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A b s t r a c t  

Both probabilistic context-free grammars 
(PCFGs) and shift-reduce probabilistic push- 
down automata (PPDAs) have been used for 
language modeling and maximum likelihood 
parsing. We investigate the precise relationship 
between these two formalisms, showing that, 
while they define the same classes of probabilis- 
tic languages, they appear to impose different 
inductive biases. 

1 I n t r o d u c t i o n  

Current work in stochastic language models 
and maximum likelihood parsers falls into two 
main approaches. The first approach (Collins, 
1998; Charniak, 1997) uses directly the defini- 
tion of stochastic grammar, defining the prob- 
ability of a parse tree as the probability that 
a certain top-down stochastic generative pro- 
cess produces that  tree. The second approach 
(Briscoe and Carroll, 1993; Black et al., 1992; 
Magerman, 1994; Ratnaparkhi, 1997; Chelba 
and Jelinek, 1998) defines the probability of a 
parse tree as the probability that a certain shift- 
reduce stochastic parsing automaton outputs 
that  tree. These two approaches correspond to 
the classical notions of context-free grammars 
and nondeterministic pushdown automata re- 
spectively. It is well known that  these two clas- 
sical formalisms define the same language class. 
In this paper, we show that probabilistic context- 
free grammars (PCFGs) and probabilistic push- 
down automata (PPDAs) define the same class 
of distributions on strings, thus extending the 
classical result to the stochastic case. We also 
touch on the perhaps more interesting ques- 
tion of whether PCFGs and shift-reduce pars- 
ing models have the same inductive bias with 
respect to the automatic learning of model pa- 
rameters from data. Though we cannot provide 
a definitive answer, the constructions we use to 

answer the equivalence question involve blow- 
ups in the number of parameters in both direc- 
tions, suggesting that  the two models impose 
different inductive biases. 

We are concerned here with probabilistic 
shift-reduce parsing models that  define prob- 
ability distributions over word sequences, and 
in particular the model of Chelba and Je- 
linek (1998). Most other probabilistic shift- 
reduce parsing models (Briscoe and Carroll, 
1993; Black et al., 1992; Magerman, 1994; Rat- 
naparkhi, 1997) give only the conditional prob- 
ability of a parse tree given a word sequence. 
Collins (1998) has argued that  those models fail 
to capture the appropriate dependency relations 
of natural language. Furthermore, they are not 
directly comparable to PCFGs, which define 
probability distributions over word sequences. 

To make the discussion somewhat more con- 
crete, we now present a simplified version of the 
Chelba-Jelinek model. Consider the following 
sentence: 

The small woman gave the fat man her 
sandwich. 

The model under discussion is based on shift- 
reduce PPDAs. In such a model, shift transi- 
tions generate the next word w and its associ- 
ated syntactic category X and push the pair 
(X, w) on the stack. Each shift transition 
is followed by zero or more reduce transitions 
that combine topmost stack entries. For exam- 
ple the stack elements (Det, the), (hdj, small), 
(N, woman) can be combined to form the single 
entry (NP, woman) representing the phrase "the 
small woman". In general each stack entry con- 
sists of a syntactic category and a head word. 
After generating the prefix "The small woman 
gave the fat man" the stack might contain the 
sequence (NP, woman)<Y, gave)(NP, man). The 
Chelba-Jelinek model then executes a shift tran- 
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S --+ (S, admired) 
(S, admired) --+ (NP, Mary)(VP, admired) 

(VP, admired) -+ (V, admired)(Np, oak) 
(NP, oak) -+ (Det, the)(N, oak) 

(N, oak) -+ (Adj, towering> (N, oak> 
(N, oak> -~ (Adj, strong>(N, oak> 
(N, oak) -+ (hdj, old>(N, oak) 

(NP, Mary) -+ Mary 

(N, oak) -+ oak 

Figure 1: Lexicalized context-free grammar 

sition by generating the next word. This is 
done in a manner similar to that  of a trigram 
model except that ,  rather than generate the 
next word based on the two preceding words, it 
generates the next word based on the two top- 
most stack entries. In this example the Chelba- 
Jelinek model generates the word "her" from 
(V, gave)(NP, man) while a classical trigram 
model would generate "her" from "fat man". 

