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Abstract

We introduce a novel nonparametric Bayesian
model for the induction of Combinatory Cat-
egorial Grammars from POS-tagged text. It
achieves state of the art performance on a
number of languages, and induces linguisti-
cally plausible lexicons.

1 Introduction

What grammatical representation is appropriate for
unsupervised grammar induction? Initial attempts
with context-free grammars (CFGs) were not very
successful (Carroll and Charniak, 1992; Charniak,
1993). One reason may be that CFGs require the
specification of a finite inventory of nonterminal cat-
egories and rewrite rules, but unless one adopts lin-
guistic principles such as X-bar theory (Jackendoff,
1977), these nonterminals are essentially arbitrary
labels that can be combined in arbitrary ways. While
further CFG-based approaches have been proposed
(Clark, 2001; Kurihara and Sato, 2004), most re-
cent work has followed Klein and Manning (2004)
in developing models for the induction of projec-
tive dependency grammars. It has been shown that
more sophisticated probability models (Headden III
et al., 2009; Gillenwater et al., 2011; Cohen and
Smith, 2010) and learning regimes (Spitkovsky et
al., 2010), as well as the incorporation of prior lin-
guistic knowledge (Cohen and Smith, 2009; Berg-
Kirkpatrick and Klein, 2010; Naseem et al., 2010)
can lead to significant improvement over Klein and
Manning’s baseline model. The use of dependency
grammars circumvents the question of how to obtain

an appropriate inventory of categories, since depen-
dency parses are simply defined by unlabeled edges
between the lexical items in the sentence. But de-
pendency grammars make it also difficult to cap-
ture non-local structures, and Blunsom and Cohn
(2010) show that it may be advantageous to refor-
mulate the underlying dependency grammar in terms
of a tree-substitution grammar (TSG) which pairs
words with treelets that specify the number of left
and right dependents they have. In this paper, we
explore yet another option: instead of dependency
grammars, we use Combinatory Categorial Gram-
mar (CCG, Steedman (1996; 2000)), a linguistically
expressive formalism that pairs lexical items with
rich categories that capture all language-specific in-
formation. This may seem a puzzling choice, since
CCG requires a significantly larger inventory of cat-
egories than is commonly assumed for CFGs. How-
ever, unlike CFG nonterminals, CCG categories are
not arbitrary symbols: they encode, and are deter-
mined by, the basic word order of the language and
the number of arguments each word takes. CCG is
very similar to TSG in that it also pairs lexical items
with rich items that capture all language-specific in-
formation. Like TSG and projective dependency
grammars, we restrict ourselves to a weakly context-
free fragment of CCG. But while TSG does not dis-
tinguish between argument and modifier dependen-
cies, CCG makes an explicit distinction between the
two. And while the elementary trees of Blunsom
and Cohn (2010)’s TSG and their internal nodel la-
bels have no obvious linguistic interpretation, the
syntactic behavior of any CCG constituent can be
directly inferred from its category. To see whether
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the algorithm has identified the basic syntactic prop-
erties of the language, it is hence sufficient to in-
spect the induced lexicon. Conversely, Boonkwan
and Steedman (2011) show that knowledge of these
basic syntactic properties makes it very easy to cre-
ate a language-specific lexicon for accurate unsu-
pervised CCG parsing. We have recently proposed
an algorithm for inducing CCGs (Bisk and Hocken-
maier, 2012b) that has been shown to be competitive
with other approaches even when paired with a very
simple probability model (Gelling et al., 2012). In
this paper, we pair this induction algorithm with a
novel nonparametric Bayesian model that is based
on a different factorization of CCG derivations, and
show that it outperforms our original model and
many other approaches on a large number of lan-
guages. Our results indicate that the use of CCG
yields grammars that are significantly more robust
when dealing with longer sentences than most de-
pendency grammar-based approaches.

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman,
2000) is a linguistically expressive, lexicalized
grammar formalism that associates rich syntactic
types with words and constituents. For simplicity,
we restrict ourselves to the standard two atomic
types S (sentences) and N (encompassing both
nouns and noun phrases) from which we recursively
build categories. Complex categories are of the
form X/Y or X\Y, and represent functions which
return a result of type X when combined with an
argument of type Y. The directionality of the slash
indicates whether the argument precedes or follows
the functor. We write X|Y when the direction of the
slash does not matter.

