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A b s t r a c t  

Several recent stochastic parsers use bilexical 
grammars, where each word type idiosyncrat- 
ically prefers particular complements with par- 
ticular head words. We present O(n 4) parsing 
algorithms for two bilexical formalisms, improv- 
ing the prior upper bounds of O(n5). For a com- 
mon special case that was known to allow O(n 3) 
parsing (Eisner, 1997), we present an O(n 3) al- 
gorithm with an improved grammar constant. 

1 Introduct ion  
Lexicalized grammar formalisms are of both 
theoretical and practical interest to the com- 
putational linguistics community. Such for- 
malisms specify syntactic facts about each word 
of the language--in particular, the type of 
arguments that the word can or must take. 
Early mechanisms of this sort included catego- 
rial grammar (Bar-Hillel, 1953) and subcatego- 
rization frames (Chomsky, 1965). Other lexi- 
calized formalisms include (Schabes et al., 1988; 
Mel'~uk, 1988; Pollard and Sag, 1994). 

Besides the possible arguments of a word, a 
natural-language grammar does well to specify 
possible head words for those arguments. "Con- 
vene" requires an NP object, but some NPs are 
more semantically or lexically appropriate here 
than others, and the appropriateness depends 
largely on the NP's head (e.g., "meeting"). We 
use the general term bilexical  for a grammar 
that records such facts. A bilexical grammar 
makes many stipulations about the compatibil- 
ity of particular pairs of words in particular 
roles. The acceptability of "Nora convened the 
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party" then depends on the grammar writer's 
assessment of whether parties can be convened. 

Several recent real-world parsers have im- 
proved state-of-the-art parsing accuracy by re- 
lying on probabilistic or weighted versions of 
bilexical grammars (Alshawi, 1996; Eisner, 
1996; Charniak, 1997; Collins, 1997). The ra- 
tionale is that soft selectional restrictions play 
a crucial role in disambiguation, i 

The chart parsing algorithms used by most of 
the above authors run in time O(nS), because 
bilexical grammars are enormous (the part of 
the grammar relevant to a length-n input has 
size O(n 2) in practice). Heavy probabilistic 
pruning is therefore needed to get acceptable 
runtimes. But in this paper we show that the 
complexity is not so bad after all: 

• For bilexicalized context-free grammars, 
O(n 4) is possible. 

• The O(n 4) result also holds for head au- 
tomaton grammars. 

• For a very common special case of these 
grammars where an O(n 3) algorithm was 
previously known (Eisner, 1997), the gram- 
mar constant can be reduced without 
harming the O(n 3) property. 

Our algorithmic technique throughout is to pro- 
pose new kinds of subderivations that are not 
constituents. We use dynamic programming to 
assemble such subderivations into a full parse. 

2 N o t a t i o n  for  c o n t e x t - f r e e  
g r a m m a r s  

The reader is assumed to be familiar with 
context-free grammars. Our notation fol- 

1Other relevant parsers simultaneously consider two 
or more words that are not necessarily in a dependency 
relationship (Lafferty et al., 1992; Magerman, 1995; 
Collins and Brooks, 1995; Chelba and Jelinek, 1998). 
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lows (Harrison, 1978; Hopcroft and Ullman, 
1979). A context-free grammar (CFG) is a tuple 
G = (VN, VT, P, S), where VN and VT are finite, 
disjoint sets of nonterminal and terminal sym- 
bols, respectively, and S E VN is the start sym- 
bol. Set P is a finite set of productions having 
the form A --+ a, where A E VN, a E (VN U VT)*. 
If every product ion in P has the form A -+ BC 
or A --+ a, for A , B , C  E VN,a E VT, then the 
grammar is said to be in Chomsky Normal Form 
(CNF). 2 Every language that  can be generated 
by a CFG can also be generated by a CFG in 
CNF. 

In this paper we adopt the following conven- 
tions: a, b, c, d denote symbols in VT, w, x, y de- 
note strings in V~, and a, ~ , . . .  denote strings 
in (VN t_J VT)*. The input  to the parser will be a 
CFG G together with a string of terminal sym- 
bols to be parsed, w = did2.. ,  dn. Also h , i , j , k  
denote positive integers, which are assumed to 
be ~ n when we are treating them as indices 
into w. We write wi,j for the input substring 
di'." d j  (and put  w i , j  = e for i > j).  

A "derives" relation, written =~, is associated 
with a CFG as usual. We also use the reflexive 
and transitive closure of o ,  written ~* ,  and 
define L(G) accordingly. We write a fl 5 =~* 

a75 for a derivation in which only fl is rewritten. 