We now contrast Chelba-Jelinek style mod- 
els with lexicalized PCFG models. A PCFG is 
a context-free grammar in which each produc- 
tion is associated with a weight in the interval 
[0, 1] and such that  the weights of the produc- 
tions from any given nonterminal sum to 1. For 
instance, the sentence 

Mary admired the towering strong old oak 

can be derived using a lexicalized PCFG based 
on the productions in Figure 1. Production 
probabilities in the PCFG would reflect the like- 
lihood that  a phrase headed by a certain word 
can be expanded in a certain way. Since it can 
be difficult to estimate fully these likelihoods, 
we might restrict ourselves to models based on 
bilexical relationships (Eisner, 1997), those be- 
tween pairs of words. The simplest bilexical re- 
lationship is a bigram statistic, the fraction of 
times that  "oak" follows "old". Bilexical rela- 
tionships for a PCFG include that  between the 
head-word of a phrase and the head-word of a 
non-head immediate constituent, for instance. 
In particular, the generation of the above sen- 
tence using a PCFG based on Figure 1 would 
exploit a bilexical statistic between "towering" 
and "oak" contained in the weight of the fifth 
production. This bilexical relationship between 

"towering" and "oak" would not be exploited in 
either a trigram model or in a Chelba-Jelinek 
style model. In a Chelba-Jelinek style model 
one must generate "towering" before generating 
"oak" and then "oak" must be generated from 
(Adj, strong), (Adj, old). In this example the 
Chelba-Jelinek model behaves more like a clas- 
sical trigram model than like a PCFG model. 

This contrast between PPDAs and PCFGs 
is formalized in theorem 1, which exhibits a 
PCFG for which no stochastic parameterization 
of the corresponding shift-reduce parser yields 
the same probability distribution over strings. 
That  is, the standard shift-reduce translation 
from CFGs to PDAs cannot be generalized to 
the stochastic case. 

We give two ways of getting around the above 
difficulty. The first is to construct a top-down 
PPDA that  mimics directly the process of gen- 
erating a PCFG derivation from the start  sym- 
bol by repeatedly replacing the leftmost non- 
terminal in a sentential form by the right-hand 
side of one of its rules. Theorem 2 states 
that  any PCFG can be translated into a top- 
down PPDA. Conversely, theorem 3 states that  
any PPDA can be translated to a PCFG,  not 
just those that  are top-down PPDAs for some 
PCFG. Hence PCFGs and general PPDAs de- 
fine the same class of stochastic languages. 

Unfortunately, top-down PPDAs do not al- 
low the simple left-to-right processing that  mo- 
tivates shift-reduce PPDAs. A second way 
around the difficulty formalized in theorem 1 
is to encode additional information about the 
derivation context with richer stack and state 
alphabets. Theorem 7 shows that  it is thus 
possible to translate an arbitrary PCFG to a 
shift-reduce P P D A .  The construction requires a 
fair amount  of machinery including proofs that  
any PCFG can be put  in Chomsky normal form, 
that  weights can be renormalized to ensure that  
the result of grammar transformations can be 
made into PCFGs, that  any PCFG can be put 
in Greibach normal form, and, finally, that  a 
Greibach normal form PCFG can be converted 
to a shift-reduce PPDA. 

The construction also involves a blow-up in 
the size of the shift-reduce parsing automaton.  
This suggests that  some languages that  are con- 
cisely describable by a PCFG are not concisely 
describable by a shift-reduce PPDA, hence that  
the class of PCFGs and the class of shift-reduce 
PPDAs impose different inductive biases on the 
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CF languages. In the conversion from shift- 
reduce PPDAs to PCFGs,  there is also a blow- 
up, if a less dramat ic  one, leaving open the pos- 
sibility tha t  the biases are incomparable, and 
tha t  neither formalism is inherently more con- 
cise. 