The CCG lexicon encodes all language-specific
information. It pairs every word with a set of cate-
gories that define both its specific syntactic behavior
as well as the overall word order of the language:

N : {he, girl , lunch, ...} N/N : {good , the, eating , ...}
S\N : {sleeps, ate, eating , ...} (S\N)/N : {sees, ate, ...}
S\S : {quickly , today ...} (S\N)/(S\N) : {good , the, ...}

To draw a simple contrast, in Spanish we would
expect adjectives to take the category N\N because

Spanish word ordering dictates that the adjective fol-
low the noun. The lexical categories also capture
word-word dependencies: head-argument relations
are captured by the lexical category of the head (e.g.
(S\N)/N), whereas head-modifier relations are cap-
tured by the lexical category of the modifier, which
is of the form X\X or X/X, and may take further
arguments of its own. Our goal will be to automati-
cally learn these types of lexicons for a language. In
Figure 3, we juxtapose several such lexicons which
were automatically discovered by our system.

The rules of CCG are defined by a small set of
of combinatory rules, which are traditionally writ-
ten as schemas that define how constituents can be
combined in a bottom-up fashion (although genera-
tive probability models for CCG view them in a top-
down manner, akin to CFG rules). The first, and
most obvious, of these rules is function application:

X/Y Y ⇒ X (B0
>)

Y X\Y ⇒ X (B0
<)

Here the functor X/Y or X\Y is applied to an
argument Y resulting in X. While standard CCG
has a number of additional combinatory rules (type-
raising, generalized variants of composition and
substitution) that increase its generative capacity be-
yond context-free grammars and allow an elegant
treatment of non-local dependencies arising in ex-
traction, coordination and scrambling, we follow
Bisk and Hockenmaier (2012b) and use a restricted
fragment, without type-raising, that allows only ba-
sic composition and is context-free:

X/Y Y/Z ⇒ X/Z (B1
> )

X/Y Y\Z ⇒ X\Z (B1
X>)

Y\Z X\Y ⇒ X\Z (B1
< )

Y/Z X\Y ⇒ X/Z (B1
X<)

The superscript 1 denotes the arity of the compo-
sition which is too low to recover non-projective de-
pendencies, and our grammar is thus weakly equiva-
lent to the dependency grammar representations that
are commonly used for grammar induction. The
main role of composition in our fragment is that it
allows sentential and verb modifiers to both take cat-
egories of the form S\S and S/S. Composition in-
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troduces spurious ambiguities, which we eliminate
by using Eisner (1996)’s normal form.1

Coordinating conjunctions have a special cate-
gory conj, and we binarize coordination as follows
(Hockenmaier and Steedman, 2007):

X X[conj] ⇒&1 X (&1)

conj X ⇒&2 X[conj] (&2)

3 Category induction

Unlike dependency grammars, CCG requires an in-
ventory of lexical categories. Given a set of lexical
categories, the combinatory rules define the set of
parses for each sentence. We follow the algorithm
proposed by Bisk and Hockenmaier (2012b) to au-
tomatically induce these categories. The lexicon is
initialized by pairing all nominal tags (nouns, pro-
nouns and determiners) with the category N, all verb
tags with the category S, and coordinating conjunc-
tions with the category conj:

CONJ → conj
DET, NOUN, NUM, PRON → N
VERB → S

Although our lexicons are defined over corpus-
specific POS tags, we use a slightly modified version
of Petrov et al. (2012)’s Universal POS tagset to cat-
egorize them into these broad classes. The primary
changes we make to their mappings are the addition
of a distinction (where possible) between subordi-
nating and coordinating conjunctions and between
main and auxiliary verbs2.

Since the initial lexicon consists only of atomic
categories, it cannot parse any complex sentences:

The man ate quickly
DT NNS VBD RB
- N S -

Complex lexical categories are induced by con-
sidering the local context in which tokens appear.
Given an input sentence, and a current lexicon which
assigns categories to at least some of the tokens in
the sentence, we apply the following two rules to
add new categories to the lexicon: The argument
rule allows any lexical tokens that have categories
other than N and conj to take immediately adjacent

1The normal-form of Hockenmaier and Bisk (2010) is not
required for this fragment of CCG.

2This distinction was suggested by the authors (p.c.)

Ns as arguments. The modifier rule allows any to-
ken (other than coordinating conjunctions that ap-
pear in the middle of sentences) to modify an imme-
diate neighbor that has the category S or N or is a
modifier (S|S or N|N) itself.

The man ate quickly
DT NNS VBD RB
N/N N, S/S S, N\N S\S

S\N
These rules can be applied iteratively to form

more complex categories. We restrict lexical cate-
gories to a maximal arity of 2, and disallow the cat-
egory (S/N)\N, since it is equivalent to (S\N)/N.

The man ate quickly
DT NNS VBD RB
N/N, N, S/S S, N\N, S\S,

(S/S)/(S/S)(N\N)/(N\N) S\N (N\N)\(N\N)
(N/N)\(N/N) (S/S)\(S/S)

(S\S)/(S\S)

The resultant, overly general, lexicon is then used
to parse the training data. Each complete parse has
to be of category S or N, with the constraint that
sentences that contain a main verb can only form
parses of category S.

