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Abstract

During the course of first language acquisi-
tion, children produce linguistic forms that do
not conform to adult grammar. In this paper,
we introduce a data set and approach for sys-
tematically modeling this child-adult grammar
divergence. Our corpus consists of child sen-
tences with corrected adult forms. We bridge
the gap between these forms with a discrim-
inatively reranked noisy channel model that
translates child sentences into equivalent adult
utterances. Our method outperforms MT and
ESL baselines, reducing child error by 20%.
Our model allows us to chart specific aspects
of grammar development in longitudinal stud-
ies of children, and investigate the hypothesis
that children share a common developmental
path in language acquisition.

1 Introduction

Since the publication of the Brown Study (1973),
the existence of standard stages of development has
been an underlying assumption in the study of first
language learning. As a child moves towards lan-
guage mastery, their language use grows predictably
to include more complex syntactic structures, even-
tually converging to full adult usage. In the course of
this process, children may produce linguistic forms
that do not conform to the grammatical standard.
From the adult point of view these are language er-
rors, a label which implies a faulty production. Con-
sidering the work-in-progress nature of a child lan-
guage learner, these divergences could also be de-
scribed as expressions of the structural differences

between child and adult grammar. The predictability
of these divergences has been observed by psychol-
ogists, linguists and parents (Owens, 2008).1

Our work leverages the differences between child
and adult language to make two contributions to-
wards the study of language acquisition. First, we
provide a corpus of errorful child sentences anno-
tated with adult-like rephrasings. This data will al-
low researchers to test hypotheses and build models
relating the development of child language to adult
forms. Our second contribution is a probabilistic
model trained on our corpus that predicts a gram-
matical rephrasing given an errorful child sentence.

The generative assumption of our model is that
sentences begin in underlying adult forms, and are
then stochastically transformed into observed child
utterances. Given an observed child utterance s, we
calculate the probability of the corrected adult trans-
lation t as

P (t|s) ∝ P (s|t)P (t),

where P (t) is an adult language model and P (s|t)
is a noise model crafted to capture child grammar
errors like omission of certain function words and
corruptions of tense or declension. The parame-
ters of this noise model are estimated using our cor-
pus of child and adult-form utterances, using EM to
handle unobserved word alignments. We use this
generative model to produce n-best lists of candi-
date corrections which are then reranked using long
range sentence features in a discriminative frame-
work (Collins and Roark, 2004).

1For the remainder of this paper we use “error” and “diver-
gence” interchangeably.
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One could argue that our noisy channel model
mirrors the cognitive process of child language pro-
duction by appealing to the hypothesis that children
rapidly learn adult-like grammar but produce errors
due to performance factors (Bloom, 1990; Ham-
burger and Crain, 1984). That being said, our pri-
mary goal in this paper is not cognitive plausibility,
but rather the creation of a practical tool to aid in
the empirical study of language acquisition. By au-
tomatically inferring adult-like forms of child sen-
tences, our model can highlight and compare devel-
opmental trends of children over time using large
quantities of data, while minimizing the need for hu-
man annotation.

Besides this, our model’s predictive success it-
self has theoretical implications. By aggregating
training and testing data across children, our model
instantiates the Brown hypothesis of a shared de-
velopmental path. Even when adequate per-child
training data exists, using data only from other chil-
dren leads to no degradation in performance, sug-
gesting that the learned parameters capture general
child language phenomena and not just individual
habits. Besides aggregating across children, our
model coarsely lumps together all stages of devel-
opment, providing a frozen snapshot of child gram-
mar. This establishes a baseline for more cognitively
plausible and temporally dynamic models.

We compare our correction system against two
baselines, a phrase-based Machine Translation (MT)
system, and a model designed for English Second
Language (ESL) error correction. Relative to the
best performing baseline, our approach achieves a
30% decrease in word error-rate and a four point
increase in BLEU score. We analyze the perfor-
mance of our system on various child error cate-
gories, highlighting our model’s strengths (correct-
ing be drops and morphological overgeneralizations)
as well as its weaknesses (correcting pronoun and
auxiliary drops). We also assess the learning rate
of our model, showing that very little annotation
is needed to achieve high performance. Finally, to
showcase a potential application, we use our model
to chart one aspect of four children’s grammar ac-
quisition over time. While generally vindicating the
Brown thesis of a common developmental path, the
results point to subtleties in variation across individ-
uals that merit further investigation.