Our main conclusion is then that ,  while the 
generative and shift-reduce parsing approaches 
are weakly equivalent, they impose different in- 
ductive biases. 

2 P r o b a b i l i s t i c  a n d  W e i g h t e d  
G r a m m a r s  

For the remainder  of the paper, we fix a terminal 
alphabet  E and a nonterminal alphabet N,  to 
which we may add auxiliary symbols as needed. 

A weighted context-free g rammar  (WCFG) 
consists of a distinguished s tar t  symbol S E N 
plus a finite set of weighted productions of the 
form X -~ a, (alternately, u : X --~ a) ,  where 
X E N,  a E (Nt2E)* and the weight u is a non- 
negative real number.  A probabilistic context- 
free g rammar  (PCFG) is a WCFG such tha t  for 
all X,  )-~u:x-~a u = 1. Since weights are non- 
negative, this also implies tha t  u <_ 1 for any 
individual production. 

A PCFG defines a stochastic process with 
sentential forms as states, and leftmost rewrit- 
ing steps as transitions. In the more general 
case of WCFGs,  we can no longer speak of 
stochastic processes; but weighted parse trees 
and sets of weighted parse trees are still well- 
defined notions. 

We define a parse tree to be a tree whose 
nodes are labeled with productions. Suppose 
node ~ is labeled X -~ a[Y1, . . . ,Yn],  where we 
write a[Y1, . . . ,Yn]  for a string whose nonter- 
minal symbols are Y1,...,Y~. We say tha t  ~'s 
nonterminal  label is X and its weight is u. The 
subtree rooted at ~ is said to be rooted in X.  ~ is 
well-labeled just  in case it has n children, whose 
nonterminal  labels are Y1, . . . ,  Yn, respectively. 
Note tha t  a terminal  node is well-labeled only 
if a is empty  or consists exclusively of terminal 
symbols. We say a WCFG G admits a tree d 
just  in case all nodes of d are well-labeled, and 
all labels are productions of G. Note tha t  no 
requirement is placed on the nonterminal of the 
root node of d; in particular, it need not be S. 

We define the weight of a tree d, denoted 
Wa(d), or W(d) if G is clear from context,  to be 
the product  of weights of its nodes. The depth 
r (d)  of d is the length of the longest path from 

root to leaf in d. The root production it(d) is the 
label of the root node. The root symbol p(d) is 
the left-hand side of ~r(d). The yield a(d) of 
the tree d is defined in the s tandard  way as the 
string of terminal symbols "parsed" by the tree. 

It is convenient to t rea t  the functions 7r, p, 
a, and r as random variables over trees. We 
write, for example, {p = X}  as an abbreviation 
for {dip(d)= X}; and WG(p = X) represents 
the sum of weights of such trees. If the sum 
diverges, we set WG(p = X)  = oo. We call 
IIXHG = WG(p = X) the norm of X,  and IIGII = 
IISlla the norm of the grammar .  

A WCFG G is called convergent if [[G[[ < oo. 
If G is a PCFG then [[G[[ = WG(p "- S )  < 1, 
tha t  is, all PCFGs are convergent. A P C F G  
G is called consistent if ]]GII = 1. A sufficient 
condition for the consistency of a P C F G  is given 
in (Booth and Thompson,  1973). If (I) and • are 
two sets of parse trees such tha t  0 < WG(~) < 
co we define PG((I)]~) to be WG(~Nqt)/WG(kO). 
For any terminal string y and g r am m ar  G such 
tha t  0 < WG(p -- S) < co we define PG(Y) to 
be Pa(a = YIP = S). 