4 A new probability model for CCG

Generative models define the probability of a parse
tree τ as the product of individual rule probabili-
ties. Our previous work (Bisk and Hockenmaier,
2012b) uses the most basic model of Hockenmaier
and Steedman (2002), which first generates the head
direction (left, right, unary, or lexical), followed by
the head category, and finally the sister category. 3

This factorization does not take advantage of the
unique functional nature of CCG. We therefore in-
troduce a new factorization we call the Argument
Model. It exploits the fact that CCG imposes strong
constraints on a category’s left and right children,
since these must combine to create the parent type
via one of the combinators. In practice this means
that given the parent X/Z, the choice of combinator4

c and an argument Y we can uniquely determine the
categories of the left and right children:

3Huang et al. (2012) present a (deficient) variant and
Bayesian extension of the Bisk and Hockenmaier (2012b)
model without k-best smoothing that both underperform our
published results.

4If X is an atomic category, only application is possible.

77



Parent c ⇒ Left Right

X/Z B0
> (X/Z)/Y Y

B0
< Y (X/Z)\Y

B1
> X/Y Y/Z

B1
< Y/Z X\Y

and correspondingly for X\Z:
Parent c ⇒ Left Right

X\Z B0
> (X\Z)/Y Y

B0
< Y (X\Z)\Y

B1
> X/Y Y\Z

B1
< Y\Z X\Y

While type-changing and raising are not used in
this work the model’s treatment of root productions
extends easily to handle these other unary cases. We
simply treat the argument Y as the unary outcome so
that the parent, combinator and argument uniquely
specify every detail of the unary rule:

Parent c ⇒ Y

TOP TOP ∈ {S,N}
S/(S\N) T< N
S\(S/N) T> N

We still distinguish the same rule types as before
(lexical, unary, binary with head left/right), leading
us to the following model definition:

Given: P := X/Z
where type(t) ∈ {Left,Right,Unary,Lex}

p(t|P)×
{
p(w|P, t) Lex
p(Y|P, t)× p(c|P, t,Y) o.w.

Argument Combinator
Note that this model generates only one CCG cat-

egory but uniquely defines the two children of a par-
ent node. We will see below that this greatly simpli-
fies the development of non-parametric extensions.

5 HDP-CCG: a nonparametric model

Simple generative models such as PCFGs or Bisk
and Hockenmaier (2012b)’s CCG model are not
robust in the face of sparsity, since they assign
zero probability to any unseen event. Sparsity is
a particular problem for formalisms like CCG that
have a rich inventory of object types. Nonpara-
metric Bayesian models, e.g. Dirichlet Processes
(Teh, 2010) or their hierarchical variants (Teh et
al., 2006) and generalizations (Teh, 2006) overcome
this problem in a very elegant manner, and are used
by many state-of-the-art grammar induction systems

(Naseem et al., 2010; Blunsom and Cohn, 2010;
Boonkwan and Steedman, 2011). They also im-
pose a rich-getting-richer behavior that seems to be
advantageous in many modeling applications. By
contrast, Bisk and Hockenmaier (2012b) propose a
weighted top-k scheme to address these issues in an
ad-hoc manner.

The argument model introduced above lends it-
self particularly well to nonparametric extensions
such as the standard Hierarchical Dirichlet Pro-
cesses (HDP). In this work the size of the grammar
and the number of productions are fixed and small,
but we present the formulation as infinite to allow for
easy extension in the future. Specifically, this frame-
work allows for extensions which grow the grammar
during parsing/training or fully lexicalize the pro-
ductions. Additionally, while our current work uses
only a restricted fragment of CCG that has only a
finite set of categories, the literature’s generalized
variants of composition make it possible to gener-
ate categories of unbounded arity. We therefore be-
lieve that this is a very natural probabilistic frame-
work for CCG, since HDPs make it possible to con-
sider a potentially infinite set of categories that can
instantiate the Y slot, while allowing the model to
capture language-specific preferences for the set of
categories that can appear in this position.

The HDP-CCG model In Bayesian models,
multinomials are drawn from a corresponding n-
dimensional Dirichlet distribution. The Dirichlet
Process (DP) generalizes the Dirichlet distribution
to an infinite number of possible outcomes, allowing
us to deal with a potentially infinite set of categories
or words. DPs are defined in terms of a base dis-
tribution H that corresponds to the mean of the DP,
and a concentration or shape parameter α. In a Hi-
erarchical Dirichlet Process (Teh et al., 2006), there
is a hierarchy of DPs, such that the base distribution
of a DP at level n is a DP at level n− 1.