2 Background and Related Work

While child error correction is a novel task, com-
putational methods are frequently used to study first
language acquisition. The computational study of
speech is facilitated by TalkBank (MacWhinney,
2007), a large database of transcribed dialogues in-
cluding CHILDES (MacWhinney, 2000), a subsec-
tion composed entirely of child conversation data.
Computational tools have been developed specif-
ically for the large-scale analysis of CHILDES.
These tools enable further computational study such
as the automatic calculation of the language devel-
opment metrics IPSYN (Sagae et al., 2005) and
D-Level (Lu, 2009), or the automatic formula-
tion of novel language development metrics them-
selves (Sahakian and Snyder, 2012).

The availability of child language is also key to
the design of computational models of language
learning (Alishahi, 2010), which can support the
plausibility of proposed human strategies for tasks
like semantic role labeling (Connor et al., 2008) or
word learning (Regier, 2005). To our knowledge
this paper is the first work on error correction in
the first language learning domain. Previous work
has employed a classifier-based approach to iden-
tify speech errors indicative of language disorders
in children (Morley and Prud’hommeaux, 2012).

Automatic correction of second language (L2)
writing is a common objective in computer assisted
language learning (CALL). These tasks generally
target high-frequency error categories including ar-
ticle, word-form, and preposition choice. Previous
work in CALL error correction includes identify-
ing word choice errors in TOEFL essays based on
context (Chodorow and Leacock, 2000), correcting
errors with a generative lattice and PCFG rerank-
ing (Lee and Seneff, 2006), and identifying a broad
range of errors in ESL essays by examining linguis-
tic features of words in sequence (Gamon, 2011). In
a 2011 shared ESL correction task (Dale and Kilgar-
riff, 2011), the best performing system (Rozovskaya
et al., 2011) corrected preposition, article, punctu-
ation and spelling errors by building classifiers for
each category. This line of work is grounded in the
practical application of automatic error correction as
a learning tool for ESL students.

Statistical Machine Translation (SMT) has been
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applied in diverse contexts including grammar cor-
rection as well as paraphrasing (Quirk et al., 2004),
question answering (Echihabi and Marcu, 2003) and
prediction of twitter responses (Ritter et al., 2011).
In the realm of error correction, SMT has been ap-
plied to identify and correct spelling errors in inter-
net search queries (Sun et al., 2010). Within CALL,
Park and Levy (2011) took an unsupervised SMT
approach to ESL error correction using Weighted Fi-
nite State Transducers (FSTs). The work described
in this paper is inspired by that of Park and Levy,
and in Section 6 we detail differences between our
approaches. We also include their model as a base-
line.

3 Data

To train and evaluate our translation system, we first
collected a corpus of 1,000 errorful child-language
utterances from the American English portion of the
CHILDES database. To encourage diversity in the
grammatical divergences captured by our corpus,
our data is drawn from a large pool of studies (see
bibliography for the full list of citations).

In the annotation process, candidate child sen-
tences were randomly selected from the pool and
classified by hand as either grammatically correct,
divergent or unclassifiable (when it was not possi-
ble to tell what a child is trying to say). We con-
tinued this process until 1,000 divergent sentences
were found. Along the way we also encountered
5,197 grammatically correct utterances and 909 that
were unclassifiable.2 Because CHILDES includes
speech samples from children of diverse age, back-
ground and language ability, our corpus does not
capture any specific stage of language development.
Instead, the corpus represents a general snapshot of
a learner who has not yet mastered English as their
first language.

To provide the grammatically correct counterpart
to child data, our errorful sentences were corrected
by workers on Amazon’s Mechanical Turk web ser-
vice. Given a child utterance and its surrounding
conversational context, annotators were instructed
to translate the child utterance into adult-like En-
glish. We limited eligible workers to native English

2These hand-classified sentences are available online along
with our set of errorful sentences.

Error Type Child Utterance
Insertion I did locked it.
Inflection More cookie?
Deletion That not how.

Lemma Choice I got grain.
Overgeneralization I drawed it.

Table 1: Examples of error types captured by our model.

speakers residing in the US. We also required anno-
tators to follow a brief tutorial in which they prac-
tice correcting sample utterances according to our
guidelines. These guidelines instructed workers to
minimally alter sentences to be grammatically con-
sistent with a conversation or written letter, without
altering underlying meaning. Annotators were eval-
uated on a worker-by-worker basis and rejected in
the rare case that they ignored our guidelines. Ac-
cepted workers were paid 7 cents for correcting each
set of 5 sentences. To achieve a consistent judgment,
we posted each set of sentences for correction by 7
different annotators.

