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A b s t r a c t  

Human understanding of spoken language ap- 
pears to integrate the use of contextual ex- 
pectations with acoustic level perception in a 
tightly-coupled, sequential fashion. Yet com- 
puter speech understanding systems typically 
pass the transcript produced by a speech rec- 
ognizer into a natural language parser with no 
integration of acoustic and grammatical con- 
straints. One reason for this is the complex- 
ity of implementing that  integration. To ad- 
dress this issue we have created a robust, se- 
mantic parser as a single finite-state machine 
(FSM). As such, its run-time action is less com- 
plex than other robust parsers that  are based 
on either chart or generalized left-right (GLR) 
architectures. Therefore, we believe it is ul- 
timately more amenable to direct integration 
with a speech decoder. 

1 I n t r o d u c t i o n  

An important  goal in speech processing is to ex- 
tract meaningful information: in this, the task 
is understanding rather than transcription. For 
extracting meaning from spontaneous speech 
full coverage grammars tend to be too brittle. 
In the 1992 DARPA ATIS task competition, 
CMU's Phoenix parser was the best scoring sys- 
tem (Issar and Ward, 1993). Phoenix operates 
in a loosely-coupled architecture on the 1-best 
transcript produced by the recognizer. Concep- 
tually it is a semantic case-frame parser (Hayes 
et al., 1986). As such, it allows slots within a 
particular ease-frame to be filled in any order, 
and allows out-of-grammar words between slots 
to be skipped over. Thus it can return partial 
parses - -  as frames in which only some of the 
available slots have been filled. 

Humans appear to perform robust under- 
standing in a tightly-coupled fashion. They 

build incremental, partial analyses of an ut- 
terance as it is being spoken, in a way that  
helps them to meaningfully interpret the acous- 
tic evidence. To move toward machine under- 
standing systems that  tightly-couple acoustic 
features and structural knowledge, researchers 
like Pereira and Wright (1997) have argued for 
the use of finite-state acceptors (FSAs) as an 
efficient means of integrating structural knowl- 
edge into the recognition process for limited do- 
main tasks. 

We have constructed a parser for spontaneous 
speech that  is at once both robust and finite- 
state. It is called PROFER,  for Predictive, RO- 
bust, Finite-state parsER. Currently PROFER 
accepts a transcript as input. We are modifying 
it to accept a word-graph as input. Our aim is 
to incorporate PROFER directly into a recog- 
nizer. 

For example, using a grammar  that  defines se- 
quences of numbers (each of which is less than 
ten thousand and greater than ninety-nine and 
contains the word "hundred"),  inputs like the 
following string can be robustly parsed by PRO- 
FER: 

Input: 
first I've got twenty ahhh thirty yaaaaaa 
thirty ohh wait no twenty twenty nine 
hundred two errr three ahhh four and then 
two hundred ninety uhhhhh let me be sure 
here yaaaa ninety seven and last is five 
oh seven uhhh I mean six 

Parse-tree: 
[fsType:numher_type, 
hundred_fs: 

[decade:[twenty,nine],hundred,four], 
hundred_fs: 

[two,hundred,decade:[ninety,seven]], 
hundred_fs: 

[five,hundred,six]] 
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There are two characteristically "robust" ac- 
tions that  are illustrated by this example. 

• For each "slot" (i.e., "As" element) filled in 
the parse-tree's case-frame structure, there 
were several words both before and after 
the required word, hundred, that  had to be 
skipped-over. This aspect of robust parsing 
is akin to phrase-spotting. 

• In mapping the words, "five oh seven uhhh 
I mean six," the parser had to choose a 
later-in-the-input parse (i.e., "[five, hun- 
dred, six]") over a heuristically equivalent 
earlier-in-the-input parse (i.e., "[five, hun- 
dred, seven]"). This aspect of robust pars- 
ing is akin to dynamic programming (i.e., 
finding all possible start  and end points 
for all possible patterns and choosing the 
best). 

2 Robust  Finite-state Parsing 
CMU's Phoenix system is implemented as a re- 
cursive transition network (RTN). This is sim- 
ilar to Abney's system of finite-state-cascades 
(1996). Both parsers have a "stratal" system of 
levels. Both are robust in the sense of skipping 
over out-of-grammar areas, and building up 
structural islands of certainty. And both can be 
fairly described as run-time chart-parsers. How- 
ever, Abney's system inserts bracketing and tag- 
ging information by means of cascaded trans- 
ducers, whereas Phoenix accomplishes the same 
thing by storing state information in the chart 
edges themselves - -  thus using the chart edges 
like tokens. P R O F E R  is similar to Phoenix in 
this regard. 