The HDP-CCG (Figure 1) is a reformulation of
the Argument Model introduced above in terms of
Hierarchical Dirichlet Processes.5 At the heart of
the model is a distribution over CCG categories. By
combining a stick breaking process with a multino-
mial over categories we can define a DP over CCG

5An alternative HDP model for semantic parsing with CCG
is proposed by Kwiatkowski et al. (2012).
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HDP-CCG

1) Draw global parameters
Define MLE root parameter θTOP

Draw top-level symbol weights βY ∼ GEM(αY )
Draw top-level lexical weights βL ∼ GEM(αL)
For each grammar symbol z ∈ {1, 2, ...}:

Define MLE rule type parameters θTz
Draw argument parameters φYz ∼ DP(αY, βY )
Draw lexical emission parameters φLz ∼ DP(αL, βL)
For each grammar symbol y ∈ {1, 2, ...}:

Define MLE combinator parameters θCz,y

2) For each parse tree:
Generate root node zTOP ∼ Binomial(θTOP )
For each node i in the parse tree:

Choose rule type ti ∼Multinomial(θTzi )
If ti == Lex:

Emit terminal symbol xi ∼Multinomial(φLzi )
If ti == Left/Right/Unary:

Generate argument category yi ∼Multinomial(φYzi )
Generate combinator ci ∼Multinomial(θCzi,yi

)
Deterministically create zL(i) (and zR(i) if binary)

zi

yi ci

zL(i) zR(i)

xL(i) xR(i)

z ∞

∞y

φY

θT

θC

φL

βY

βL

Because we are working with CCG, the
parent zi, argument yi and combinator ci
uniquely define the two children categories
(zL(i), zR(i)). The dashed arrows here rep-
resent the deterministic process used to
generate these two categories.

Figure 1: The HDP-CCG has two base distributions, one over the space of categories and the other over
words (or tags). For every grammar symbol, an argument distribution and emission distribution is drawn
from the corresponding Dirichlet Processes. In addition, there are several MLE distributions tied to a given
symbol for generating rule types, combinators and lexical tokens.

categories whose stick weights (βY ) correspond to
the frequency of the category in the corpus. Next we
build the hierarchical component of our model by
choosing an argument distribution (φY ), again over
the space of categories, for every parent X/Z. This
argument distribution is drawn from the previously
defined base DP, allowing for an important level of
parameter tying across all argument distributions.

While the base DP does define the mean around
which all argument distributions are drawn, we also
require a notion of variance or precision which de-
termines how similar individual draws will be. This
precision is determined by the magnitude of the hy-
perparameter αY . This hierarchy is paralleled for
lexical productions which are drawn from a unigram
base DP over terminal symbols controlled by αL.
For simplicity we use the same scheme for setting
the values for αL as αY . We present experimen-
tal results in which we vary the value of αY as a
function of the number of outcomes allowed by the
grammar for argument categories or the corpus in

the case of terminal symbols. Specifically, we set
αY = np for conditioning contexts with n out-
comes. Since Liang et al. (2009) found that the ideal
value for alpha appears to be superlinear but sub-
quadratic in n, we present results where p takes the
values 0, 1.0, 1.5, and 2.0 to explore the range from
uniform to quadratic. This setting for α is the only
free parameter in the model. By controlling preci-
sion we can tell the model to what extent global cor-
pus statistics should be trusted. We believe this has
a similar effect to Bisk and Hockenmaier (2012b)’s
top-k upweighting and smoothing scheme.

One advantage of the argument model is that it
only requires a single distribution over categories for
each binary tree. In contrast to similar proposals for
CFGs (Liang et al., 2007), which impose no formal
restrictions on the nonterminals X, Y, Z that can ap-
pear in a rewrite rule X→ Y Z, this greatly sim-
plifies the modeling problem (yielding effectively a
model that is more akin to nonparametric HMMs),
since it avoids the need to capture correlations be-
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tween different base distributions for Y and Z.

Variational Inference HDPs need to be estimated
with approximate techniques. As an alternative to
Gibbs sampling (Teh et al., 2006), which is exact,
but typically very slow and has no clear convergence
criteria, variational inference algorithms (Bishop,
2006; Blei and Jordan, 2004) estimate the parame-
ters of a truncated model to maximize a lower bound
of the likelihood of the actual model. This allows for
factorization of the model and a training procedure
analogous to the Inside-Outside algorithm (Lari and
Young, 1991), allowing training to run very quickly
and in a trivially parallelizable manner.

To initialize the base DP’s stick weights, we fol-
low the example of Kurihara et al. (2007) and use
an MLE model initialized with uniform distributions
to compute global counts for the categories in our
grammar. When normalized these provide a better
initialization than a uniform set of weights. Updates
to the distributions are then performed in a coordi-
nate descent manner which includes re-estimation of
the base DPs.