3 S t o c h a s t i c  P u s h - D o w n  A u t o m a t a  

We use a somewhat  nonstandard definition of 
pushdown automaton  for convenience, but  all 
our results hold for a variety of essentially equiv- 
alent definitions. In addition to the terminal  
alphabet ~,  we will use sets of stack symbols 
and states as needed. A weighted push-down 
automaton (WPDA) consists of a distinguished 
s tar t  s tate  q0, a distinguished s tar t  stack symbol 
X0 and a finite set of transitions of the following 
form where p and q are states, a E E L.J {e}, X 
and Z1, . . . ,  Zn are stack symbols, and w is a 
nonnegative real weight: 

x ,  pa~ Zl ... Zn, q 

A W P D A  is a probabilistic push-down automa-  
ton (PPDA) if all weights are in the interval 
[0, 1] and for each pair of a stack symbol X and 
a state q the sum of the weights of all transitions 
of the form X,p ~ Z1 ...Z=, q equals 1. A ma- 
chine configuration is a pair (fl, q) of a finite 
sequence fl of stack symbols (a stack) and a ma- 
chine s tate  q. A machine configuration is called 
halting if the stack is empty. If M is a P P D A  
containing the transition X,p ~ Z1.. .Zn,q 
then any configuration of the form (fiX, p) has 
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probability w of being transformed into the con- 
figuration (f~Z1.. .Zn,  q> where this transfor- 
mation has the effect of "outputting" a if a ¢ e. 
A complete execution of M is a sequence of tran- 
sitions between configurations starting in the 
initial configuration <X0, q0> and ending in a 
configuration with an empty stack. The prob- 
ability of a complete execution is the product 
of the probabilities of the individual transitions 
between configurations in that  execution. For 
any PPDA M and y E E* we define PM(Y) to 
be the sum of the probabilities of all complete 
executions output t ing  y. A PPDA M is called 
consistent if )-~ye~* PM(Y) = 1. 

We first show that  the well known shift- 
reduce conversion of CFGs into PDAs can not 
be made to handle the stochastic case. Given a 
(non-probabilistic) CFG G in Chomsky normal 
form we define a (non-probabilistic) shift-reduce 
PDA SIt(G) as follows. The stack symbols of 
SIt(G) are taken to be nonterminals of G plus 
the special symbols T and ±. The states of 
SR(G) are in one-to-one correspondence with 
the stack symbols and we will abuse notation 
by using the same symbols for both states and 
stack symbols. The initial stack symbol is 1 
and the initial state is (the state corresponding 
to) _L. For each production of the form X --+ a 
in G the PDA SIt(G) contains all shift transi- 
tions of the following form 

Y,Z-~  YZ, X 

The PDA SR(G) also contains the following ter- 
mination transitions where S is the start  symbol 
of G. 

E 
1,  S -+, T 
I,T -~,T 

Note that  if G consists entirely of productions of 
the form S -+ a these transitions suffice. More 
generally, for each production of the form X -+ 
Y Z  in G the PDA SR(G) contains the following 
reduce transitions. 

Y, Z -~, X 

All reachable configurations are in one of the 
following four forms where the first is the initial 
configuration, the second is a template for all 
intermediate configurations with a E N*, and 
the last two are terminal configurations. 

<1, 1>, <11., x>, <I,T>, T> 

Furthermore, a configuration of the form 
(l_l_a, X) can be reached after output t ing  y if 
and only if a X  :~ y. In particular, the machine 
can reach configuration (±_L, S) output t ing  y 
if and only if S :~ y. So the machine SR(G) 
generates the same language as G. 

We now show that  the shift-reduce transla- 
tion of CFGs into PDAs does not generalize to 
the stochastic case. For any PCFG G we define 
the underlying CFG to be the result of erasing 
all weights from the productions of G. 

T h e o r e m  1 There exists a consistent PCFG G 
in Chomsky normal .form with underlying CFG 
G' such that no consistent weighting M of the 
PDA SR(G ~) has the property that PM(Y) = 
Pa(u) for all U e 

To prove the theorem take G to be the fol- 
lowing grammar.  

