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Abstract  
Best-first chart parsing utilises a figure of 
merit (FOM) to efficiently guide a parse by 
first attending to those edges judged better. 
In the past it has usually been static; this 
paper will show that  with some extra infor- 
mation, a parser can compensate for FOM 
flaws which otherwise slow it down. Our re- 
sults are faster than the prior best by a fac- 
tor of 2.5; and the speedup is won with no 
significant decrease in parser accuracy. 

1 Introduction 
Sentence parsing is a task which is tra- 
ditionMly rather computationally intensive. 
The best known practical methods are still 
roughly cubic in the length of the sentence-- 
less than ideM when deMing with nontriviM 
sentences of 30 or 40 words in length, as fre- 
quently found in the Penn Wall Street Jour- 
nal treebank corpus. 

Fortunately, there is now a body of litera- 
ture on methods to reduce parse time so that  
the exhaustive limit is never reached in prac- 
tice. 1 For much of the work, the chosen ve- 
hicle is chart parsing. In this technique, the 
parser begins at the word or tag level and 
uses the rules of a context-free grammar to 
build larger and larger constituents. Com- 
pleted constituents are stored in the cells 
of a chart according to their location and 

* This research was funded in part by NSF Grant 
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IAn exhaustive parse always "overgenerates" be- 
cause the grammar contains thousands of extremely 
rarely applied rules; these are (correctly) rejected 
even by the simplest parsers, eventuMly, but it would 
be better to avoid them entirely. 

length. Incomplete constituents ("edges") 
are stored in an agenda. The exhaustion 
of the agenda definitively marks the comple- 
tion of the parsing algorithm, but the parse 
needn't take that  long; Mready in the early 
work on chart parsing, (Kay, 1970) suggests 
that  by ordering the agenda one can find 
a parse without resorting to an exhaustive 
search. The introduction of statistical pars- 
ing brought with an obvious tactic for rank- 
ing the agenda: (Bobrow, 1990) and (Chi- 
trao and Grishman, 1990) first used proba- 
bilistic context free grammars (PCFGs) to 
generate probabilities for use in a figure of 
merit (FOM). Later work introduced other 
FOMs formed from PCFG data (Kochman 
and Kupin, 1991); (Magerman and Marcus, 
1991); and (Miller and Fox, 1994). 

More recently, we have seen parse times 
lowered by several orders of magnitude. The 
(Caraballo and Charniak, 1998) article con- 
siders a number of different figures of merit 
for ordering the agenda, and ultimately rec- 
ommends one that  reduces the number of 
edges required for a full parse into the thou- 
sands. (Goldwater et al., 1998) (henceforth 
[Gold98]) introduces an edge-based tech- 
nique, (instead of constituent-based), which 
drops the average edge count into the hun- 
dreds. 

However, if we establish "perfection" as 
the minimum number of edges needed to 
generate the correct parse 47.5 edges on av- 
erage in our corpus--we can hope for still 
more improvement. This paper looks at two 
new figures of merit, both of which take the 
[Gold98] figure (of "independent" merit) as 
a starting point in cMculating a new figure 
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of merit for each edge, taking into account 
some additional information. Our work fur- 
ther lowers the average edge count, bringing 
it from the hundreds into the dozens. 

2 Figure of independent  merit  
(Caraballo and Charniak, 1998) and 
[Gold98] use a figure which indicates the 
merit of a given constituent or edge, relative 
only to itself and its children but indepen- 
dent of the progress of the parse we will 
call this the edge's independent merit (IM). 
The philosophical backing for this figure is 
that  we would like to rank an edge based on 
the value 

P(N~,kIto,n ) , (1) 

where N~, k represents an edge of type i (NP, 
S, etc.), which encompasses words j through 
k -  1 of the sentence, and t0,~ represents all n 
part-of-speech tags, from 0 to n - 1. (As in 
the previous research, we simplify by look- 
ing at a tag stream, ignoring lexical infor- 
mation.) Given a few basic independence as- 
sumptions (Caraballo and Charniak, 1998), 
this value can be calculated as 

i i fl( N ,k) 
P(NJ'k]t°'~) = P(to,n) , (2) 

with fl and a representing the well-known 
"inside" and "outside" probability functions: 

fl(Nj, k) = P(tj,klNj,,) (3) 
a(N ,k) = P(tod, N ,k, tk,n). (4) 

