
Packing of Feature Structures for
Efficient Unif icat ion of Dis junct ive Feature Structures

Y u s u k e M i y a o
Depar tmen t of Information Science, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
E-mail: y u s u k e ~ i s , s . u - t o k y o , ac . j p

A b s t r a c t

This paper proposes a method for packing fea-
ture structures, which automatically collapses
equivalent parts of lexical/phrasal feature struc-
tures of HPSG into a single packed feature struc-
ture. This method avoids redundant repetition
of unification of those parts. Preliminary exper-
iments show that this method can significantly
improve a unification speed in parsing.

1 I n t r o d u c t i o n

Efficient treatment of syntactic/semantic ambi-
guity is a key to making efficient parsers for
wide-coverage grammars. In feature-structure-
based grammars 1, such as HPSG (Pollard and
Sag, 1994), ambiguity is expressed not only
by manually-tailored disjunctive feature struc-
tures, but also by enumerating non-disjunctive
feature structures. In addition, there is ambigu-
ity caused by non-determinism when applying
lexical/grammar rules. As a result, a large num-
ber of lexical/phrasal feature structures are re-
quired to express ambiguous syntactic/semantic
structures. Without efficient processing of these
feature structures, a sufficient parsing speed is
unattainable.

This paper proposes a method for packing
feature structures, which is an automatic op-
timization method for parsers based on feature
structure unification. This method automati-
cally extracts equivalent parts of feature struc-
tures and collapses them into a single packed
feature structure. A packed feature structure
can be processed more efficiently because we can
avoid redundant repetition of unification of the
equivalent parts of original feature structures.

There have been many studies on efficient

1In this paper we consider typed feature structures
described in (Carpenter, 1992).

unification of disjunctive feature structures
(Kasper and Rounds, 1986; Hasida, 1986; DSrre
and Eisele, 1990; Nakano, 1991; Blache, 1997;
Blache, 1998). All of them suppose that dis-
junctive feature structures should be given by
grammar writers or lexicographers. However,
it is not practical to specify all ambiguity us-
ing only manually-tailored disjunctive feature
structures in grammar development. Where dis-
junctive feature structures cannot be given ex-
plicitly those algorithms lose their advantages.
Hence, an automatic conversion method, such
as the packing method described hereafter, is re-
quired for further optimization of those systems.
In addition, this packing method converts gen-
eral feature structures to a suitable form for a
simple and efficient unification algorithm which
is also described in this paper.

Griffith (Griffith, 1995; Griffith, 1996) points
out the same problem and proposes a compila-
tion method for feature structures called mod-
ularization. However, modularization is very
time-consuming, and is not suitable for opti-
mizing feature structures produced during pars-
ing. An earlier paper of myself (Miyao et al.,
1998) also discusses the same problem and pro-
poses another packing method. However, that
method can pack only pre-specified parts of
input feature structures, and this characteris-
tic limits the overall efficient gain. The new
method in this paper can pack any kind of fea-
ture structures as far as possible, and is more
general than the previous method.

2 D a t a Structure and A l g o r i t h m s

This section describes the data structure of
packed feature structures, and the algorithms
for packing and unification of packed feature
structures. Through of this section, I will refer
to examples from the XHPSG system (Tateisi

579

PHON <'o'ed~o'~

r F F.E~O verb]]
• CArl HEAD / L , I r:- [] =_=o,,]>

/ I u~ /VAL I L
SYNSEM ILOC~LI p ICOMP$ Am

/ I L LSPR <>
/ ::l tv~ . rcred.edl -I
I . I-:'"' LA~G~ [~J

- word
PHON <'cre~eo'>

s~se~

.NONLOC I INHERISLASH ~T~

" ',~ocd
PHON <'cr~led>

r FHEAO ,,~,
I I P FCATIHEAD r.o~ - I -
/ ~ T L: I.SUm <Lco~ [] ~o~J, ! Iv" m

; " CATI HEAD noun
NONLOCII~HERISLASH<[cONT [] nom_obJ] >

FHE~ verb "1
CATI HEAD noun SUBJ < : > r [] 1/ / >//

L LSPR < > J J

r r . ~ . ~]]
• CATI HF.),D ~o~ t . , I <[co,, [] _oJ> 1//

I ''~ /VAL/coMP ~ noun - I > / / /

 -1:1 /
I: L LSPR <> J J /

I

Figure 1 : 4 out of 37 lexical entries which the
XHPSG system assigns to the word "credited".
Parts shaded with the same pattern are equivalent.

et al., 1998), an HPSG-based grammar for En-
glish.