1_ 1_ 

S -~ AX1, S 3+ BY1 
X, -~ CX2, X2 -~ CA 
Yl Cy2, Y2 A, C B 

A-~ a, S - ~  b, C-~ c 

Note that  G generates acca and bccb each 
with probability ½. Let M be a consistent 
PPDA whose transitions consist of some weight- 
ing of the transitions of SR(G'). We will as- 
sume that  PM(Y) = PG(Y) for all y E E* 
and derive a contradiction. Call the nonter- 
minals A, B, and C preterminals. Note that  
the only reduce transitions in SR(G ~) com- 
bining two preterminals are C, A -~,X2 and 
C, B -~,Y2. Hence the only machine configu- 
ration reachable after output t ing  the sequence 
ace is (.I__LAC, C>. If PM(acca) - -  ½ and 
PM(accb) -- 0 then the machine in configuration 
(.I_±AC, C> must deterministically move to con- 
figuration (I±ACC, A>. But this implies that  
configuration ( I I B C ,  C> also deterministically 
moves to configuration <±±BCC, A> so we have 
PM(bccb) -= 0 which violates the assumptions 
about M. ,, 

Although the standard shift-reduce transla- 
tion of CFGs into PDAs fails to generalize to 
the stochastic case, the standard top-down con- 
version easily generalizes. A top-down PPDA 
is one in which only ~ transitions can cause the 
stack to grow and transitions which output  a 
word must pop the stack. 
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T h e o r e m  2 Any string distribution definable 
by a consistent PCFG is also definable by a top- 
down PPDA. 

Here we consider only PCFGs in Chom- 
sky normal form-- the  generalization to arbi- 
trary PCFGs is straightforward. Any PCFG 
in Chomsky normal form can be translated to 
a top-down PPDA by translating each weighted 
production of the form X --~ Y Z  to the set of 

expansion moves of the form W, X ~ WZ, Y 
and each production of the form X -~ a to the 

set of pop moves of the form Z, X 72-'~, Z. • 
We also have the following converse of the 

above theorem. 

T h e o r e m  3 Any string distribution definable 
by a consistent PPDA is definable by a PCFG. 

The proof, omitted here, uses a weighted ver- 
sion of the standard translation of a PDA into 
a CFG followed by a renormalization step using 
lemma 5. We note t h a t  it does in general in- 
volve an increase in the number of parameters 
in the derived PCFG. 

In this paper we are primarily interested in 
shift-reduce PPDAs which we now define for- 
mally. In a shift-reduce PPDA there is a one- 
to-one correspondence between states and stack 
symbols and every transition has one of the fol- 
lowing two forms. 

Y, Za - ~ YZ ,  X a ¢ E  
EgW 

Y, Z -~+ , X 

Transitions of the first type are called shift 
transitions and transitions of the second type 
are called reduce transitions. Shift transitions 
output a terminal symbol and push a single 
symbol on the stack. Reduce transitions are 
e-transitions that  combine two stack symbols. 
The above theorems leave open the question of 
whether shift-reduce PPDAs can express arbi- 
trary context-free distributions. Our main the- 
orem is that they can. To prove this some ad- 
ditional machinery is needed. 

4 C h o m s k y  N o r m a l  F o r m  

A PCFG is in Chomsky normal form (CNF) if 
all productions are either of the form X -St a, 
a E E or X -~ Y1Y2, Y1,Y2 E N. Our next 
theorem states, in essence, that any PCFG can 
be converted to Chomsky normal form. 

T h e o r e m  4 For any consistent PCFG G with 
PG(e) < 1 there exists a consistent PCFG C(G) 
in Chomsky normal form such that, for all y E 
E+: 

Pa(y) - ea(yly  # e) 
P C ( G ) ( Y )  --  1 - P a ( e )  

To prove the theorem, note first that, without 
loss of generality, we can assume that  all pro- 
ductions in G are of one of the forms X --~ YZ ,  
X -5t Y, X -~ a, or X -Y+ e. More specifi- 
cally, any production not in one of these forms 
must have the form X -5t ¢rfl where a and fl 
are nonempty strings. Such a production can 

be replaced by X -~ AB, A -~ a, and B 2+ fl 
where A and B are fresh nonterminal symbols. 
By repeatedly applying this binarization trans- 
formation we get a grammar in the desired form 
defining the same distribution on strings. 