Unfortunately, the outside probability is not 
calculable until after a parse is completed. 
Thus, the IM is an approximation; if we can- 
not calculate the full outside probability (the 
probability of this constituent occurring with 
all the other tags in the sentence), we can 
at least calculate the probability of this con- 
stituent occurring with the previous and sub- 
sequent tag. This approximation, as given in 
(Caraballo and Charniak, 1998), is 

P(Nj, kltj-1)/3(N~,k)P(tklNj, k) 
P(tj,klt~-1)P(tklt~-l) (5) 

Of the five values required, P(N~.,kltj) , 
P(tkltk_l), and P(tklN~,k) can be observed 
directly from the training data; the inside 
probability is estimated using the most prob- 
able parse for Nj, k, and the tag sequence 
probability is estimated using a bitag ap- 
proximation. 

Two different probability distributions are 
used in this estimate, and the PCFG prob- 
abilities in the numerator tend to be a bit 
lower than the b r a g  probabilities in the de- 
nominator; this is more of a factor in larger 
constituents, so the figure tends to favour 
the smaller ones. To adjust the distribu- 
tions to counteract this effect, we will use 
a normalisation constant 7? as in [Gold98]. 
Effectively, the inside probability fl is mul- 
tiplied by r/k-j , preventing the discrepancy 
and hence the preference for shorter edges. 
In this paper we will use r / =  1.3 throughout; 
this is the factor by which the two distribu- 
tions differ, and was also empirically shown 
to be the best tradeoff between number of • 
popped edges and accuracy (in [Gold98]). 

3 Finding F O M  flaws 
Clearly, any improvement to be had would 
need to come through eliminating the in- 
correct edges before they are popped from 
the agenda-- that  is, improving the figure of 
merit. We observed that  the FOMs used 
tended to cause the algorithm to spend too 
much time in one area of a sentence, gener- 
ating multiple parses for the same substring, 
before it would generate even one parse for 
another area. The reason for that  is that  the 
figures of independent merit are frequently 
good as relative measures for ranking differ- 
ent parses of the same sectio.n of the sen- 
tence, but not so good as absolute measures 
for ranking parses of different substrings. 

For instance, if the word "there" as an 
NP in "there's a hole in the bucket" had 
a low probability, it would tend to hold up 
the parsing of a sentence; since the bi-tag 
probability of "there" occurring at the be- 
ginning of a sentence is very high, the de- 
nominator of the IM would overbalance the 
numerator. (Note that  this is a contrived 
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example-- the actual problem cases are more 
obscure.) Of course, a different figure of in- 
dependent merit might have different char- 
acteristics, but with many of them there will 
be cases where the figure is flawed, causing 
a single, vital edge to remain on the agenda 
while the parser 'thrashes' around in other 
parts of the sentence with higher IM values. 

We could characterise this observation as 
follows: 

P o s t u l a t e  1 The longer an edge stays in the 
agenda without any competitors, the more 
likely it is to be correct (even if it has a low 
figure of independent merit). 

A better figure, then, would take into ac- 
count whether a given piece of text had al- 
ready been parsed or not. We took two ap- 
proaches to finding such a figure. 

4 C o m p e n s a t i n g  f o r  f l a w s  

4.1 E x p e r i m e n t  1: Tab le  l o o k u p  

In one approach to the problem, we tried 
to start our program with no extra informa- 
tion and train it statistically to counter the 
problem mentioned in the previous section. 
There are four values mentioned in Postu- 
late 1: correctness, time (amount of work 
done), number of competitors, and figure of 
independent merit. We defined them as fol- 
lows: 

C o r r e c t n e s s .  The obvious definition is that  
an edge N~, k is correct if a constituent 
Nj, k appears in the parse given in the 
treebank. There is an unobvious but 
unfortunate consequence of choosing 
this definition, however; in many cases 
(especially with larger constituents), 
the "correct" rule appears just once in 
the entire corpus, and is thus consid- 
ered too unlikely to be chosen by the 
parser as correct. If the "correct" parse 
were never achieved, we wouldn't have 
any statistic at all as to the likelihood of 
the first, second, or third competitor be- 
ing better than the others. If we define 
"correct" for the purpose of statistics- 
gathering as "in the MAP parse", the 

problem is diminished. Both defini- 
tions were tried for gathering statis- 
tics, though of course only the first was 
used for measuring accuracy of output 
parses. 