Once multiple reference translations were ob-
tained we selected a single best correction by plu-
rality, arbitrating ties as necessary. There were sev-
eral cases in which corrections obtained by plurality
decision did not perfectly follow instructions. These
were manually corrected. Both the raw translations
provided by individual annotators as well as the cu-
rated final adult forms are provided online as part of
our data set.3 Resulting pairs of errorful child sen-
tences and their adult-like corrections were split into
73% training, 7% development and 20% test data,
which we use to build, tune and evaluate our gram-
mar correction system. In the final test phase, devel-
opment data is included in the training set.

4 Model

According to our generative model, adult-like utter-
ances are formed and then transformed by a noisy
channel to become child sentences. The structure
of our noise model is tailored to match our observa-
tions of common child errors. These include: func-
tion word insertions, function word deletions, swaps
of function words and, inflectional changes to con-
tent words. Examples of each error type are given

3Data is available at
http://pages.cs.wisc.edu/~bsnyder
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in Table 1. Our model does not allow reorderings,
and can thus be described in terms of word-by-word
stochastic transformations to the adult sentence.

We use 10 word classes to parameterize our
model: pronouns, negators, wh-words, conjunc-
tions, prepositions, determiners, modal verbs, “be”
verbs, other auxiliary verbs, and lexical content
words. The list of words in each class is provided
as part of our data set. For each input adult word w,
the model generates output word w′ as a hierarchi-
cal series of draws from multinomial distributions,
conditioned on the original word w and its class c.

All distributions receive an asymmetric Dirichlet
prior which favors retention of the adult word. With
the sole exception of word insertions, the distribu-
tions are parameterized and learned during train-
ing. Our model consists of 217 multinomial distri-
butions, with 6,718 free parameters.

The precise form and parameterization of our
model were handcrafted for performance on the de-
velopment data, using trial and error. We also con-
sidered more fine-grained model forms (i.e. one
parameter for each non-lexical input-output word
pair), as well as coarser parameterizations (i.e.
a single shared parameter denoting any inflection
change). The model we describe here seemed to
achieve the best balance of specificity and general-
ization.

We now present pseudocode describing the noise
model’s operation upon processing each word,
along with a brief description of each step.

Action selection (lines 3-7): On reading an input
word, an action category a is selected from a prob-
ability distribution conditioned on the input word’s
class. Our model allows up to two function word
insertions or deletions in a row before a swap is re-
quired. Lexical content words may not be deleted or
inserted, only swapped.

Insert and Delete (lines 8-15): The deletion
case requires no decision after action selection. In
the insertion case, the class of the inserted word,
c′, is selected conditioned on cPREV, the class of
the previous adult word. The precise identity of
the inserted word is then drawn from a uniform
distribution over words in class c′. It is important
to note that in the insertion case, the input word at

a given iteration will be re-processed at the next
iteration (lines 33-35).

insdel← 0
for word w with class c, inflection f , lemma `
do

3: if insdel = 2 then
a← swap

else
6: a ∼ {insert, delete, swap} | c

end if
if a = delete then

9: insdel++
c′ ← ε
w′ ← ε

12: else if a = insert then
insdel++
c′ ∼ classes | cPREV, insert

15: w′ ∼ words in c′ | insert
else

insdel← 0
18: c′ ← c

if c ∈ uninflected-classes then
w′ ∼ words in c | w, swap

21: else if c = aux then
`′ ∼ aux-lemmas | `, swap
f ′ ∼ inflections | f, swap

24: w′ ← COMBINE(`′, f ′)
else
f ′ ∼ inflections | f, swap

27: w′ ← COMBINE(`, f ′)
end if

end if
30: if w′ ∈ irregular then

w′ ∼ OVERGEN(w′) ∪ {w′}
end if

33: if a = insert then
goto line 3

end if
36: end for

Swap (lines 16 - 29): In the swap case, a word
of given class is substituted for another word in the
same class. Depending on the source word’s class,
swaps are handled in slightly different ways. If the
word is a modal, conjunction, determiner, preposi-
tion, “wh-” word or negative, it is considered “unin-
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flected.” In these cases, a new word w′ is selected
from all words in class c, conditioned on the source
word w.