We now assume that  all productions o f  G 
are in one of the above four forms. This im- 
plies that a node in a G-derivation has at most 
two children. A node with two children will 
be called a branching node. Branching nodes 
must be labeled with a production of the form 
X -~ YZ .  Because G can contain produc- 
tions of the form X --~ e there may be ar- 
bitrarily large G-derivations with empty yield. 
Even G-derivations with nonempty yield may 
contain arbitrarily large subtrees with empty 
yield. A branching node in the G-derivation 
will be called ephemeral if either of its chil- 
dren has empty yield. Any G-derivation d with 
la(d)l _ 2 must contain a unique shallowest 
non-ephemeral branching node, labeled by some 
production X ~ YZ .  In this case, define 
fl(d) = YZ .  Otherwise (la(d)l < 2), let fl(d) = 
a(d). We say that  a nonterminal X is nontrivial 
in the grammar G if Pa(a # e I P = X)  > O. 
We now define the grammar G' to consist of all 
productions of the following form where X, Y, 
and Z are nontrivial nonterminals of G and a is 
a terminal symbol appearing in G. 

X PG(~=YZ~p=x, ~#~) Y Z  

X PG(~=a 12+=x, ~¢~) a 

We leave it to the reader to verify that  G' has 
the property stated in theorem 4. • 

The above proof of theorem 4 is non- 
constructive in that it does not provide any 
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way of computing the conditional probabilities 
PG(Z = Y Z  I p = x ,  # and Pa(Z  = 
a [ p = X, a ¢ e). However, it is not 
difficult to compute  probabilities of the form 
PG(¢ [ p = X ,  r <_ t +  1) from probabili- 
ties of the form PG((I) ] p = X, v _< t), and 
PG(¢ I P = X )  is the limit as t goes to infinity 
of Pa((I )]  p =  X, r_< t). We omit the details 
here. 

from X equals 1: 

= ~:x-~[Y1 ..... y.] u ~  
--  E .x-,oIv, ..... Y.l II lla 
= ..... y . ] u l - L w G ( p =  

= wo(p=x)Wa(p= X) 
- 1 

5 R e n o r m a l i z a t i o n  

A nonterminal X is called reachable in a gram- 
mar G if either X is S or there is some (re- 
cursively) reachable nonterminal Y such tha t  G 
contains a production of the form Y -~ a where 

contains X.  A nonterminal X is nonempty 
in G if G contains X -~ a where u > 0 and a 
contains only terminal symbols, or G contains 
X -~ o~[Y1, . . . ,  Yk] where u > 0 and each 
1~ is (recursively) nonempty. A WCFG G is 
proper if every nonterminal is both reachable 
and nonempty. It is possible to efficiently com- 
pute the set of reachable and nonempty non- 
terminals in any grammar.  Furthermore,  the 
subset of productions involving only nontermi- 
nals tha t  are both reachable and nonempty de- 
fines the same weight distribution on strings. 
So without loss of generality we need only con- 
sider proper WCFGs.  A reweighting of G is any 
WCFG derived from G by changing the weights 
of the productions of G. 

L e m m a  5 For any convergent proper WCFG 
G, there exists a reweighting G t of  G such that 
G ~ is a consistent P C F G  such that for  all ter- 
minal strings y we have PG' (Y) = Pa (Y). 

Proof." Since G is convergent, and every non- 
terminal X is reachable, we must have IIXIla < 
oo. We now renormalize all the productions 
from X as follows. For each production X -~ 
a [ Y 1 , . . . ,  Yn] we replace u by 

¢ = II IIG 
IIXIla 

To show tha t  G' is a PCFG we must show 
that  the sum of the weights of all productions 

For any parse tree d admit ted  by G let 
d ~ be the corresponding tree admit ted  by G ~, 
tha t  is, the result of reweighting the pro- 
ductions in d. One can show by induc- 
tion on the depth of parse trees tha t  if 
p(d) = X then Wc,(d')  = [-~GWG(d).  