In variational inference, multinomial weights W
take the place of probabilities. The weights for an
outcome Y with conditioning variable P are com-
puted by summing pseudocounts with a scaled mean
vector from the base DP. The computation involves
moving in the direction of the gradient of the Dirich-
let distribution which results in the following differ-
ence of Digammas (Ψ):

WP (Y ) = Ψ(C(P, Y ) + αPβY )

−Ψ(C(P, ∗) + αP )

Importantly, the Digamma and multinomial
weights comprise a righ-get-richer scheme, biasing
the model against rare outcomes. In addition, since
variational inference is done by coordinate descent,
it is trivially parallelizeable. In practice, training and
testing our models on the corpora containing sen-
tences up to length 15 used in this paper takes be-
tween one minute to at most three hours on a single
12-core machine depending on their size.

6 Evaluation

As is standard for this task, we evaluate our systems
against a number of different dependency treebanks,

and measure performance in terms of the accuracy of
directed dependencies (i.e. the percentage of words
in the test corpus that are correctly attached). We use
the data from the PASCAL challenge for grammar
induction (Gelling et al., 2012), the data from the
CoNLL-X shared task (Buchholz and Marsi, 2006)
and Goldberg (2011)’s Hebrew corpus.

Converting CCG derivations into dependencies is
mostly straightforward, since the CCG derivation
identifies the root word of each sentence, and head-
argument and head-modifier dependencies are easily
read off of CCG derivations, since the lexicon de-
fines them explicitly. Unlike dependency grammar,
CCG is designed to recover non-local dependencies
that arise in control and binding constructions as
well as in wh-extraction and non-standard coordi-
nation, but since this requires re-entrancies, or co-
indexation of arguments (Hockenmaier and Steed-
man, 2007), within the lexical categories that trigger
these constructions, our current system returns only
local dependencies. But since dependency gram-
mars also captures only local dependencies, this has
no negative influence on our current evaluation.

However, a direct comparison between depen-
dency treebanks and dependencies produced by
CCG is more difficult (Clark and Curran, 2007),
since dependency grammars allow considerable
freedom in how to analyze specific constructions
such as verb clusters (which verb is the head?)
prepositional phrases and particles (is the head the
noun or the preposition/particle?), subordinating
conjunctions (is the conjunction a dependent of the
head of the main clause and the head of the embed-
ded clause a dependent of the conjunction, or vice
versa?) and this is reflected in the fact that the tree-
banks we consider often apply different conventions
for these cases. Although remedying this issue is
beyond the scope of this work, these discrepancies
very much hint at the need for a better mechanism to
evaluate linguistically equivalent structures or tree-
bank standardization.

The most problematic construction is coordina-
tion. In standard CCG-to-dependency schemes, both
conjuncts are independent, and the conjunction itself
is not attached to the dependency graph, whereas de-
pendency grammars have to stipulate that either one
of the conjuncts or the conjunction itself is the head,
with multiple possibilities of where the remaining
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constituents attach. In addition to the standard CCG
scheme, we have identified five main styles of con-
junction in our data (Figure 2), although several cor-
pora distinguish multiple types of coordinating con-
junctions which use different styles (not all shown
here). Since our system has explicit rules for coordi-
nation, we transform its output into the desired target
representation that is specific to each language.

7 Experiments

We evaluate our system on 13 different languages.
In each case, we follow the test and training regimes
that were used to obtain previously published results
in order to allow a direct comparison. We com-
pare our system to the results presented at the PAS-
CAL Challenge on Grammar Induction (Gelling et
al., 2012)6, as well as to Gillenwater et al. (2011)
and Naseem et al. (2012). We use Nivre (2006)’s
Penn2Malt implementation of Collins (2003)’s head
rules to translate the WSJ Penn Treebank (Marcus
et al., 1993) into dependencies. Finally, when train-
ing the MLE version of our model we use a simple
smoothing scheme which defines a small rule proba-
bility (e−15) to prevent any rule used during training
from going to zero.

7.1 PASCAL Challenge on Grammar
Induction

In Table 1, we compare the performance of the ba-
sic Argument model (MLE), of our HDP model with
four different settings of the hyperparameters (as ex-
plained above) and of the systems presented in the
PASCAL Challenge on Grammar Induction (Gelling
et al., 2012). The systems in this competition were
instructed to train over the full dataset, including the
unlabelled test data, and include Bisk and Hocken-
maier (2012a)’s CCG-based system (BH) to Cohn et
al. (2010)’s reimplementation of Klein and Manning
(2004)’s DMV model in a tree-substitution gram-
mar framework (BC), as well as three other de-
pendency based systems which either incorporate
Naseem et al. (2010)’s rules in a deterministic fash-
ion (Søgaard, 2012), rely on extensive tuning on

6Numbers are from personal correspondence with the orga-
nizers. The previously published numbers are not comparable
to literature due to an error in the evaluation. http://wiki.
cs.ox.ac.uk/InducingLinguisticStructure/
ResultsDepComparable

the development set (Tu, 2012) or incorporate mil-
lions of additional tokens from Wikipedia to esti-
mate model parameters (Marecek and Zabokrtsky,
2012). We ignore punctuation for all experiments
reported in this paper, but since the training data
(but not the evaluation) includes punctuation marks,
participants were free to choose whether to include
punctuation or ignore it.