Phoenix performs a depth-first search over its 
textual input, while Abney's "chunking" and 
"attaching" parsers perform best-first searches 
(1991). However, the demands of a tightly- 
coupled, real-time system argue for a breadth- 
first search-strategy, which in turn argues for 
the use of a finite-state parser, as an efficient 
means of supporting such a search strategy. 
P R O F E R  is a strictly sequential, breadth-first 
parser. 

PROFER uses a regular grammar formalism 
for defining the patterns that  it will parse from 
the input, as illustrated in Figures 1 and 2. 

Net name tags correspond to bracketed (i.e., 
"tagged") elements in the output .  Aside from 
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Figure 1: Formalism 

net names, a grammar definition can also con- 
tain non-terminal rewrite names and terminals. 
Terminals are directly matched against input• 
Non-terminal rewrite names group together sev- 
eral rewrite patterns (see Figure 2), just  as net 
names can be used to do, but rewrite names do 
not appear in the output .  

Each individual rewrite pattern defines a 
"conjunction" of particular terms or sub- 
patterns that  can be mapped from the input  
into the non-terminal at the head of the pat tern 
block, as illustrated in (Figure 1). Whereas, the 
list of pat terns within a block represents a "dis- 
junction" (Figure 2). 
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Figure 2: Formalism 

Since not all Context-Free Grammar  (CFG) 
expressions can be translated into regular ex- 
pressions, as illustrated in Figure 3, some re- 
strictions are necessary to rule out the possibil- 
ity of "center-embedding" (see the right-most 
block in Figure 3). The restriction is that  nei- 
ther a net name nor a rewrite name can appear 
in one of its own descendant blocks of rewrite 
patterns. 

Even with this restriction it is still possible 
to define regular grammars that  allow for self- 
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Figure 3: Context-Free translations to 

embedding to any finite depth, by copying the 
net or rewrite definition and giving it a unique 
name for each level of self-embedding desired. 
For example, both grammars illustrated in Fig- 
ure 4 can robustly parse inputs that contain 
some number of a's followed by a matching 
number of b's up to the level of embedding de- 
fined, which in both of these cases is four deep. 

EXAMPLE: nets EXAMPLE: rewrites 

[se] [ser] 
(a [se_one] b) (a SE_ONE b) 
(a b) (a b) 

[se_one] SE_0NE 
(a [se_t~o] b) (a SE_TWO b) 
(a b) (a b) 

[se_two] SE_TWO 
(a [se_three] b) (a SE_THREE b) 
(a b) (a b) 

[se_three] SE_THREE 
(a b) (a b) 

INPUT : INPUT: 
a c a b d e  b a c  a b d  e b  

PARSE: PARSE: 
s e :  [a,se_one: [a,b] ,b] set :  [a ,a ,b,b]  

Figure 4: Finite self-embedding. 

3 T h e  P o w e r  o f  R e g u l a r  G r a m m a r s  

Tomita (1986) has argued that context-free 
grammars (CFGs) are over-powered for natu- 
ral language. Chart parsers are designed to 
deal with the worst case of very-deep or infi- 
nite self-embedding allowed by CFGs. How- 
ever, in natural language this worst case does 
not occur. Thus, broad coverage Generalized 
Left-Right (GLR) parsers based on Tomita's al- 
gorithm, which ignore the worst case scenario, 

case-flame style regular expressions. 

are in practice more efficient and faster than 
comparable chart-parsers (Briscoe and Carroll, 
1993). 

PROFER explicitly disallows the worst case 
of center-self-embedding that Tomita's GLR de- 
sign allows - -  but ignores. Aside from infinite 
center-self-embedding, a regular grammar for- 
malism like PROFER's can be used to define 
every pattern in natural language definable by 
a GLR parser. 

4 T h e  C o m p i l a t i o n  P r o c e s s  
The following small grammar will serve as the 
basis for a high-level description of the compi- 
lation process. 

[s] 
(n Iv] n) 
(p Iv] p) 

Iv] 
(v) 

In Kaiser et al. (1999) the relationship be- 
tween PROFER's compilation process and that 
of both Pereira and Wright's (1997) FSAs and 
CMU's Phoenix system has been described. 
Here we wish to describe what happens dur- 
ing PROFER's compilation stage in terms of 
the Left-Right parsing notions of item-set for- 
mation and reduction. 