2.1 Packed F e a t u r e S t r u c t u r e

Figure 1 shows 4 out of 37 lexical entries which
the XHPSG system assigns to the word "cred-
ited". These lexical entries have various equiva-
lent parts in their respective feature structures.
In Figure 1, equivalent parts are shaded with
the same pattern.

Figure 2 shows a packed feature structure for
the lexical entries shown in Figure 1. Note that
the equivalent parts of the original feature struc-
tures are collapsed into a feature structure seg-
ment, which is denoted by Si in Figure 2. So is
a special segment called the root segment, which

"word
; PHON <'crecl~ad'>

I" ['HEAD ,~b

/ / [SU=<[CATI"EAD"°"] 1
So : LOCAL CAT VAL CONT A,

1 / L LSPR o
l LCOm
LNONLOCI INHERI SLASH A ,

S , : nomobj rcreditedl]
S= : I~] S , : LARG1 AT]

$ 4 : n o u n

i-CATIH~O no.n'l S e : nomob j S 1, " < >

s,: ,o~_o~j L ~ A,o J

~ , ' - > S I'

I a 2 - * S ~/ I / % -) S ,
D,= Iz~s- *Ss / D=_IzS,-*S, ,

I ~ , ' * S,ol - I ~5c-* S ,
LL~,-* S ,J I z36-~$6

kZ~o-* S e

I /%-* S 31 I ~ - - " S =/ I /%-* S o/
I A ~ - * S , | D,_IZ~,-*S,ol D~ =1 A , - * S . I I ~5~'-* S ~/ -I ~Sr* S 5/ I ZS,-" S,/ I zSs--* S 6/ I ~Se-" S , / LZS,~ S U LZ~9_~ S , j

Figure 2: A packed feature structure expressing
the same information as the set of feature structures
in Figure 1. Shaded parts correspond to the parts
with the same pattern in Figure 1.

describes the root nodes of all original feature
structures. Each segment can have disjunctive
nodes, which are denoted by Ai. For example,
53 has two disjunctive nodes, A 5 and A6. A de-
pendency function, denoted by Di, is a mapping
from a disjunctive node to a segment, and each
Di corresponds to one original feature structure.
We can obtain each original feature structure by
replacing each disjunctive node with the output
of the respective dependency function.

For applying the unification algorithm de-
scribed in Section 2.3, we introduce a con-
dition on segments: a segment cannot have
inter- or intra-segment shared nodes. For ex-
ample, the disjunctive node i 1 in Figure 2
must be introduced for satisfying this con-
dition, even though the value of this node
is the same in all the original feature struc-
tures. This is because this path is structure-
shared with another path (SYNSEHILOCALJCONT j
ARG1 and SYNSEHJLOCALJCONTJARG2). Structure-
sharing in original feature structures is instead
expressed by lett ing the dependency function
return the same value for different inputs. For
example, result values of applying D1 to A1 and
A7 are both S1.

The reason why we introduce this condition
is to guarantee that a disjunctive node in the

5 8 0

r _
IPHON <'cmd~e~>

S o : / FCAT F HEAD verb

0 T credited/ L P" L,.o, ,,,J
$1 : John
$2 : Yusuke

D,=E At-~S,3 D2=EA,-~S2]

Figure 3: A sample packed feature structure. If it is
unified with the top feature structure in Figure 1, a
new disjunctive node must he introduced to SYNSRM I
LOCALICATJVALJSUBJ IFIRSTICONT.

result of unification will appear only at a path
where a disjunctive node appears in either of the
input feature structures at the same path. For
example, suppose we unify the top feature struc-
ture in Figure 1 with the packed feature struc-
ture in Figure 3. In the result of unification, a
new disjunctive node must appear at SYNSEM I
LOCALJCATIVALJSUBJJFIRSTJCONT , while no dis-
junctive nodes appear in either of the input fea-
ture structures at this path. By introducing
such a disjunctive node in advance, we can sim-
plify the algorithm for unification described in
Section 2.3.