If w is an auxiliary verb, the swap procedure con-
sists of two parallel steps. A lemma is selected
from possible auxiliary lemmas, conditioned on the
lemma of the source word.4 In the second step, an
output inflection type is selected from a distribution
conditioned on the source word’s inflection. The
precise output word is fully specified by the choice
of lemma and conjugation.

If w is not in either of the above two categories, it
is a lexical word, and our model only allows changes
in conjugation or declension. If the source word is
a noun it may swap to singular or plural form con-
ditioned on the source form. If the word is a verb,
it may swap to any conjugated or non-finite form,
again conditioned on the source form. Lexical words
that are not marked by CELEX (Baayen et al., 1996)
as nouns or verbs may only swap to the exact same
word.

Overgeneralization (lines 30-32): Finally, the
noisy channel considers the possibility of produc-
ing overgeneralized word forms (like “maked” and
“childs”) in place of their correct irregular forms.
The OVERGEN function produces the incorrect over-
generalized form. We draw from a distribution
which chooses between this form and the correct
original word. Our model maintains separate dis-
tributions for nouns (overgeneralized plurals) and
verbs (overgeneralized past tense).

5 Implementation

In this section, we describe steps necessary to
build, train and test our error correction model.
Weighted Finite State Transducers (FSTs) used in
our model are constructed with OpenFst (Allauzen
et al., 2007).

5.1 Sentence FSTs
These FSTs provide the basis for our translation pro-
cess. We represent sentences by building a simple
linear chain FST, progressing from node to node
with each arc accepting and yielding one word in
the sentence. All arcs are weighted with probability
one.

4Auxiliary lemmas include have, do, go, will, and get.

5.2 Noise FST

The noise model provides a conditional probability
over child sentences given an adult sentence. We en-
code this model as a FST with several states, allow-
ing us to track the number of consecutive insertions
or deletions. We allow only two of these operations
in a row, thereby constraining the length of the out-
put sentence. This constraint results in three states
(insdel = 0, insdel = 1, insdel = 2), along with
an end state. In our training data, only 2 sentence
pairs cannot be described by the noise model due to
this constraint.

Each arc in the FST has an ε or adult-language
word as input symbol, and a possibly errorful child-
language word or ε as output symbol. Each arc
weight is the probability of transducing the input
word to the output word, determined according to
the parameterized distributions described in Sec-
tion 4. Arcs corresponding to insertions or dele-
tions lead to a new state (insdel++) and are not al-
lowed from state insdel = 2. Substitution arcs all
lead back to state insdel = 0. Word class infor-
mation is given by a set of word lists for each non-
lexical class.5 Inflectional information is derived
from CELEX.

5.3 Language Model FST

The language model provides a prior distribution
over adult form sentences. We build a a trigram
language model FST with Kneser-Ney smoothing
using OpenGRM (Roark et al., 2012). The lan-
guage model is trained on all parent speech in the
CHILDES studies from which our errorful sentences
are drawn.

In the language model FST, the input and output
words of each arc are identical. Arcs are weighted
with the probability of the n-gram beginning with
some prefix associated with the source node, and
ending with the arc’s input/output word. In this
setup, the probability of a string is the total weight
of the path accepting and emitting that string.

5.4 Training

As detailed in Section 4, our noise model consists of
a series of multinomial distributions which govern

5Word lists are included for reference with our dataset.
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0 1
that:that

2
is:<eps>

3him:him

his:him

him:him

his:him

4
hat:hat

hats:hat
5

.:.

Figure 1: A simplified decoding FST for the child sentence “That him hat.” In an actual decoding FST many more
transduction arcs exist, including those translating “that” and “him” to any determiner and pronoun, respectively,
and affording opportunities for many more deletions and insertions. Input and output strings given by FST paths
correspond to possible adult-to-child translations.

the transformation from adult word to child word, al-
lowing limited insertions and deletions. We estimate
parameters θ for these distributions that maximize
their posterior probability given the observed train-
ing sentences {(s, t)}. Since our language model
P (t) does not depend on on the noise model param-
eters, this objective is equivalent to jointly maximiz-
ing the prior and the conditional likelihoods of child
sentences given adult sentences:

argmax
θ

P (θ)
∏

P (s|t, θ)

To represent all possible derivations of each child
sentence s from its adult translation t, we compose
the sentence FSTs with the noise model, obtaining:

FSTtrain = FSTt ◦ FSTnoise ◦ FSTs

Each path through FSTtrain corresponds to a sin-
gle derivation d, with path weight P (s, d|t, θ). By
summing all path weights, we obtain P (s|t, θ). We
use a MAP-EM algorithm to maximize our objective
while summing over all possible derivations.

