal. Although simple,

it acheived an AER of 18.41, an error reduction over

Model 1 of more than 40%.

The best score compares unfavorably against a

state-of-the-art AER of 3.6 (Liu et al., 2010). But

under a different view, it still represents a significant

amount of progress for an effort taking just over two

weeks: on the original challenge from which we ob-

tained the data (Mihalcea and Pedersen, 2003) the

best student system would have placed fifth out of

fifteen systems. Consider also the combined effort of

all the students: when we trained a perceptron clas-

sifier on the development data, taking each student’s

prediction as a feature, we obtained an AER of 15.4,

which would have placed fourth on the original chal-

lenge. This is notable since none of the systems

incorporated first-order dependencies on the align-

ments of adjacent words, long noted as an impor-

tant feature of the best alignment models (Och and

Ney, 2003). Yet a simple system combination of stu-

dent assignments is as effective as a hidden Markov

Model trained on a comparable amount of data (Och

and Ney, 2003).

It is important to note that AER does not neces-

sarily correlate with downstream performance, par-

ticularly on the Hansards dataset (Fraser and Marcu,

2007). We used the conclusion of the assignment as

an opportunity to emphasize this point.

4 The Decoding Challenge

The second challenge was decoding: given a fixed

translation model and a set of input sentences, stu-

dents were challenged to produce translations with

the highest model score. This challenge introduced

the difficulties of combinatorial optimization under

a deceptively simple setup: the model we provided

was a simple phrase-based translation model (Koehn

et al., 2003) consisting only of a phrase table and tri-

gram language model. Under this simple model, for

a French sentence f of length I , English sentence

e of length J , and alignment a where each element

consists of a span in both e and f such that every

word in both e and f is aligned exactly once, the

conditional probability of e and a given f is as fol-

lows.10

p(e, a|f) =
∏

〈i,i′,j,j′〉∈a
p(f i

′
i |ej

′
j )

J+1∏

j=1

p(ej |ej−1, ej−2)

(1)

To evaluate output, we compute the conditional

probability of e as follows.

p(e|f) =
∑

a

p(e, a|f) (2)

Note that this formulation is different from the typ-

ical Viterbi objective of standard beam search de-

coders, which do not sum over all alignments, but

approximate p(e|f) by maxa p(e, a|f). Though the

computation in Equation 2 is intractable (DeNero

and Klein, 2008), it can be computed in a few min-

utes via dynamic programming on reasonably short

sentences. We ensured that our data met this crite-

rion. The corpus-level probability is then the prod-

uct of all sentence-level probabilities in the data.

The model includes no distortion limit or distor-

tion model, for two reasons. First, leaving out the

distortion model slightly simplifies the implementa-

tion, since it is not necessary to keep track of the last

word translated in a beam decoder; we felt that this

detail was secondary to understanding the difficulty

of search over phrase permutations. Second, it actu-

ally makes the problem more difficult, since a simple

distance-based distortion model prefers translations

with fewer permutations; without it, the model may

easily prefer any permutation of the target phrases,

making even the Viterbi search problem exhibit its

true NP-hardness (Knight, 1999a; Zaslavskiy et al.,

2009).

Since the goal was to find the translation with the

highest probability, we did not provide a held-out

test set; with access to both the input sentences and

10For simplicity, this formula assumes that e is padded with two

sentence-initial symbols and one sentence-final symbol, and

ignores the probability of sentence segmentation, which we

take to be uniform.
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the model, students had enough information to com-

pute the evaluation score on any dataset themselves.

The difficulty of the challenge lies simply in finding

the translation that maximizes the evaluation. In-

deed, since the problem is intractable, even the in-

structors did not know the true solution.11

4.1 Data

We chose 48 French sentences totaling 716 words

from the Canadian Hansards to serve as test data.

To create a simple translation model, we used the

Berkeley aligner to align the parallel text from the

first assignment, and extracted a phrase table using

the method of Lopez (2007), as implemented in cdec

(Dyer et al., 2010). To create a simple language

model, we used SRILM (Stolcke, 2002).