Below I first describe the algorithm for pack-
ing feature structures, and then the algorithm
for unification of packed feature structures.

2.2 A l g o r i t h m for P a c k i n g

The procedure pack_feature_structures in
Figure 4 describes the algorithm for packing two
packed feature structures, denoted by (S',:D')
and (,9", D"). ,9' and S" denote sets of seg-
ments, and 7)' and 7)" denote sets of depen-
dency functions. We start from comparing the
types of the root nodes of both feature struc-
tures. If either of the nodes is a disjunctive node
(Case 1), we compare the type of the other fea-
ture structure with the type of each disjunct,
and recursively pack nodes with the same type
if they exist (Case 1.1). Otherwise, we just
add the other feature structure to the disjunc-
tive node as a new disjunct (Case 1.2). If the
types of the nodes are equivalent (Case 2), we
collapse them into one node, and apply packing
recursively to all of their subnodes. If they are
not equivalent (Case 3), we create a new dis-
junctive node at this node, and let each original

procedure pack.~eatureJtructures((S', Do), (S", D"))
begin

~o ~ s'. s~' ~ s"
7:) : = ~) t U "/3 I I
re~ura (S, D)

end

procedure pach(F s, F H)
hesin

i~ F / (o r F Is) is d i s j z u c t i o n then
i f BG(G E diojuncts(F').

G a . d F " ha~e equivalent types) 1;hen
S := S U d i o j u n c t s (F ')
pack(G. F ")
Y~" := {DID" E DH,D = D" U(F' -- F")}

e l se
S := S U d i s j u n c t s (F I) u { F / ' }
7)" := {DID 'I E ~9", D = D" u(F' -- F")}

endi:f
e l se i:f F/ and F" ha~e equivalent t y p e s then
F' := F"
~oreach f in f e a t u r e s (F I)

pack(:foUoe(.f, F'), :follou(.f, F"))
eloe

S : = S U { F ' , F " }
F := 4io3uuctiYe-node
D' := {DID' E ~) ' , D = D' U(F -- F')}
D" := {DID" 6 D",D = D" U(F -- F")}

endif
cud

disjuucts: return a set of disjuncts of the disjunctive node
:features: return a set of features
:folios: re turn a subs t ruc tu re reached by the specified feature

• Cuae 1

• Case 1 ,1

• (:~.ue 1.2

• Case 2

• Cese 3

Figure 4: Algorithm for packing two packed feature
structures (S',:D') and (S", $)").

feature structure from this node become a new
segment.

For simplicity, Figure 4 omits the algorithm
for introducing disjunctive nodes into shared
nodes. We can easily create disjunctive nodes
in such places by preprocessing input feature
structures in the following way. First each input
feature structure is converted to a packed fea-
ture structure in advance by converting shared
nodes to disjunctive nodes. Then the above
algorithm can be applied to these converted
packed feature structures.

2 .3 A l g o r i t h m for U n i f i c a t i o n

Below I describe the algorithm for unification of
packed feature structures, referring to the exam-
ple in Figure 2. Suppose that we are unifying
this packed feature structure with the feature
structure in Figure 5. This example consid-
ers unification of a non-packed feature structure
with a packed feature structure, although this
algorithm is capable of unifying two packed fea-
ture structures.