Our training scheme relies on FSTs weighted in
the V-expectation semiring (Eisner, 2001), imple-
mented using code from fstrain (Dreyer et al., 2008).
Besides carrying probabilities, arc weights are sup-
plemented with a vector to indicate parameter counts
involved in the arc traversal. The V-expectation
semiring is designed so that the total arc weight of
all paths through the FST yields both the probabil-
ity P (s|t, θ), along with expected parameter counts.
Our EM algorithm proceeds as follows: We start
by initializing all parameters to uniform distribu-
tions with random noise. We then weight the arcs
in FSTnoise accordingly. For each sentence pair
(s, t), we build FSTtrain by composition with our

noise model, as described in the previous paragraph.
We then compute the total arc weight of all paths
through FSTtrain by relabeling all input and output
symbols to ε and then reducing FSTtrain to a single
state using epsilon removal (Mohri, 2008). The stop-
ping weight of this single state is the sum of all paths
through the original FST, yielding the probability
P (s|t, θ), along with expected parameter counts ac-
cording to our current distributions. We then reesti-
mate θ using the expected counts plus pseudo-counts
given by priors, and repeat this process until conver-
gence.

Besides smoothing our estimated distributions,
the pseudo-counts given by our asymmetric Dirich-
let priors favor multinomials that retain the adult
word form (swaps, identical lemmas, and identical
inflections). Concretely, we use pseudo-counts of
.5 for these favored outcomes, and pseudo-counts of
.01 for all others.6

In practice, 109 of the child sentences in our data
set cannot be translated into a corresponding adult
version using our model. This is due to a range of
rare phenomena like rephrasing, lexical word swaps
and word-order errors. In these cases, the composed
FST has no valid paths from start to finish and the
sentence is removed from training. We run EM for
100 iterations, at which time the log likelihood of all
sentences generally converges to within .01.

5.5 Decoding

After training our noise model, we apply the sys-
tem to translate divergent child language to adult-
like speech. As in training, the noise FST is com-
posed with the FST for each child sentence s. In

6corresponding to Dirichlet hyperparameters of 1.5 and 1.01
respectively.
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place of the adult sentence, the language model FST
is used, yielding:

FSTdecode = FSTlm ◦ FSTnoise ◦ FSTs

Each path through FSTdecode corresponds to an
adult translation and derivation (t, d), with path
weight P (s, d|t, θ)P (t). Thus, the highest-weight
path corresponds to the most likely translation and
derivation pair:

argmax
t,d

P (t, d|s, θ)

We use a dynamic program to find the n highest-
weight paths with distinct adult sentences t. This can
be viewed as finding the n most likely adult trans-
lations, using a Viterbi approximation P (t|s, θ) =
argmaxd P (t, d|s, θ). In our experiments we set
n = 50. A simplified FSTdecode example is shown
in Figure 1.

5.6 Discriminative Reranking
To more flexibly capture long range syntactic fea-
tures, we embed our noisy channel model in a dis-
criminative reranking procedure. For each child sen-
tence s, we take the n-best candidate translations
t1, . . . , tn from the underlying generative model, as
described in the previous section. We then map each
candidate translation ti to a d-dimensional feature
vector f(s, ti). The reranking model then uses a d-
dimensional weight vector λ to predict the candidate
translation with highest linear score:

t∗ = argmax
ti

λ · f(s, ti)

To simulate test conditions, we train the weight vec-
tor on n-best lists from 8-fold cross-validation over
training data, using the averaged perceptron rerank-
ing algorithm (Collins and Roark, 2004). Since the
n-best list might not include the exact gold-standard
correction, a target correction which maximizes our
evaluation metric is chosen from the list. The n-best
list is non-linearly separable, so perceptron training
iterates for 1000 rounds, when it is terminated with-
out converging.

Our feature function f(s, ti) yields nine boolean
and real-valued features derived from (i) the FST
that generates child sentence s from candidate adult-
form ti, and (ii) the POS sequence and dependency

parse of candidate ti obtained with the Stanford
Parser (de Marneffe et al., 2006). Features were se-
lected based on their performance in reranking held-
out development data from the training set. Rerank-
ing features are given below:

Generative Model Probabilities: We first include
the joint probability of the child sentence s and can-
didate translation ti, given by the generative model:
Plm(ti)Pnoise(s|ti). We also isolate the candidate
translation’s language model and noise model prob-
abilities as features. Since both of these proba-
bilities naturally favor shorter sentences, we scale
them to sentence length, yielding n

√
Plm(ti) and

n
√
Pnoise(s|ti) respectively. By not scaling the joint

probability, we allow the reranker to learn its own
bias towards longer or shorter corrected sentences.