4.2 Implementation

We distributed two Python programs. The first,

decode, decodes the test data monotonically—

using both the language model and translation

model, but without permuting phrases. The imple-

mentation is completely self-contained with no ex-

ternal dependencies: it implements both models and

a simple stack decoding algorithm for monotonic

translation. It contains only 122 lines of Python—

orders of magnitude fewer than most full-featured

decoders. To see its similarity to pseudocode, com-

pare the decoding algorithm (Listing 2) with the

pseudocode in Koehn’s (2010) popular textbook (re-

produced here as Algorithm 1). The second pro-

gram, grade, computes the log-probability of a set

of translations, as outline above.

We privately implemented a simple stack decoder

that searched over permutations of phrases, similar

to Koehn (2004). Our implementation increased the

codebase by 44 lines of code and included param-

eters for beam size, distortion limit, and the maxi-

mum number of translations considered for each in-

put phrase. We posted a baseline to the leaderboard

using values of 50, 3, and 20 for these, respectively.

11We implemented a version of the Lagrangian relaxation algo-

rithm of Chang and Collins (2011), but found it difficult to

obtain tight (optimal) solutions without iteratively reintroduc-

ing all of the original constraints. We suspect this is due to

the lack of a distortion penalty, which enforces a strong pref-

erence towards translations with little reordering. However,

the solution found by this algorithm is only approximates the

objective implied by Equation 2, which sums over alignments.

We also posted an oracle containing the most prob-

able output for each sentence, selected from among

all submissions received so far. The intent of this

oracle was to provide a lower bound on the best pos-

sible output, giving students additional incentive to

continue improving their systems.

4.3 Challenge Results

We received 71 submissions from 10 teams (Fig-

ure 2), again exhibiting variety of solutions.

• Implementation of greedy decoder which at

each step chooses the most probable translation

from among those reachable by a single swap

or retranslation (Germann et al., 2001; Langlais

et al., 2007).

• Inclusion of heuristic estimates of future cost.

• Implementation of a private oracle. Some stu-

dents observed that the ideal beam setting was

not uniform across the corpus. They ran their

decoder under different settings, and then se-

lected the most probable translation of each

sentence.

Many teams who implemented the standard stack

decoding algorithm experimented heavily with its

pruning parameters. The best submission used ex-

tremely wide beam settings in conjunction with a

reimplementation of the future cost estimate used in

Moses (Koehn et al., 2007). Five of the submissions

beat Moses using its standard beam settings after it

had been configured to decode with our model.

We used this assignment to emphasize the im-

portance of good models: the model score of the

submissions was generally inversely correlated with

BLEU, possibly because our simple model had no

distortion limits. We used this to illustrate the differ-

ence between model error and search error, includ-

ing fortuitous search error (Germann et al., 2001)

made by decoders with less accurate search.

5 The Evaluation Challenge

The third challenge was evaluation: given a test cor-

pus with reference translations and the output of sev-

eral MT systems, students were challenged to pro-

duce a ranking of the systems that closely correlated

with a human ranking.
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Listing 2 The default decoder in DREAMT: a stack decoder for monotonic translation.

stacks = [{} for _ in f] + [{}]

stacks[0][lm.begin()] = initial_hypothesis

for i, stack in enumerate(stacks[:-1]):

for h in sorted(stack.itervalues(),key=lambda h: -h.logprob)[:alpha]:

for j in xrange(i+1,len(f)+1):

if f[i:j] in tm:

for phrase in tm[f[i:j]]:

logprob = h.logprob + phrase.logprob

lm_state = h.lm_state

for word in phrase.english.split():

(lm_state, word_logprob) = lm.score(lm_state, word)

logprob += word_logprob

logprob += lm.end(lm_state) if j == len(f) else 0.0

new_hypothesis = hypothesis(logprob, lm_state, h, phrase)

if lm_state not in stacks[j] or \

stacks[j][lm_state].logprob < logprob:

stacks[j][lm_state] = new_hypothesis

winner = max(stacks[-1].itervalues(), key=lambda h: h.logprob)

def extract_english(h):

return "" if h.predecessor is None else "%s%s " %

(extract_english(h.predecessor), h.phrase.english)

print extract_english(winner)