The process itself is described by the pro-
cedure unify_packed_feature_structures in
Figure 6. It is quite similar to a normal uni-

581

"word
PHON <'ged#eo'> I I - ;YNSEM LOCAL CAT / ~SUBJ < ECONT [] -] |VAL|c(:~PS [] <>

L LSPR < >

CONTI ARG1 []
.NONLOC I INHER I SLASH list

Figure 5: A sample feature structure to be unified
with the packed feature structure in Figure 2.

procedure unify.p¢cked.te=ture.=tructuree((S e, ~)e). (Se, 7)1,))
begin

S : = ¢ . Z>:=@
fore,oh D e E ~Ot and D ee E ~H

IEXT:
besin

push-eeSm.~-sCack(S~0 E S/, S~' E S ')
do unti l seipnen~-lCack.As-emp~y
best .

pop_ee~ment.o~ack(S I ,S/e)
i~ S / i e d i # j ~ c t l o n chert S* : = D ~ (S ~) . . . (t)
i f S H is dlsj~nction ~hen S" := DH(S//)

SEOHIIJ]IIF¥ :
if alread~-nni~ied(S/,S H) th~n ' ' . (2)

S :=restore2Jnify.reeul~(st,s/I)
~' := S, S" := S . . - (3)

else
i f S : = u n i f y (~ , $ / I) f a i l s then

Ko~o Ig l t
else

S : = ~ u { S }
s~s_unificasien.reeul~(S, S ~, ~e)
S e := 5. S" := S (a)

4ed~f
endif

e~d
7:' := "D u { D ~ U D ' }

e~d
recur. (S, ~))

e~d

procedure unify(F',F '~)
besin

i~ F ~ or F ee le d~oj~.c~ion ~heu (6)
F : = disjunctive.node
p u s h _ s e ~ n t _ s t a c k (F / , F ¢/)

else
IODB.UIIF¥ :

F := u n i f y J y p e (F ~, F ~)
forea©h] ~n featureo(F)

f o l l o u (f , F) : = u n i f y (f e l l o u (f , F /) , fellou(f,FH))
endif
re~urn F

oud

already-unified: t ~ e when unification is a lready computed
res~ere_uui~y_result: restore the result of unific&tion from

the tab le
seS_unify.xesul~: store the result of unification into the table
unifyJype: return the unif ication of both types

Figure 6: Algorithm for unifying two packed fea-
ture structures (S',:D'} and (S",:D"}.

fication algorithm. The only difference is the
part that handles disjunctive nodes. When we
reach a disjunctive node, we put it onto a stack
(segment_stack), and postpone further unifi-
cation from this node ((5) in Figure 6). In this
example, we put A1, A2, A3, and A4 onto the
stack. At the end of the entire unification, we

"word
PHON <'cred/ted>

T A , SuN <
S o : LOCAL CAT VAL COMPS

SYNSEM |] L LS PR <>

| LCONT A ,
LNONLOCIINHER[SLASH A4

S , : nom_obj ~credltedl
S=: <> Ss: LARGt ATJ

[-CA~HEAD ~ s 1 r'credited2 q
s~: <Lco.T A, ." s s: IARa~ Ael
$4 : .ou. LARG2 A*J
Ss : bY S~o: <>
S s : nom obj FCAT~HEAO noun-]
s , : .om obj s,,: <LCoNT A,o J>

1 ~ .] . I As--* S sl
O,=l ~s--" S e/ L,21" _-I[/k,-* S,ol]ks._. S , [O~ 04

I / ' . ,-~ S ,ol I/Xs--* Sol
L~7 -> S , J I Ge-" S , /

kL~s-* S sJ

a e ~ t _ s t = ~ = (As As A , }

D =CZ~I'* S ,]

Figure 7: Intermediate data structure after unify-
ing A 1 with [~. Disjunction is expressed by non-
determinism when applying the dependency func-
tions. When we unify a feature structure segment
for A2, we unify $2 if we are applying Dz, or 53 if
D2.

apply a dependency function to each member
of the stack, and unify every resulting segment
with a corresponding part of the other feature
structure ((1) in Figure 6). In this example,
we apply D1 to A1, which returns segment 51.
We therefore unify 5z with the feature structure
tagged as [~] in Figure 5.

Disjunction is expressed by non-determinism
when applying the dependency functions. Fig-
ure 7 shows the intermediate data structure af-
ter unifying A1 with [~]. We are now focusing
on the disjunctive node A2 which is now on the
top of segment_stack. When we are applying
Dz, we unify $2 with the corresponding feature
structure [~]. Should we instead apply D2, 53
would be unified.