Contains Noun Subject, Accusative Noun Sub-
ject: The first boolean feature indicates whether
the dependency parse of candidate translation ti con-
tains a “nsubj” relation. The second indicates if a
“nsubj” relation exists where the dependent is an ac-
cusative pronoun (e.g. “Him ate the cookie”). These
features and the one following have previously been
used in classifier based error detection (Morley and
Prud’hommeaux, 2012).

Contains Finite Verb: This boolean feature is
true if the POS tags of ti include a finite verb. This
feature differentiates structures like “I am going”
from “I going.”

Question Template Features: We define tem-
plates for wh- and yes-no questions. A sentence
fits the wh- question template if it begins with a wh-
word, followed by an auxiliary or copula verb (e.g.
“Who did...”). A sentence fits the yes-no template
when it begins with an auxiliary or copula verb, then
a noun subject followed by a verb or adjective (e.g.
“Are you going...”). We include one boolean feature
for each of these templates indicating when a tem-
plate match is inappropriate, when the original child
utterance terminates in a period instead of a question
mark. In addition to the two features for inappropri-
ate template matches, we have a single feature that
signals appropriate matches of either question tem-
plate — when the original child utterance terminates
in a question mark.
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Child Utterance Human Correction Machine Correction
I am not put in my mouth. I am not putting it in my mouth. I am not going to put it in my mouth.

This one have water? Does this one have water? This one has water?
Want to read the book. I want to read the book. You want to read the book.

Why you going to get two? Why are you going to get two? Why are you going to have two?
You very sticky. You are very sticky. You are very sticky.

He no like. He does not like it. He does not like that.
Yeah it looks a lady. Yeah it looks like a lady Yeah it looks like a lady.
Eleanor come too. Eleanor came too. Eleanor come too.

Desk in here. The desk is in here Desk is in here.
Why he’s doc? Why is he called doc? He’s up doc?

Table 2: Randomly selected test output generated by our complete error correction model, along with corresponding
child utterances and human corrections.

6 Experiments and Analysis

Baselines We compare our system’s performance
with two pre-existing baselines. The first is a stan-
dard phrase-based machine translation system using
MOSES (Koehn et al., 2007) with GIZA++ (Och
and Ney, 2003) word alignments. We hold out 9%
of the training data for tuning using the MERT algo-
rithm with BLEU objective (Och, 2003).

The second baseline is our implementation of the
ESL error correction system described by Park and
Levy (2011). Like our system, this baseline trains
FST noise models using EM in the V-expectation
semiring. Our noise model is crafted specifically
for the child language domain, and so differs from
Park and Levy’s in several ways: First, we capture a
wider range of word-swaps, with richer parameteri-
zation allowing many more translation options. As a
result, our model has 6,718 parameters, many more
than the ESL model’s 187. These parameters corre-
spond to learned probability distributions, whereas
in the ESL model many of the distributions are fixed
as uniform. We also capture a larger class of errors,
including deletions, change of auxiliary lemma, and
inflectional overgeneralizations. Finally, we use a
discriminative reranking step to model long-range
syntactic dependencies. Although the ESL model is
originally geared towards fully unsupervised train-
ing, we train this baseline in the same supervised
framework as our model.

Evaluation and Performance We train all models
on 80% of our child-adult sentence pairs and test on
the remaining 20%. For illustration, selected output

from our model is shown in Table 2.
Predictions are evaluated with BLEU score (Pap-

ineni et al., 2002) and Word Error Rate (WER), de-
fined as the minimum string edit distance (in words)
between reference and predicted translations, di-
vided by length of the reference. As a control,
we compare all results against scores for the uncor-
rected child sentences themselves. As reported in
Table 3, our model achieves the best scores for both
metrics. BLEU score increases from 50 for child
sentences to 62, while WER is reduced from .271 to
.224. Interestingly, MOSES achieves a BLEU score
of 58 — still four points below our model — but ac-
tually increases WER to .449. For both metrics, the
ESL system increases error. This is not surprising
given that its intended application is in an entirely
different domain.