3 B i l e x i c a l  c o n t e x t - f r e e  g r a m m a r s  

We introduce next a grammar formalism that  
captures lexical dependencies among pairs of 
words in VT. This formalism closely resem- 
bles stochastic grammatical formalisms that  are 
used in several existing natural  language pro- 
cessing systems (see §1). We will specify a non- 
stochastic version, noting that  probabilities or 
other weights may be attached to the rewrite 
rules exactly as in stochastic CFG (Gonzales 
and Thomason,  1978; Wetherell, 1980). (See 
§4 for brief discussion.) 

Suppose G = (VN, VT, P,T[$]) is a CFG in 
CNF. 3 We say that  G is b i lexical  iff there exists 
a set of "delexicalized nonterminals" VD such 
that  VN = {A[a] : A E VD,a E VT} and every 
product ion in P has one of the following forms: 

2 P r o d u c t i o n  S --~ e is also allowed in a C N F  g r a m m a r  
if S never  a p p e a r s  on  t he  r igh t  side of any  p roduc t ion .  
However,  S --+ e is no t  allowed in our  bilexical  CFGs.  

,awe have  a more  general  def ini t ion t h a t  drops  t he  
r e s t r i c t ion  to CNF,  b u t  do not  give i t  here.  

• A[a] ~ B[b] C[a] (1) 
• A[a] --+ C[a] B[b] (2) 
• A[a] ~ a (3) 

Thus every nonterminal is l ex ica l ized  at some 
terminal a. A constituent of nonterminal  type 
A[a] is said to have terminal symbol a as its lex- 
ical head ,  "inherited" from the constituent 's  
h e a d  ch i ld  in the parse tree (e.g., C[a]). 

Notice that  the start symbol is necessarily a 
lexicalized nonterminal, T[$]. Hence $ appears 
in every string of L(G); it is usually convenient 
to define G so that  the language of interest is 
actually L'(G) = {x: x$ E L(G)}. 

Such a grammar can encode lexically specific 
preferences. For example, P might contain the 
productions 

• VP [solve] --+ V[solve] NP[puzzles] 

• NP[puzzles] --+ DEW[two] N[puzzles] 

• V[solve] ~ solve 

• N[puzzles] --4 puzzles 

• DEW[two] --+ two 

in order to allow the derivation VP[solve] ~ *  
solve two puzzles, but  meanwhile omit the sim- 
ilar productions 

• VP[eat] -+ V[eat] NP[puzzles] 

• VP[solve] --~ V[solve] NP[goat] 

• VP[sleep] -+ V[sleep] NP[goat] 

• NP[goat] -+ DET[two] N[goat] 

since puzzles are not edible, a goat is not solv- 
able, "sleep" is intransitive, and "goat" cannot 
take plural determiners. (A stochastic version 
of the grammar could implement "soft prefer- 
ences" by allowing the rules in the second group 
but assigning them various low probabilities.) 

The cost of this expressiveness is a very large 
grammar. Standard context-free parsing algo- 
ri thms are inefficient in such a case. The CKY 
algorithm (Younger, 1967; Aho and Ullman, 
1972) is time O(n 3. IPI), where in the worst case 
IPI = [VNI 3 (one ignores unary productions).  
For a bilexical grammar, the worst case is IPI = 
I VD 13. I VT 12, which is large for a large vocabulary 
VT. We may improve the analysis somewhat by 
observing that  when parsing dl ... dn, the CKY 
algorithm only considers nonterminals of the 
form A[di]; by restricting to the relevant pro- 
ductions we obtain O(n 3. IVDI 3. min(n,  IVTI)2). 
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We observe that in practical applications we 
always have n << IVTI. Let us then restrict 
our analysis to the (infinite) set of input in- 
stances of the parsing problem that satisfy re- 
lation n < IVTI. With this assumption, the 
asymptotic time complexity of the CKY algo- 
rithm becomes O(n 5. IVDt3). In other words, 
it is a factor of n 2 slower than a comparable 
non-lexicalized CFG. 

4 B i l e x i c a l  C F G  in t i m e  O(n  4) 

In this section we give a recognition algorithm 
for bilexical CNF context-free grammars, which 
runs in time O(n 4. max(p, IVDI2)) = O(n 4. 
IVDI3). Here p is the maximum number of pro- 
ductions sharing the same pair of terminal sym- 
bols (e.g., the pair (b, a) in production (1)). The 
new algorithm is asymptotically more efficient 
than the CKY algorithm, when restricted to in- 
put instances satisfying the relation n < IVTI. 

Where CKY recognizes only constituent sub- 
strings of the input, the new algorithm can rec- 
ognize three types of subderivations, shown and 
described in Figure l(a). A declarative specifi- 
cation of the algorithm is given in Figure l(b). 
The derivability conditions of (a) are guaran- 
teed by (b), by induction, and the correctness of 
the acceptance condition (see caption) follows. 