As compilation begins the FSM always starts 
at state 0:0 (i.e., net 0, start state 0) and tra- 
verses an arc labeled by the top-level net name 
to the 0:1 state (i.e., net 0, final state 1), as il- 
lustrated in Figure 5. This initial arc is then re- 
written by each of its r e w r i t e  p a t t e r n s  (Fig- 
ure 5). 

As each new net within the grammar descrip- 
tion is encountered it receives a unique net-ID 
number, the compilation descends recursively 
into that new sub-net (Figure 5), reads in its 
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Figure 5: Definition expansion. 

grammar  description file, and compiles it. Since 
rewrite names are unique only within the net in 
which they appear, they can be processed iter- 
atively during compilation, whereas net names 
must be processed recursively within the scope 
of the entire grammar 's  definition to allow for 
re-use. 

As each element within a r e w r i t e  p a t t e r n  
is encountered a structure describing its exact 
context is filled in. All terminals that  appear 
in the same context are grouped together as a 
"context-group" or simply "context." So arcs in 
the final FSM are traversed by "contexts" not 
terminals. 

When a net name itself traverses an arc it is 
glued into place contextually with e arcs (i.e., 
NULL arcs) (Figure 6). Since net names, like 
any other pattern element, are wrapped inside 
of a context structure before being situated in 
the FSM, the same net name can be re-used 
inside of many different contexts, as in Figure 6. 

Figure 6: Contextualizing sub-nets. 

As the end of each ne t  definition file is 
reached, all of its NULL arcs are removed. Each 
initial state of a sub-net is assumed into its par- 

ent state - -  which is equivalent to item-set for- 
mation in that  parent state (Figure 7 left-side). 
Each final state of a sub-net is erased, and its 
incoming arcs are rerouted to its terminal par- 
ent 's state, thus performing a reduction (Fig- 
ure 7 right-side). 

Figure 7: Removing NULL arcs. 

5 T h e  P a r s i n g  P r o c e s s  

At run-time, the parse proceeds in a strictly 
breadth-first manner (Figure 8,(Kaiser et al., 
1999)). Each destination state within a parse 
is named by a hash-table key string com- 
posed of a sequence of "net:state" combina- 
tions that  uniquely identify the location of tha t  
state within the FSM (see Figure 8). These 
"net:state" names effectively represent a snap- 
shot of the stack-configuration that  would be 
seen in a parallel GLR parser. 

PROFER deals with ambiguity by "split- 
ting" the branches of its graph-structured stack 
(as is done in a Generalized Left-Right parser 
(Tomita, 1986)). Each node within the graph- 
structured stack holds a "token" that  records 
the information needed to build a bracketed 
parse-tree for any given branch. 

When partial-paths converge on the same 
state within the FSM they are scored heuris- 
tically, and all but the set of highest scoring 
partial paths are pruned away. Currently the 
heuristics favor interpretations tha t  cover the 
most input with the fewest slots. Command line 
parameters can be used to refine the heuristics, 
so that  certain kinds of structures be either min- 
imized or maximized over the parse. 

Robustness within this scheme is achieved by 
allowing multiple paths to be propagated in par- 
allel across the input space. And as each such 
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Figure 8: The parsing process. 

partial-path is extended, it is allowed to skip- 
over terms in the input that  are not licensed by 
the grammar.  This allows all possible start  and 
end times of all possible patterns to be consid- 
ered. 

6 D i s c u s s i o n  

Many researchers have looked at ways to im- 
prove corpus-based language modeling tech- 
niques. One way is to parse the training set 
with a structural parser, build statistical mod- 
els of the occurrence of structural elements, and 
then use these statistics to build or augment an 
n-gram language model. 

Gillet and Ward (1998) have reported reduc- 
tions in perplexity using a stochastic context- 
free grammar  (SCFG) defining both simple se- 
mantic "classes" like dates and times, and de- 
generate classes for each individual vocabulary 
word. Thus, in building up class statistics over a 
corpus parsed with their grammar  they are able 
to capture both the traditional n-gram word se- 
quences plus statistics about semantic class se- 
quences. 