Error Analysis We measured the performance of
our model over the six most common categories
of child divergence, including deletions of various
function words and overgeneralizations of past tense
forms (e.g. “maked” for “made”). We first iden-
tified model parameters associated with each cate-
gory, and then counted the number of correct and in-
correct parameter firings on the test sentences. As
Table 4 indicates, our model performs reasonably
well on “be” verb deletions, preposition deletions,
and overgeneralizations, but has difficulty correcting
pronoun and auxiliary deletions.

In general, hypothesizing dropped words burdens
the noise model by adding additional draws from
multinomial distributions to the derivation. To pre-
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BLEU WER
WER reranking 62.12 .224
BLEU reranking 60.86 .231

No reranking 60.37 .233
Moses 58.29 .449
ESL 40.76 .318

Child Sentences 49.55 .271

Table 3: WER and BLEU scores. Our system’s perfor-
mance using various reranking schemes (BLEU objec-
tive, WER objective and none) is contrasted with Moses
MT and ESL error correction baselines, as well as un-
corrected test sentences. Best performance under each
metric is shown in bold.

dict a deletion, either the language model or the
reranker must strongly prefer including the omit-
ted word. A syntax-based noise model may achieve
better performance in detecting and correcting child
word drops.

While our model parameterization and perfor-
mance rely on the largely constrained nature of
child language errors, we observe some instances in
which it is overly restrictive. For 10% of utterances
in our corpus, it is impossible to recover the exact
gold-standard adult sentence. These sentences fea-
ture errors like reordering or lexical lemma swaps —
for example “I talk Mexican” for “I speak Spanish.”
While our model may correct other errors in these
sentences, a perfect correction is unattainable.

Sometimes, our model produces appropriate
forms which by happenstance do not conform to the
annotators’ decision. For example, in the second
row of Table 2, the model corrects “This one have
water?” to “This one has water?”, instead of the
more verbose correction chosen by the annotators
(“Does this one have water?”). Similarly, our model
sometimes produces corrections which seem appro-
priate in isolation, but do not preserve the meaning
implied by the larger conversational context. For ex-
ample, in row three of Table 2, the sentence “Want
to read the book.” is recognized both by our hu-
man annotators and the system as requiring a pro-
noun subject. Unlike the annotators, however, the
model has no knowledge of conversational context,
so it chooses the highest probability pronoun — in
this case “you” — instead of the contextually correct
“I.”

Error Type Count F1 P R
Be Deletions 63 .84 .84 .84

Pronoun Deletions 30 .15 .38 .1
Aux. Deletions 30 .21 .44 .13
Prep. Deletions 26 .65 .82 .54
Det. Deletions 22 .48 .73 .36
Overgen. Past 7 .92 1.0 .86

Table 4: Frequency of the six most common error types
in test data, along with our model’s corresponding F-
measure, precision and recall. All counts are ±.12 at
p = .05 under a binomial normal approximation inter-
val.
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Figure 2: Performance with limited training data. WER
is drawn as the dashed line, and BLEU as the solid line.

Learning Curves In Figure 2, we see that the
learning curves for our model initially rise sharply,
then remain relatively flat. Using only 10% of
our training data (80 sentences), we increase BLEU
from 44 (using just the language model) to almost
61. We only reach our reported BLEU score of 62
when adding the final 20% of training data. This
result emphasizes the specificity of our parameteri-
zation. Because our model is so tailored to the child-
language scenario, only a few examples of each er-
ror type are needed to find good parameter values.
We suspect that more annotated data would lead to a
continued but slow increase in performance.

Training and Testing across Children We use
our system to investigate the hypothesis that lan-
guage acquisition follows a similar path across chil-
dren (Brown, 1973). To test this hypothesis, we train
our model on all children excluding Adam, who
alone is responsible for 21% of our sentences. We
then test the learned model on the separated Adam
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Trained on: BLEU WER
Adam 72.58 .226

All Others 69.83 .186
Uncorrected 45.54 .278

Table 5: Performance on Adam’s sentences training on
other children, versus training on himself. Best perfor-
mance under each metric is shown in bold.

data. These results are contrasted with performance
of 8-fold cross validation training and testing solely
on Adam’s utterances. Performance statistics are
given in Table 5.