W o r k .  Here, the most logical measure for 
amount of work done is the number 
of edges popped off the agenda. We 
use it both because it is conveniently 
processor-independent and because it 
offers us a tangible measure of perfec- 
tion (47.5 edges--the average number of 
edges in the correct parse of a sentence). 

C o m p e t i t o r s h i p .  At the most basic level, 
the competitors of a given edge Nj, k 
would be all those edges N~, n such that  
m _< j and n > k. Initially we only con- 
sidered an edge a 'competitor'  if it met 
this definition and were already in the 
chart; later we tried considering an edge 
to be a competitor if it had a higher in- 
.dependent merit, no matter  whether it 
be in the agenda or the chart. We also 
tried a hybrid of the two. 

M e r i t .  The independent merit of an edge is 
defined in section 2. Unlike earlier work, 
which used what we call "Independent 
Merit" as the FOM for parsing, we use 
this figure as just one of many sources 
of information about a given edge. 

Given our postulate, the ideal figure of 
merit would be 

P( correct l W, C, IM) . (6) 

We can save information about this proba- 
bility for each edge in every parse; but to 
be useful in a statistical model, the IM must 
first be discretised, and all three prior statis- 
tics need to be grouped, to avoid sparse data 
problems. We bucketed all three logarithmi- 
cally, with bases 4, 2, and 10, respectively. 
This gives us the following approximation: 

P( correct I 
[log 4 W J,  [log 2 CJ ,  [log10 IMJ). (7) 

To somewhat counteract the effect of dis- 
cretising the IM figure, each time we needed 
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FOM = P(correct][log 4 WJ ,  [log2CJ, [logao IM])([logmI]Y -lOgloI]k 0 
+ P (correct l [log4 WJ, [log2 CJ, [log o IM]) (loglo I M -  [log o IMJ) (8) 

to calculate a figure of merit, we looked up 
the table entry on either side of the IM and 
interpolated. Thus the actual value used as a 
figure of merit was that  given in equation (8). 

Each trial consisted of a training run and 
a testing run. The training runs consisted of 
using a grammar induced on treebank sec- 
tions 2-21 to run the edge-based best-first 
algorithm (with the IM alone as figure of 
merit) on section 24, collecting the statis- 
tics along the way. It seems relatively obvi- 
ous that  each edge should be counted when 
it is created. But our postulate involves 
edges which have stayed on the agenda for 
a long time without accumulating competi- 
tors; thus we wanted to update our counts 
when an edge happened to get more com- 
petitors, and as time passed. Whenever the 
number of edges popped crossed into a new 
logarithmic bucket (i.e. whenever it passed 
a power of four), we re-counted every edge 
in the agenda in that  new bucket. In ad- 
dition, when the number of competitors of a 
given edge passed a bucket boundary (power 
of two), that  edge would be re-counted. In 
this manner, we had a count of exactly how 
many edges--correct or no t - -had  a given IM 
and a given number of competitors at a given 
point in the parse. 

Already at this stage we found strong evi- 
dence for our postulate. We were paying par- 
ticular attention to those edges with a low 
IM and zero competitors, because those were 
the edges that  were causing problems when 
the parser ignored them. When, considering 
this subset of edges, we looked at a graph of 
the percentage of edges in the agenda which 
were correct, we saw an increase of orders of 
magnitude as work increased--see Figure 1. 

For the testing runs, then, we used as fig- 
ure of merit the value in expression 8. Aside 
from that  change, we used the same edge- 
based best-first parsing algorithm as before. 
The test runs were all made on treebank sec- 
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Figure 1: Zero competitors, low IM--  
Proportion of agenda edges correct vs. work 

tion 22, with all sentences longer than 40 
words thrown out; thus our results can be 
directly compared to those in the previous 
work. 

We made several trials, using different def- 
initions of 'correct' and 'competitor',  as de- 
scribed above. Some performed much bet- 
ter than others, as seen in Table 1, which 
gives our results, both in terms of accuracy 
and speed, as compared to the best previous 
result, given in [Gold98]. The trial descrip- 
tions refer back to the multiple definitions 
given for 'correct' and 'competitor'  at the 
beginning of this section. While our best 
speed improvement (48.6% of the previous 
minimum) was achieved with the first run, 
it is associated with a significant loss in ac- 
curacy. Our best results overall, listed in 
the last row of the table, let us cut the edge 
count by almost half while reducing labelled 
precision/recall by only 0.24%. 