Briscoe has pointed out that  using stochas- 
tic context-free grammars (SCFGs) as the ba- 
sis for language modeling, " . . .means  that  in- 
formation about the probability of a rule apply- 
ing at a particular point in a parse derivation is 
lost" (1993). For this reason Briscoe developed 
a GLR parser as a more "natural way to obtain 
a finite-state representation . . . "  on which the 
statistics of individual "reduce" actions could 
be determined. Since PROFER's  state names 
effectively represent the stack-configurations of 

a parallel GLR parser it also offers the ability to 
perform the full-context statistical parsing that  
Briscoe has called for. 

Chelba and Jelinek (1999) use a struc- 
tural language model (SLM) to incorporate the 
longer-range structural knowledge represented 
in statistics about sequences of phrase-head- 
word/non-terminal-tag elements exposed by a 
tree-adjoining grammar.  Unlike SCFGs their 
statistics are specific to the structural  context 
in which head-words occur. They have shown 
both reduced perplexity and improved word er- 
ror rate (WER) over a conventional tri-gram 
system. 

One can also reduce complexity and improve 
word-error rates by widening the speech recog- 
nition problem to include modeling not only 
the word sequence, but the word/part-of-speech 
(POS) sequence. Heeman and Allen (1997) has 
shown that  doing so also aids in identifying 
speech repairs and intonational boundaries in 
spontaneous speech. 

However, all of these approaches rely on 
corpus-based language modeling, which is a 
large and expensive task. In many practical uses 
of spoken language technology, like using simple 
structured dialogues for class room instruction 
(as can be done with the CSLU toolkit (Sutton 
et al., 1998)), corpus-based language modeling 
may not be a practical possibility. 

In structured dialogues one approach can 
be to completely constrain recognition by the 
known expectations at a given state. Indeed, 
the CSLU toolkit provides a generic recognizer, 
which accepts a set of vocabulary and word se- 
quences defined by a regular grammar  on a per- 
state basis. Within this framework the task of 
a recognizer is to choose the best phonetic path 
through the finite-state machine defined by the 
regular grammar. Out-of-vocabulary words are 
accounted for by a general purpose "garbage" 
phoneme model (Schalkwyk et al., 1996). 

We experimented with using P R O F E R  in the 
same way; however, our initial a t tempts  to do 
so did not work well. The amount  of informa- 
tion carried in PROFER's  token's (to allow for 
bracketing and heuristic scoring of the seman- 
tic hypotheses) requires structures that  are an 
order of magnitude larger than the tokens in 
a typical acoustic recognizer. When these large 
tokens are applied at the phonetic-level so many 
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are needed tha t  a memory space explosion oc- 
curs. This suggests to us tha t  there must be two 
levels of tokens: small, quickly manipulated to- 
kens at  the acoustic level (i.e., lexical level), and 
larger, less-frequently used tokens at  the struc- 
tural  level (i.e., syntactic,  semantic, pragmatic 
level). 

7 F u t u r e  W o r k  

In the MINDS system Young et al. (1989) re- 
ported reduced word error rates and large re- 
ductions in perplexity by using a dialogue struc- 
ture tha t  could track the active goals, topics 
and user knowledge possible in a given dialogue 
state,  and use tha t  knowledge to dynamically 
create a semantic case-frame network, whose 
transit ions could in turn be used to constrain 
the word sequences allowed by the recognizer. 

Our research aim is to maximize the effective- 
ness of this approach. Therefore, we hope to: 

• expand the scope of PROFER ' s  s tructural  
definitions to include not only word pat- 
terns, but intonation and stress patterns as 
well, and 

• consider how build to general language 
models tha t  complement the use of the cat- 
egorial constraints P R O F E R  can impose 
(i.e., syllable-level modeling, intonational 
boundary modeling, or speech repair mod- 
eling). 

Our immediate efforts are focused on consider- 
ing how to modify P R O F E R  to accept a word- 
graph as input - -  at  first as part  of a loosely- 
-coupled system, and then later as part  of an 
integrated system in which the elements of the 
word-graph are evaluated against the structural  
constraints as they are created. 

8 Conclusion 

We have presented our finite-state, robust 
parser, PROFER,  described some of its work- 
ings, and discussed the advantages it may offer 
for moving towards a tight integration of robust 
natural  language processing with a speech de- 
coder - -  those advantages being: its efficiency 
as an FSM and the possibility tha t  it may pro- 
vide a useful level of constraint to a recognizer 
independent of a large, task-specific language 
model. 
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