We first note that models trained in both scenar-
ios lead to large error reductions over the child sen-
tences. This provides evidence that our model cap-
tures general, and not child-specific, error patterns.
Although training exclusively on Adam does lead
to increased BLEU score (72.58 vs 69.83), WER is
minimized when using the larger volume of train-
ing data from other children (.186 vs .226). Taken
as a whole, these results suggest that training and
testing on separate children does not degrade perfor-
mance. This finding supports the general hypothesis
of shared developmental paths.

Plotting Child Language Errors over Time Af-
ter training on annotated data, we predict diver-
gences in all available data from the children in
Roger Brown’s 1973 study — Adam, Eve and Sarah
— as well as Abe (Kuczaj, 1977), a child from a sep-
arate study over a similar age-range. We plot each
child’s per-utterance frequency of preposition omis-
sions in Figure 3. Since we evaluate over 65,000
utterances and reranking has no impact on preposi-
tion drop prediction, we skip the reranking step to
save computation.

In Figure 3, we see that Adam and Sarah’s prepo-
sition drops spike early, and then gradually decrease
in frequency as their preposition use moves towards
that of an adult. Although Eve’s data covers an ear-
lier time period, we see that her pattern of prepo-
sition drops shows a similar spike and gradual de-
crease. This is consistent with Eve’s general lan-
guage precocity. Brown’s conclusion — that the lan-
guage development of these three children advanced
in similar stages at different times — is consistent
with our predictions. However, when we examine
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Figure 3: Automatically detected preposition omissions
in un-annotated utterances from four children over time.
Assuming perfect model predictions, frequencies are
±.002 at p = .05 under a binomial normal approxima-
tion interval. Prediction error is given in Table 4.

Abe we do not observe the same pattern.7 This
points to a degree of variance across children, and
suggests the use of our model as a tool for further
empirical refinement of language development hy-
potheses.

Discussion Our error correction system is de-
signed to be more constrained than a full-scale MT
system, focusing parameter learning on errors that
are known to be common to child language learn-
ers. Reorderings are prohibited, lexical word swaps
are limited to inflectional changes, and deletions are
restricted to function word categories. By highly re-
stricting our hypothesis space, we provide an induc-
tive bias for our model that matches the child lan-
guage domain. This is particularly important since
the size of our training set is much smaller than that
usually used in MT. Indeed, as Figure 2 shows, very
little data is needed to achieve good performance.

In contrast, the ESL baseline suffers because its
generative model is too restricted for the domain
of transcribed child language. As shown above in
Table 4, child deletions of function words are the
most frequent error types in our data. Since the ESL
model does not capture word deletions, and has a
more restricted notion of word swaps, 88% of child
sentences in our training corpus cannot be translated
to their reference adult versions. The result is that
the ESL model tends to rely too heavily on the lan-
guage model. For example, on the sentence “I com-

7Though it is of course possible that a similar spike and
drop-off occurred earlier in Abe’s development.
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ing to you,” the ESL model improves n-gram prob-
ability by producing “I came to you” instead of the
correct “I am coming to you”. This increases error
over the child sentence itself.

In addition to the domain-specific generative
model, our approach has the advantage of long-
range syntactic information encoded by reranking
features. Although the perceptron algorithm places
high weight on the generative model probability, it
alters the predictions in 17 out of 201 test sentences,
in all cases an improvement. Three of these rerank-
ing changes add a noun subject, five enforce ques-
tion structure, and nine add a main verb.

7 Conclusion and Future Work

In this paper we introduce a corpus of divergent
child sentences with corresponding adult forms, en-
abling the systematic computational modeling of
child language by relating it to adult grammar. We
propose a child-to-adult translation task as a means
to investigate child language development, and pro-
vide an initial model for this task.

Our model is based on a noisy-channel assump-
tion, allowing for the deletion and corruption of in-
dividual words, and is trained using FST techniques.
Despite the debatable cognitive plausibility of our
setup, our results demonstrate that our model cap-
tures many standard divergences and reduces the
average error of child sentences by approximately
20%, with high performance on specific frequently
occurring error types.

The model allows us to chart aspects of language
development over time, without the need for addi-
tional human annotation. Our experiments show that
children share common developmental stages in lan-
guage learning, while pointing to child-specific sub-
tleties in preposition use.

In future work, we intend to dynamically model
child language ability as it grows and shifts in re-
sponse to internal processes and external stimuli.
We also plan to develop and train models specializ-
ing in the detection of specific error categories. By
explicitly shifting our model’s objective from child-
adult translation to the detection of some particular
error, we hope to improve our analysis of child di-
vergences over time.
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