While BH is the only other system with directly
interpretable linguistic output, we also include a di-
rect comparison with BC, whose TSG representa-
tion is equally expressive to ours. Finally we present
a row with the maximum performance among the
other three models. As we have no knowledge of
how much data was used in the training of other sys-
tems we simply present results for systems trained
on length 15 (not including punctuation) sentences
and then evaluated at lengths 10 and 15.

The MLE version of our model shows rather vari-
able performance: although its results are particu-
larly bad on Basque (Eu), it outperforms both BH
and BC on some other settings. By contrast, the
HDP system is always better than the MLE model.
It outperforms all other systems on half of the cor-
pora. On average, it outperforms BH and BC by
10.3% and 9.3% on length 10, or 9.7% and 7.8 %
on length 15 respectively. The main reason why our
system does not outperform BC by an even higher
margin is the very obvious 11.4%/11.5% deficit on
Slovene. However, the Slovene dependency tree-
bank seems to follow a substantially different anno-
tation scheme. In particular, the gold standard an-
notation of the 1,000 sentences in the Slovene de-
velopment set treats many of them as consisting of
independent sentences (often separated by punctua-
tion marks that our system has no access to), so that
the average number of roots per sentence is 2.7:

>>

“

verjeti

believe

ti

I

,

,

〈〈

”

je

is

mehko

soft

rekla

said

When our system is presented with these short
components in isolation, it oftentimes analyzes them
correctly, but since it has to return a tree with a sin-
gle root, its performance degrades substantially.

We believe the HDP performs so well as com-
pared to the MLE model because of the influence
of the shared base distribution, which allows the
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Ar, Eu, Cs, Nl,
WSJ, Ch, He Da, He Es, Bg, De, Pt Sv, Sl Ja

noun conj noun noun conj noun noun conj noun noun conj noun noun conj noun

Figure 2: In the treebanks used for evaluation different standards exist for annotating coordination. While
not exhaustive, this table demonstrates five of the most common schemes used in the literature. Syntactically
these are identical and traditionally CCG draws arcs only to the arguments without attaching the conjunction.
For the purposes of comparison with the literature we have implemented these five translation schemes.

Arabic Danish Slovene Swedish Dutch Basque Portuguese WSJ Childes Czech
# Tokens 5,470 25,341 54,032 61,877 78,737 81,345 158,648 163,727 290,604 436,126
# Tags 20 24 36 30 304 14 23 36 69 62

PA
SC

A
L BC 60.8/58.4 44.7/39.4 62.6/57.9 63.2/56.6 51.8/52.0 53.0/48.9 52.4/50.2 68.6/63.3 47.4/46.1 47.9/43.1

Max 67.2/66.8 60.1/56.0 65.6/61.8 72.8/63.4 51.1/47.6 53.7/47.8 67.0/61.8 71.2/64.8 56.0/54.5 58.3/54.4
BH 41.6/43.7 46.4/43.8 49.6/43.9 63.7/57.0 49.7/43.6 45.1/39.6 70.8/67.2 68.2/59.6 61.4/59.8 45.0/38.9

T
hi

sw
or

k

MLE 41.6/42.9 43.4/39.2 46.1/41.1 70.1/59.7 52.2/47.2 29.6/26.5 62.2/59.7 59.5/52.4 53.3/51.9 50.5/45.8
HDP0.0 48.0/50.0 63.9/58.5 44.8/39.8 67.6/62.1 45.0/33.9 41.6/39.1 71.0/66.0 59.8/52.9 56.3/55.2 54.0/49.0
HDP1.0 45.6/47.1 45.7/42.3 53.9/46.9 74.5/66.9 58.5/54.4 50.1/44.6 65.1/60.6 64.3/56.5 71.5/70.3 55.8/50.7
HDP1.5 49.6/50.4 58.7/54.4 53.2/48.2 74.3/67.1 57.4/54.5 50.6/45.0 70.0/64.7 65.5/57.2 69.6/68.6 55.6/50.3
HDP2.0 66.4/65.1 56.5/49.5 54.2/46.4 71.6/64.1 51.7/48.3 49.4/43.3 76.3/70.5 70.7/62.9 74.1/73.3 54.4/48.5