Algorithm 1 Basic stack decoding algorithm,

adapted from Koehn (2010), p. 165.

place empty hypothesis into stack 0

for all stacks 0...n− 1 do

for all hypotheses in stack do

for all translation options do

if applicable then

create new hypothesis

place in stack

recombine with existing hypothesis

prune stack if too big

5.1 Data

We chose the English-to-German translation sys-

tems from the 2009 and 2011 shared task at the an-

nual Workshop for Machine Translation (Callison-

Burch et al., 2009; Callison-Burch et al., 2011), pro-

viding the first as development data and the second

as test data. We chose these sets because BLEU

(Papineni et al., 2002), our baseline metric, per-

formed particularly poorly on them; this left room

for improvement in addition to highlighting some
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Figure 2: Submission history for the decoding challenge.

The dotted green line represents the oracle over submis-

sions.

deficiencies of BLEU. For each dataset we pro-

vided the source and reference sentences along with

anonymized system outputs. For the development

data we also provided the human ranking of the sys-
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tems, computed from pairwise human judgements

according to a formula recommended by Bojar et al.

(2011).12

5.2 Implementation

We provided three simple Python programs:

evaluate implements a simple ranking of the sys-

tems based on position-independent word error rate

(PER; Tillmann et al., 1997), which computes a bag-

of-words overlap between the system translations

and the reference. The grade program computes

Spearman’s ρ between the human ranking and an

output ranking. The check program simply ensures

that a submission contains a valid ranking.

We were concerned about hill-climbing on the test

data, so we modified the leaderboard to report new

results only twice a day. This encouraged students to

experiment on the development data before posting

new submissions, while still providing intermittent

feedback.

We privately implemented a version of BLEU,

which obtained a correlation of 38.6 with the human

rankings, a modest improvement over the baseline

of 34.0. Our implementation underperforms the one

reported in Callison-Burch et al. (2011) since it per-

forms no tokenization or normalization of the data.

This also left room for improvement.

5.3 Evaluation Challenge Results

We received 212 submissions from 12 teams (Fig-

ure 3), again demonstrating a wide range of tech-

niques.

• Experimentation with the maximum n-gram

length and weights in BLEU.

• Implementation of smoothed versions of BLEU

(Lin and Och, 2004).

• Implementation of weighted F-measure to bal-

ance both precision and recall.

• Careful normalization of the reference and ma-

chine translations, including lowercasing and

punctuation-stripping.

12This ranking has been disputed over a series of papers (Lopez,

2012; Callison-Burch et al., 2012; Koehn, 2012). The paper

which initiated the dispute, written by the first author, was di-

rectly inspired by the experience of designing this assignment.
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Figure 3: Submission history for the evaluation chal-

lenge.

• Implementation of several techniques used in

AMBER (Chen and Kuhn, 2005).

The best submission, obtaining a correlation of

83.5, relied on the idea that the reference and ma-

chine translation should be good paraphrases of each

other (Owczarzak et al., 2006; Kauchak and Barzi-

lay, 2006). It employed a simple paraphrase sys-

tem trained on the alignment challenge data, us-

ing the pivot technique of Bannard and Callison-

Burch (2005), and computing the optimal alignment

between machine translation and reference under a

simple model in which words could align if they

were paraphrases. When compared with the 20

systems submitted to the original task from which

the data was obtained (Callison-Burch et al., 2011),

this system would have ranked fifth, quite near the

top-scoring competitors, whose correlations ranged

from 88 to 94.