A benefit of this unification algorithm is that
we can skip unification of feature structure seg-
ments whose unification is already computed
((2) in Figure 6). For example, we unify seg-
ment So with the other feature structure only
once. We can also skip unification of $1 and 5z0
for /:)2, because the result is already computed

5 8 2

S o :

-word
PHON <'credited'>

/ / / Fsu~<F c^TIHEA°"°"
/~OCAL/CAT/V~./ LCONT A,

WNSEM| | | |CO~ /k=
| | L LSPR <>

/ L cONT Z~,
LNON'OCIINHERISLASH Z~,

F c'd''al 7
s , : ,,om_~j s~ : LARG~ /k,J
S = : <> S~o: <>

FZ~,-, S,3
] ~ - * S =/

u, =1 4~s ''~ S ~/
I Z l , - * S ,ol
LZI~-" S,J

D==... Ds=... D4=...

aegmeat s tac) : = (A, }

F~,-- S,7
_ I A= - , S ~/

L/I, -~ S ,~1

"word
PHON <'cmditeo'>

/ / / I-SU~<I-CATIH~O ""
So: { LOCAL /CM/V/~L/COMPS LL~TT A,

~YNSEM| / L LSPR < >

| L c-,ONT Z~
LNONLOCIiNHERISLASH /k,

S i : nom obj S s : nom_obj

S ~ : <> S s : <>

F credi'ed! I rCATIHEAD noun]
S 3 : LABG I /ks_] S, : < Lco~ A, •

F credited#]
S , : |ARG1 L~ |

LARG2 /k,J

FA,--> S ,7
[~=--> S , /

u,=l/_~-~ S ~]
I ZM-" S e/
L/Is-* S ,J

t/k,-~ S ,7
I A s * S ~/

D,=I]~,-> S , /
I ~ , - " S , /
I/k7 -~ S s/
LZI,-* S 5J

Figure 8: Intermediate data structure after the uni-
fication of A4. Because the result of applying Dz to
AT is already overwritten by the result of unifying
51 within], we unify this resulting feature structure
with ff]y

for D1. This operation preserves the validity of
unification because each segment does not have
inter- or intra-segment shared nodes, because of
the condition we previously introduced.

Note that this method can correctly unify fea-
ture structures with reentrancies. For example,
Figure 8 shows the intermediate data structure
after unifying A4, and the process currently
reached A7 and E]" The result of the appli-
cation of D1 to A7 is the result of unifying Sz
with [~, because Sz is overwritten with the re-
sult of this previous unification ((3) and (4) in
Figure 6). Hence, we unify E] with this result.

Above unification algorithm is applied to ev-
ery combination of dependency functions. The
result of the entire unification is shown in Fig-
ure 9.

3 E x p e r i m e n t s

I implemented the algorithms for packing and
unification in LiLFeS (Makino et al., 1998).
LiLFeS is one of the fastest inference engines
for processing feature structure logic, and effi-
cient parsers have already been realized using
this system. For performance evaluation I mea-
sure the execution time for a part of application
of grammar rules (i.e. schemata) of XHPSG.

Table 1 shows the execution time for uni-
fying the resulting feature structure of apply-

Figure 9: The resulting packed feature structure
of unifying the packed feature structure of Figure 2
with the feature structure of Figure 5.

ing schemata to lexical entries of "Mary" as
a left daughter, with lexical entries of "cred-
i ted"/"walked" as right daughters. Unification
of packed feature structures achieved a speed-
up by a factor of 6.4 to 8.4, compared to the
naive approach. Table 2 shows the number of
unification routine calls. NODE_UNIFY shows the
number of nodes for which unification of types
is computed. As can be seen, it is significantly
reduced. On the other hand, SEGNENT_UNIFY
shows the number of check operations whether
unification is already computed. It shows that
the number of node unification operations is sig-
nificantly reduced by the packing method, and
segment unification operations account for most
of the time taken by the unification.