+/− -0.8/-1.7 +3.8/+2.5 -11.4/-15.4 +1.7/+3.5 +6.7/+2.4 -3.1/-3.9 +5.5/+3.3 -0.5/-1.9 +12.7/+13.5 -2.5/-3.7

Table 1: A comparison of the basic Argument model (MLE) and four hyper-parameter settings of the HDP-
CCG against two syntactic formalisms that participated in the PASCAL Challenge (Gelling et al., 2012),
BH (Bisk and Hockenmaier, 2012a) and BC (Blunsom and Cohn, 2010), in addition to a max over all other
participants. We trained on length 15 data (punctuation removed), including the test data as recommended
by the organizers. The last row indicates the difference between our best system and the competition.

global category distribution to influence each of the
more specific distributions. Further, it provides a
very simple knob in the choice of hyperparame-
ters, which has a substantial effect on performance.
A side effect of the hyperparameters is that their
strength also determines the rate of convergence.
This may be one of the reasons for the high vari-
ance seen in the four settings tested, although we
note that since our initialization is always uniform,
and not random, consecutive runs do not introduce
variance in the model’s performance.

7.2 Comparison with systems that capture
linguistic constraints

Since our induction algorithm is based on the knowl-
edge of which POS tags are nouns and verbs, we
compare in Table 2 our system to Naseem et al.

(2010), who present a nonparametric dependency
model that incorporates thirteen universal linguistic
constraints. Three of these constraints correspond
to our rules that verbs are the roots of sentences and
may take nouns as dependents, but the other ten con-
straints (e.g. that adjectives modify nouns, adverbs
modify adjectives or verbs, etc.) have no equivalent
in our system. Although our system has less prior
knowledge, it still performs competitively.

On the WSJ, Naseem et al. demonstrate the im-
portance and effect of the specific choice of syntactic
rules by comparing the performance of their system
with hand crafted universal rules (71.9), with En-
glish specific rules (73.8), and with rules proposed
by Druck et al. (2009) (64.9). The performance of
Naseem et al.’s system drops very significantly as
sentence length (and presumable parse complexity)
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Sl Es Da Pt Sv
∼#Tokens 3.8K 4.2K 9.5K 15K 24K

N10 50.9 67.2 51.9 71.5 63.3
HDP 56.6 62.1 51.5 74.7 69.8

Table 2: A comparison of our system with Naseem
et al. (2010), both trained and tested on the length 10
training data from the CoNLL-X Shared Task.

increases, whereas our system shows significantly
less decline, and outperforms their universal system
by a significant margin.7

≤ 10 ≤ 20

Naseem Universal Rules 71.9 50.4
Naseem English Rules 73.8 66.1
HDP-CCG 68.2 64.2

HDP-CCG (train ≤ 20) 71.9

In contrast to Spitkovsky et al. (2010), who reported
that performance of their dependency based system
degrades when trained on longer sentences, our per-
formance on length 10 sentences increases to 71.9
when we train on sentences up to length 20.

Another system that is also based on CCG, but
captures significantly more linguistic knowledge
than ours, was presented by Boonkwan and Steed-
man (2011), who achieve an accuracy of 74.5 on
WSJ10 section 23 (trained on sections 02-22). Us-
ing the same settings, our system achieves an accu-
racy of 68.4. Unlike our approach, Boonkwan and
Steedman do not automatically induce an appropri-
ate inventory of lexical category, but use an exten-
sive questionnaire that defines prototype categories
for various syntactic constructions, and requires sig-
nificant manual engineering of which POS tags are
mapped to what categories to generate a language-
specific lexicon. However, their performance de-
grades significantly when only a subset of the ques-
tions are considered. Using only the first 14 ques-
tions, covering facts about the ordering of subjects,
verbs and objects, adjectives, adverbs, auxiliaries,
adpositions, possessives and relative markers, they
achieve an accuracy of 68.2, which is almost iden-

7Our earlier generative model showed similar behavior, al-
though the results in Bisk and Hockenmaier (2012b) are not
directly comparable due to differences in the data.

Sl Es Da Pt Sv
#Tokens 3,857 4,230 9,549 15,015 24,021

G10 51.2 62.4 47.2 54.3 48.6
HDP 57.9 65.4 49.3 73.5 73.2

Bg WSJ Nl Ja De
#Tokens 38,220 42,442 43,405 43,501 77,705

G10 59.8 64.4 47.5 60.2 47.4
HDP 66.1 70.3 56.2 64.1 68.4

Table 3: A comparison of our system with Gillenwa-
ter et al. (2010), both trained on the length 10 train-
ing data, and tested on the length 10 test data, from
the CoNLL-X Shared task.

tical to ours, even though we use significantly less
initial knowledge. However, the lexicons we present
below indicate that we are in fact learning many of
the very exact details that in their system are con-
structed by hand. The remaining 14 questions in
Boonkwan and Steedman’s questionnaire cover less
frequent phenomena such as the order of negative
markers, dative shift, and pro-drop. The obvious ad-
vantage of this approach is that this allows them to
define a much more fine-grained inventory of lexical
categories than our system can automatically induce.
We also stipulate that for certain languages knowl-
edge of pro-drop could play a significant role in the
success of their approach: if complete sentences are
allowed to be of the form S\N or S/N, the same lex-
ical category can be used for the verb regardless of
whether the subject is present or has been dropped.