4.2 Experiment 2: Demerit ing 

We hoped, however, that  we might be able 
to find a way to simplify the algorithm such 
that  it would be easier to implement and/or  
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Table 1: Performance of various statistical schemata 

Trial description 

[Gold98] standard 
Correct, Chart competitors 
Correct, higher-merit competitors 
Correct, Chart or higher-merit 
MAP, higher-merit competitors 

Labelled Labelled Change in Edges Percent 
Precision Recall LP/LR avg. popped 2 of std. 
75.814% 73.334% 229.73 
74.982% 72.920% -.623% 111.59 48.6% 
75.588% 73.190% -.185% 135.23 58.9% 
75.433% 73.152% -.282% 128.94 56.1% 
75.365% 73.220% -.239% 120.47 52.4% 

. . . . . , . - " ' " " " " ' " i " " ' " ' " . : ,  

• . ' " " ' "  . . . i .  i " ' " ' . .  

0 5 6 

-5  3 4 

log m IM - ,5  o log 2 competitors 

Figure 2: Stats at 64-255 edges popped 

line is not parallel to the competitor axis, 
but rather angled so that the low-IM low- 
competitor items pass the scan before the 
high-IM high-competitor items. This can be 
simulated by multiplying each edge's inde- 
pendent merit by a demeriting factor 5 per 
competitor (thus a total of 5c). Its exact 
value would determine the steepness of the 
scan line. 

Each trial consisted of one run, an edge- 
based best-first parse of treebank section 22 
(with sentences longer than 40 words thrown 
out, as before), using the new figure of merit: 

k - j  i i i 

~, ~ ) . (9) 

faster to run, without sacrificing accuracy. 
To that end, we looked over the data, view- 
ing it as (among other things) a series of 
"planes" seen by setting the amount of work 
constant (see Figure 2). Viewed like this, the 
original algorithm behaves like a scan line, 
parallel to the competitor axis, scanning for 
the one edge with the highest figure of (in- 
dependent) merit. However, one look at fig- 
ure 2 dramatically confirms our postulate 
that an edge with zero competitors can have 
an IM orders of magnitude lower than an 
edge with many competitors, and still be 
more likely to be correct. Effectively, then, 
under the table lookup algorithm, the scan 

2previous work has shown tha t  the parser per- 
forms better if it runs slightly past the first parse; 
so for every run referenced in this paper, the parser 
was allowed to run to first parse plus a tenth. All 
reported final counts for popped edges are thus 1.1 
times the count at first parse. 

This idea works extremely well. It is, pre- 
dictably, easier to implement; somewhat sur- 
prisingly, though, it actually performs bet- 
ter than the method it approximates. When 
5 = .7, for instance, the accuracy loss is only 
.28%, comparable to the table lookup result, 
but the number of edges popped drops to 
just 91.23, or 39.7% of the prior result found 
in [Gold98]. Using other demeriting factors 
gives similarly dramatic decreases in edge 
count, with varying effects on accuracy--see 
Figures 3 and 4. 

It is not immediately clear as to why de- 
meriting improves performance so dramat- 
ically over the table lookup method. One 
possibility is that the statistical method runs 
into too many sparse data problems around 
the fringe of the data set--were we able to 
use a larger data set, we might see the statis- 
tics approach the curve defined by the de- 
meriting. Another is that the bucketing is 
too coarse, although the interpolation along 
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the independent merit axis would seem to 
mitigate that  problem. 

5 Conc lus ion  
In the prior work, we see the average edge 
cost of a chart parse reduced from 170,000 
or so down to 229.7. This paper gives a sim- 
ple modification to the [Gold98] algorithm 
that  further reduces this count to just over 
90 edges, less than  two times the perfect 
minimum number of edges. In addition to 
speeding up tag-stream parsers, it seems rea- 
sonable to assume that  the demeriting sys- 
tem would work in other classes of parsers 
such as the lexicalised model of (Charniak, 
1997)--as long as the parsing technique has 

some sort of demeritable ranking system, or 
at least some way of paying less attention 
to already-filled positions, the kernel of the 
system should be applicable. Furthermore, 
because of its ease of implementation, we 
strongly recommend the demeriting system 
to those working with best-first parsing. 
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