These results indicate that a unification speed
can be improved furthermore by reducing the
number of the segment unification. The data
structure of dependency functions has to be
improved, and dependency functions can be
packed. I observed that at least a quarter of
the segment unification operations can be sup-
pressed. This is one of the future works.

4 C o n c l u s i o n

The packing method I described in this paper
automatically extracts equivalent parts from
feature structures and collapses them into a sin-
gle packed feature structure. It reduces redun-
dant repetition of unification operations on the

5 8 3

Table 1: Execution time for unification. Test data shows the word used for the experiment. # of LEs
shows the number of lexical entries assigned to the word. Naive shows the time for unification with a naive
method. PFS shows the time for unification of packed feature structures (PFS). Improvement shows the
ratio (gaive)/(PFS).

Test data # of LEs Naive (msec.) PFS (msec.) Improvement (factor)
credited 37 36.5 5.7 6.4
walked 79 77.2 9.2 8.4

Table 2: The number of calling each part of the unification routines. Naive shows the number of node
unification operations in the naive unification algorithm (corresponds to NODE_UNIFY of my algorithm).
NODE_UNIFY and SEGMENT_UNIFY are specified in Figure 6.

Test data Naive NODE_UNIFY SEGMENT_UNIFY
credited 30929 256 5095
walked 65709 265 10603

equivalent parts. I implemented this method in
LiLFeS, and achieved a speed-up of the unifica-
tion process by a factor of 6.4 to 8.4. For realiz-
ing efficient NLP systems, I am currently build-
ing an efficient parser by integrating the packing
method with the compilation method for HPSG
(Torisawa and Tsujii, 1996). While the compi-
lation method reduces the number of unification
operations during parsing, it cannot prevent in-
efficiency caused by ambiguity. The packing
method will overcome this problem, and will
hopefully enable us to realize practical and effi-
cient NLP systems.

References
Philippe Blache. 1997. Disambiguating with

controlled disjunctions. In Proc. Interna-
tional Workshop on Parsing Technologies.

Philippe Blache. 1998. Parsing ambigu-
ous structures using controlled disjunctions
and unary quasi-trees. In Proc. COLING-
ACL'98, pages 124-130.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge University Press.

Jochen DSrre and Andreas Eisele. 1990. Fea-
ture logic with disjunctive unification. In
Proc. 13th COLING, volume 2, pages 100-
105.

John Griffith. 1995. Optimizing feature struc-
ture unification with dependent disjunctions.
In Proc. Workshop on Grammar Formalism
for NLP at ESSLLI-94, pages 37-59.

John Griffith. 1996. Modularizing contexted
constraints. In Proc. COLING'96, pages 448-
453.

KSiti Hasida. 1986. Conditioned unification for
natural language processing. In Proc. 11th
COLING, pages 85-87.

Robert T. Kasper and William C. Rounds.
1986. A logical semantics for feature struc-
tures. In Proc. 24th ACL, pages 257-266.

Takaki Makino, Minoru Yoshida, Kentaro Tori-
sawa, and Jun'ichi Tsujii. 1998. LiLFeS - -
towards a practical HPSG parser. In Proc.
COLING-A CL '98, pages 807-811.

Yusuke Miyao, Kentaro Torisawa, Yuka Tateisi,
and Jun'ichi Tsujii. 1998. Packing of fea-
ture structures for optimizing the HPSG-
style grammar translated from TAG. In Proc.
TAG+4 Workshop, pages 104-107.

Mikio Nakano. 1991. Constraint projection: An
efficient t reatment of disjunctive feature de-
scriptions. In Proc. P9th ACL, pages 307-314.

C. Pollard and I. A. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of
Chicago Press.

Yuka Tateisi, Kentaro Torisawa, Yusuke Miyao,
and Jun'ichi Tsujii. 1998. Translating the
XTAG English grammar to HPSG. In Proc.
TAG+4 Workshop, pages 172-175.

Kentaro Torisawa and Jun'ichi Tsujii. 1996.
Computing phrasal-signs in HPSG prior to
parsing. In Proc. 16th COLING, pages 949-
955.

5 8 4