7.3 Additional Languages
In order to provide results on additional languages,
we present in Table 3 a comparison to the work of
Gillenwater et al. (2010) (G10), using the ConLL-X
Shared Task data (Buchholz and Marsi, 2006). Fol-
lowing Gillenwater et al., we train only on sentences
of length 10 from the training set and evaluate on the
test set. Since this is a different training regime, and
these corpora differ for many languages from that of
the PASCAL challenge, numbers from Table 1 can-
not be compared directly with those in Table 3. We
have also applied our model to Goldberg (2011)’s
Hebrew corpus, where it achieves an accuracy of
62.1 (trained and tested on all sentences length 10;
7,253) and 59.6 (length 15; 21,422 tokens).
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Arabic % Swedish % WSJ % Childes % Japanese % Czech %

VERB (S\N)/N 56 S 45 S\N 52 S/N 44 S 84 S 26
(S/N)/N 29 S\N 20 (S\N)/N 19 S 37 S\N 25

ADP N\N 68 (S\S)/N 49 (S\S)/N 46 (S\S)/N 45 (S/S)\N 44 (S\S)/N 42
N/N 21 (N\N)/N 25 (N\N)/N 20 N/N 25 N\N 23 (S/S)/N 26

NOUN N\N 50 N 91 N 79 N 89 N 73 N 74
N 35 N/N 12

ADJ N\N 82 N/N 50 N/N 70 N/N 46 S/S 64 N/N 55

Figure 3: Partial lexicons demonstrating language specific knowledge learned automatically for five lan-
guages. For ease of comparison between languages, we use the universal tag label (Verb, Adposition, Noun
and Adjective). Shown are the most common categories and the fraction of occurrences of the tag that are
assigned this category (according to the Viterbi parses).

8 The Induced Lexicons

Since our approach is based on a lexicalized for-
malism such as CCG, our system automatically in-
duces lexicons that pair words (or, in our case, POS-
tags) with language-specific categories that capture
their syntactic behavior. If our approach is success-
ful, it should learn the basic syntactic properties of
each language, which will be reflected in the corre-
sponding lexicon. In Figure 3 one sees how verbs
subcategorize differently, how word ordering differs
by language, and how the attachment structures of
prepositions are automatically discovered and differ
across languages. In Arabic, for example, the sys-
tem learns that word order is variable and therefore
the verb must allow for both SVO and VOS style
constructions. We generally learn that adpositions
(prepositions or postpositions) take nouns as argu-
ments. In Czech, PPs can appear before and after the
verb, leading to two different categories ((S\S)/N
and (S/S)/N). Japanese has postpositions that ap-
pear in preverbal position ((S/S)\N), but when this
category is assigned to nominal particles that cor-
respond to case markers, it effectively absorbs the
noun, leading to a preference for verbs that do not
take any arguments (S), and to a misanalysis of ad-
jectives as verb modifiers (S/S). Our lexicons also
reflect differences in style: while Childes and the
WSJ are both English, they represent very different
registers. We learn that subjects are mostly absent in
the informal speech and child-directed instructions
contained in Childes, while effectively mandatory in
the Wall Street Journal.

9 Conclusions

This paper has introduced a novel factorization for
CCG models and showed how when combined with
non-parametric Bayesian statistics it can compete
with every other grammar induction system cur-
rently available, including those that capture a sig-
nificant amount of prior linguistic knowledge. The
use of a powerful syntactic formalism proves ben-
eficial both in terms of requiring very limited uni-
versal knowledge and robustness at longer sentence
lengths. Unlike standard grammar induction sys-
tems that are based on dependency grammar, our
system returns linguistically interpretable lexicons
for each language that demonstrate it has discov-
ered their basic word order. Of particular note is the
simplicity of the model both algorithmically and in
terms of implementation. By not faltering on longer
sentences or requiring extensive tuning, the system
can be easily and quickly deployed on a new lan-
guage and return state of the art performance and
easily interpretable lexicons. In this paper, we have
applied this model only to a restricted fragment of
CCG, but future work will address the impact of lex-
icalization and the inclusion of richer combinators.
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