6 The Reranking Challenge

The fourth challenge was reranking: given a test cor-

pus and a large N -best list of candidate translations

for each sentence, students were challenged to select

a candidate translation for each sentence to produce

a high corpus-level BLEU score. Due to an error

our data preparation, this assignment had a simple

solution that was very difficult to improve on. Nev-

ertheless, it featured several elements that may be

useful for future courses.
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6.1 Data

We obtained 300-best lists from a Spanish-English

translation system built with the Joshua toolkit

(Ganitkevitch et al., 2012) using data and resources

from the 2011 Workshop on Machine Translation

(Callison-Burch et al., 2011). We provided 1989

training sentences, consisting of source and refer-

ence sentences along with the candidate translations.

We also included a test set of 250 sentences, for

which we provided only the source and candidate

translations. Each candidate translation included six

features from the underlying translation system, out

of an original 21; our hope was that students might

rediscover some features through experimentation.

6.2 Implementation

We conceived of the assignment as one in which stu-

dents could apply machine learning or feature engi-

neering to the task of reranking the systems, so we

provided several tools. The first of these, learn,

was a simple program that produced a vector of

feature weights using pairwise ranking optimization

(PRO; Hopkins and May, 2011), with a perceptron

as the underlying learning algorithm. A second,

rerank, takes a weight vector as input and reranks

the sentences; both programs were designed to work

with arbitrary numbers of features. The grade pro-

gram computed the BLEU score on development

data, while check ensured that a test submission

is valid. Finally, we provided an oracle program,

which computed a lower bound on the achievable

BLEU score on the development data using a greedy

approximation (Och et al., 2004). The leaderboard

likewise displayed an oracle on test data. We did

not assign a target algorithm, but left the assignment

fully open-ended.

6.3 Reranking Challenge Outcome

For each assignment, we made an effort to create

room for competition above the target algorithm.

However, we did not accomplish this in the rerank-

ing challenge: we had removed most of the features

from the candidate translations, in hopes that stu-

dents might reinvent some of them, but we left one

highly predictive implicit feature in the data: the

rank order of the underlying translation system. Stu-

dents discovered that simply returning the first can-

didate earned a very high score, and most of them

quickly converged to this solution. Unfortunately,

the high accuracy of this baseline left little room for

additional competition. Nevertheless, we were en-

couraged that most students discovered this by acci-

dent while attempting other strategies to rerank the

translations.

• Experimentation with parameters of the PRO

algorithm.

• Substitution of alternative learning algorithms.

• Implementation of a simplified minimum

Bayes risk reranker (Kumar and Byrne, 2004).

Over a baseline of 24.02, the latter approach ob-

tained a BLEU of 27.08, nearly matching the score

of 27.39 from the underlying system despite an im-

poverished feature set.

7 Pedagogical Outcomes

Could our students have obtained similar results by

running standard toolkits? Undoubtedly. However,

our goal was for students to learn by doing: they

obtained these results by implementing key MT al-

gorithms, observing their behavior on real data, and

improving them. This left them with much more in-

sight into how MT systems actually work, and in

this sense, DREAMT was a success. At the end of

class, we requested written feedback on the design

of the assignments. Many commented positively on

the motivation provided by the challenge problems:

• The immediate feedback of the automatic grad-

ing was really nice.

• Fast feedback on my submissions and my rela-

tive position on the leaderboard kept me both

motivated to start the assignments early and to

constantly improve them. Also knowing how

well others were doing was a good way to

gauge whether I was completely off track or not

when I got bad results.

• The homework assignments were very engag-

ing thanks to the clear yet open-ended setup

and their competitive aspects.

Students also commented that they learned a lot

about MT and even research in general:
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Question 1 2 3 4 5 N/A

Feedback on my work for this course is useful - - - 4 9 3

This course enhanced my ability to work effectively in a team 1 - 5 8 2 -

Compared to other courses at this level, the workload for this course is high - 1 7 6 1 1

Table 1: Response to student survey questions on a Likert scale from 1 (strongly disagree) to 5 (strongly agree).

• I learned the most from the assignments.

• The assignments always pushed me one step

more towards thinking out loud how the par-

ticular task can be completed.