Therefore IIXIIG, = ~~{d[p(d)=X} W G , ( d ' )  -~ 

~ ~{alo(e)=x} Wa(d)  = = 1. In par- 

ticular, Ilaql = I lS l la , -  1, tha t  is, G' is consis- 
tent.  This implies tha t  for any terminal  string 
Y we have PG'(Y) = l i - ~ W a , ( a  = y, p = S) = 
Wa, (a  = y, p = S). Furthermore,  for any tree 
d with p(d) = S we have Wa,(d')  = ~[~cWa(d)  

and so WG,(a = y, p = S) - ~ W G ( a  = 

y, p = S) = Pc(Y) .  " 

6 G r e i b a c h  N o r m a l  F o r m  
A PCFG is in Greibach normal form (GNF) if 
every production X -~ a satisfies (~ E EN*.  
The following holds: 

T h e o r e m  6 For any consistent P C F G  G in 
C N F  there exists a consistent P C F G  G ~ in GNF 
such that Pc,(Y) = Pa(Y) for  y e E*. 

Proof: A left corner G-derivation from X to 
Y is a G-derivation from X where the leftmost 
leaf, rather than being labeled with a produc- 
tion, is simply labeled with the nonterminal 
Y. For example, if G contains the productions 
X ~ Y Z  and Z -~ a then we c a n c o n s t r u c t  a 
left corner G-derivation from X to Y by build- 
ing a tree with a root labeled by X Z.~ Y Z ,  a 
left child labeled with Y and a right child la- 
beled with Z -~ a. The weight of a left corner 
G-derivation is the product  of the productions 
on the nodes. A tree consisting of a single node 
labeled with X is a left corner G-derivation from 
X t o X .  

For each pair of nonterminals X, Y in G 
we introduce a new nonterminal symbol X / Y .  
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The H-derivations from X / Y  will be in one 
to one correspondence with the left-corner G- 
derivations from X to Y. For each production 
in G of the form X ~ a we include the following 
in H where S is the s tar t  symbol of G: 

S --~ a S / X  

We also include in H all productions of the fol- 
lowing form where X is any nonterminal in G: 

x / x  

If G consists only of productions of the form 
S -~ a these productions suffice. More gener- 
ally, for each nonterminal  X / Y  of H and each 

pair of productions U ~ YZ ,  W ~-~ a we in- 
clude in H the following: 

X / Y  ~ 2  a Z / W  X / U  

Because of the productions X / X  -~ e, WH(# : 
X / X )  > 1 , and H is not quite in GNF. These 
two issues will be addressed momentarily. 

S tandard  arguments  can be used to show 
tha t  the H-derivations from X / Y  are in one- 
to-one correspondence with the left corner G- 
derivations from X to Y. Furthermore,  this one- 
to-one correspondence preserves weight-- i f  d is 
the H-derivation rooted at X / Y  corresponding 
to the left corner G-derivation from X to Y then 
WH (d) is the product  of the weights of the pro- 
ductions in the G-derivation. 

The weight-preserving one-to-one correspon- 
dence between left-corner G-derivations from X 
to Y and H-derivations from X / Y  yields the 
following. 

WH ( ao~ ) 
: ~'~(S_U+aS/X)EHUWH(~r : Ollp--- S / X )  

Po(a ) 

Theorem 5 implies tha t  we can reweight the 
proper subset of H (the reachable and nonempty 
productions of H)  so as to construct  a consistent 
PCFG g with Pj((~) = PG(~). To prove theo- 
rem 6 it now suffices to show that  the produc- 
tions of the form X / X  -~ e can be eliminated 
from the P C F G  J .  Indeed, we can eliminate 
the e productions from J in a manner  similar 
to tha t  used in the proof of theorem 4. A node 

in an J-derivation is ephemeral if it is labeled 
X -~ e for some X.  We now define a function 7 
on J-derivations d as follows. If the root of d is 
labeled with X -~ a Y Z  then we have four sub- 
cases. If neither child of the root is ephemeral  
then 7(d) is the string aYZ.  If only the left child 
is ephemeral then 7(d) is aZ. If only the right 
child is ephemeral then 7(d) is aY and if both 
children are ephemeral then 7(d) is a. Analo- 
gously, if the root is labeled with X -~ aY, then 
7(d) is aY if the child is not ephemeral  and a 
otherwise. If the root is labeled with X -~ e 
then 7(d) is e. 

A nonterminal X in K will be called trivial 
i f P j ( 7 =  e I P = X )  = 1. We now define the 
final g rammar  G'  to consist of all productions 
of the following form where X,  Y, and Z are 
nontrivial nonterminals appearing in J and a is 
a terminal symbol appearing in J .  

X Pj(a=a I__~=X, "y¢¢) a 

X pj(a=aY~_~=X, "yCe) aY  

X PJ(a=aYZl-~ p=X' ~¢) a Y Z  

As in section 4, for every nontrivial nonterminal  
X in K and terminal  string (~ we have PK (a = 
(~ I P =  X)  = P j ( a =  a I P =  X,  a ~ e). In 
particular, since Pj(e) = PG(() = 0, we have 
the following: 

= 

= P j ( a = a l p = S  ) 
= Pj(a)  
= Pa( ) 

The PCFG K is the desired P C F G  in Greibach 
normal form. • 

The construction in this proof is essen- 
tially the s tandard left-corner t ransformation 
(Rosenkrantz and II, 1970), as extended by Sa- 
lomaa and Soittola (1978, theorem 2.3) to alge- 
braic formal power series. 

7 The Main Theorem 
We can now prove our main theorem. 

T h e o r e m  7 For any consistent PCFG G there 
exists a shift-reduce PPDA M such that 
PM(Y) = PG(Y) for all y E ~*. 

Let G be an arbi t rary consistent PCFG.  By 
theorems 4 and 6~ we can assume tha t  G con- 
sists of productions of the form S -~ e and 
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S l~w St plus productions in Greibach normal 
form not mentioning S. We can then replace 

the rule S 1_:+~ S ~ with all rules of the form 

S 0-__~)~' a where G contains S ~ ~' -+ a. We now 
assume without  loss of generality tha t  G con- 
sists of a single production of the form S -~ e 
plus productions in Greibach normal form not 
mentioning S on the right hand side. 

The stack symbols of M are of the form W~ 
where ce E N* is a proper suffix of the right hand 
side of some production in G. For example, if 
G contains the production X -~ a Y Z  then the 
symbols of M include W y z ,  Wy,  and We. The 
initial s tate is Ws and the initial stack symbol is 
±.  We have assumed tha t  G contains a unique 
production of the form S -~ e. We include the 
following transition in M corresponding to this 
production. 

A_,Ws~,T 

Then, for each rule of the form X -~ a~ in G 
and each symbol of  the form Wx,~ we include 
the following in M: 

Z, Wx. ~ ZWx., Wz 

We also include all "post-processing" rules of 
the following form: 

Wx~W~ ~ W~ 
~.,1 

±,W~ ~ , T  

I , T  -:+,T 

Note tha t  all reduction transitions are determin- 
istic with the single exception of the first rule 
listed above. The nondeterministic shift tran- 
sitions of M are in one-to-one correspondence 
with the productions of G. This yields the prop- 
erty tha t  PM(Y) = PG(Y). • 

8 C o n c l u s i o n s  

The relationship between PCFGs and PPDAs 
is subtler than a direct application of the clas- 
sical constructions relating general CFGs and 
PDAs. Although PCFGs  can be concisely trans- 
lated into top-down PPDAs, we conjecture tha t  
there is no concise translation of PCFGs into 
shift-reduce PPDAs.  Conversely, there appears 
to be no concise translation of shift-reduce PP- 
DAs to PCFGs.  Our main result is tha t  PCFGs 
and shift-reduce PPDAs are intertranslatable, 

hence weakly equivalent. However, the non- 
conciseness of our translations is consistent with 
the view tha t  stochastic top-down generation 
models are significantly different from shift- 
reduce stochastic parsing models, affecting the 
ability to learn a model from examples. 
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