• I appreciated the setup of the homework prob-

lems. I think it has helped me learn how to

set up and attack research questions in an or-

ganized way. I have a much better sense for

what goes into an MT system and what prob-

lems aren’t solved.

We also received feedback through an anonymous

survey conducted at the end of the course before

posting final grades. Each student rated aspects

of the course on a five point Likert scale, from 1

(strongly disagree) to 5 (strongly agree). Several

questions pertained to assignments (Table 1), and al-

lay two possible concerns about competition: most

students felt that the assignments enhanced their col-

laborative skills, and that their open-endedness did

not result in an overload of work. For all survey

questions, student satisfaction was higher than av-

erage for courses in our department.

8 Discussion

DREAMT is inspired by several different ap-

proaches to teaching NLP, AI, and computer sci-

ence. Eisner and Smith (2008) teach NLP using

a competitive game in which students aim to write

fragments of English grammar. Charniak et al.

(2000) improve the state-of-the-art in a reading com-

prehension task as part of a group project. Christo-

pher et al. (1993) use NACHOS, a classic tool for

teaching operating systems by providing a rudimen-

tary system that students then augment. DeNero and

Klein (2010) devise a series of assignments based

on Pac-Man, for which students implement several

classic AI techniques. A crucial element in such ap-

proaches is a highly functional but simple scaffold-

ing. The DREAMT codebase, including grading and

validation scripts, consists of only 656 lines of code

(LOC) over four assignments: 141 LOC for align-

ment, 237 LOC for decoding, 86 LOC for evalua-

tion, and 192 LOC for reranking. To simplify imple-

mentation further, the optional leaderboard could be

delegated to Kaggle.com, a company that organizes

machine learning competitions using a model sim-

ilar to the Netflix Challenge (Bennet and Lanning,

2007), and offers pro bono use of its services for

educational challenge problems. A recent machine

learning class at Oxford hosted its assignments on

Kaggle (Phil Blunsom, personal communication).

We imagine other uses of DREAMT. It could be

used in an inverted classroom, where students view

lecture material outside of class and work on prac-

tical problems in class. It might also be useful in

massive open online courses (MOOCs). In this for-

mat, course material (primarily lectures and quizzes)

is distributed over the internet to an arbitrarily large

number of interested students through sites such as

coursera.org, udacity.com, and khanacademy.org. In

many cases, material and problem sets focus on spe-

cific techniques. Although this is important, there is

also a place for open-ended problems on which stu-

dents apply a full range of problem-solving skills.

Automatic grading enables them to scale easily to

large numbers of students.

On the scientific side, the scale of MOOCs might

make it possible to empirically measure the effec-

tiveness of hands-on or competitive assignments,

by comparing course performance of students who

work on them against that of those who do not.

Though there is some empirical work on competi-

tive assignments in the computer science education

literature (Lawrence, 2004; Garlick and Akl, 2006;

Regueras et al., 2008; Ribeiro et al., 2009), they

generally measure student satisfaction and retention

rather than the more difficult question of whether

such assignments actually improve student learning.

However, it might be feasible to answer such ques-

174



tions in large, data-rich virtual classrooms offered

by MOOCs. This is an interesting potential avenue

for future work.

Because our class came within reach of state-of-

the-art on each problem within a matter of weeks,

we wonder what might happen with a very large

body of competitors. Could real innovation oc-

cur? Could we solve large-scale problems? It may

be interesting to adopt a different incentive struc-

ture, such as one posed by Abernethy and Frongillo

(2011) for crowdsourcing machine learning prob-

lems: rather than competing, everyone works to-

gether to solve a shared task, with credit awarded

proportional to the contribution that each individual

makes. In this setting, everyone stands to gain: stu-

dents learn to solve problems as they are found in

the real world, instructors learn new insights into the

problems they pose, and, in the long run, users of

AI technology benefit from overall improvements.

Hence it is possible that posing open-ended, real-

world problems to students might be a small piece

of the puzzle of providing high-quality NLP tech-

nologies.
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