This declarative specification, like CKY, may 
be implemented by bottom-up dynamic pro- 
gramming. We sketch one such method. For 
each possible item, as shown in (a), we maintain 
a bit (indexed by the parameters of the item) 
that records whether the item has been derived 
yet. All these bits are initially zero. The algo- 
rithm makes a single pass through the possible 
items, setting the bit for each if it can be derived 
using any rule in (b) from items whose bits are 
already set. At the end of this pass it is straight- 
forward to test whether to accept w (see cap- 
tion). The pass considers the items in increas- 
ing order of width, where the width of an item 
in (a) is defined as max{h,i , j} -min{h,i,j}. 
Among items of the same width, those of type 
A should be considered last. 

The algorithm requires space proportional to 
the number of possible items, which is at most 
na]VDI 2. Each of the five rule templates can 
instantiate its free variables in at most n4p or 
(for COMPLETE rules) n41VDI 2 different ways, 
each of which is tested once and in constant 

time; so the runtime is O(n 4 max(p, IVDI2)). 
By comparison, the CKY algorithm uses only 

the first type of item, and relies on rules whose 
B C 

inputs are pairs . ~ . ~  . z ~ : : ~  . Such rules 

can be instantiated in O(n 5) different ways for a 
fixed grammar, yielding O(n 5) time complexity. 
The new algorithm saves a factor of n by com- 
bining those two constituents in two steps, one 
of which is insensitive to k and abstracts over its 
possible values, the other of which is insensitive 
to h ~ and abstracts over its possible values. 

It is straightforward to turn the new O(n 4) 
recognition algorithm into a parser for stochas- 
tic bilexical CFGs (or other weighted bilexical 
CFGs). In a stochastic CFG, each nonterminal 
A[a] is accompanied by a probability distribu- 
tion over productions of the form A[a] --+ ~. A 

T 

is just a derivation (proof tree) of l Z ~ n  , . o  parse 

and its probability--like that of any derivation 
we find--is defined as the product of the prob- 
abilities of all productions used to condition in- 
ference rules in the proof tree. The highest- 
probability derivation for any item can be re- 
constructed recursively at the end of the parse, 
provided that each item maintains not only a 
bit indicating whether it can be derived, but 
also the probability and instantiated root rule 
of its highest-probability derivation tree. 

5 A m o r e  e f f i c i en t  v a r i a n t  

We now give a variant of the algorithm of §4; the 
variant has the same asymptotic complexity but 
will often be faster in practice. 

Notice that the ATTACH-LEFT rule of Fig- 
ure l(b) tries to combine the nonterminal label 
B[dh,] of a previously derived constituent with 
every possible nonterminal label of the form 
C[dh]. The improved version, shown in Figure 2, 
restricts C[dh] to  be the label of a previously de- 
rived adjacent constituent. This improves speed 
if there are not many such constituents and we 
can enumerate them in O(1) time apiece (using 
a sparse parse table to store the derived items). 

It is necessary to use an agenda data struc- 
ture (Kay, 1986) when implementing the declar- 
ative algorithm of Figure 2. Deriving narrower 
items before wider ones as before will not work 
here because the rule HALVE derives narrow 
items from wide ones. 
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(a) 
A 

i4 , 
A 

A 

h z j 

(i g h < j ,  A E VD) 

(i < j < h , A ,  C E VD) 

(h < i < j, A, C E VD) 

is derived iff A[dh] ~* wi,j 

is derived iff A[dh] ~ B[dh,]C[dh] ~* wi,jC[dh] for some B, h' 

is derived iff A[dh] ~ C[dh]B[dh,] ~* C[dh]wi,j for some B, h' 

(b) STAaT: ~ A[dh] ~ dh 

h@h 
ATTACH-LEFT: B 

A 

. / Q " .  c 
~ 3 h 

ATTACH-RIGHT: B 

.4 

h ~ 3 

A[dh] -~ B[dh,]C[dh] 

A[dh] -~ C[dh]B[dh,] 

COMPLETE-RIGHT: 

COMPLETE-LEFT: 

A C 

3 h j 

A 

iz k 
C A 

A 

iz@k 
Figure 1: An O(n 4) recognition algorithm for CNF bilexical CFG. (a) Types  of items in the 
parse table (chart). The first is syntactic sugar for the tuple [A, A, i, h,j], and so on. The s ta ted 
conditions assume that  d l , . . . d n  are all distinct. (b) Inference rules. The algorithm derives the 
item below - -  if the items above - -  have already been derived and any condition to the right 
of is met. It accepts input w just  if i tem I/k, T, 1, h, n] is derived for some h such that  dh -= $. 

(a) 
A 

A 

i//]h ( i <_ h, A e VD) 
A 

h ~  (h < j, A E VD) 

, ~ .  ~C (i _< j < h, A,C E VD) 
3 h 

A 
A 

C ~ .  (h < i < j ,  A,C E VD) 
h ~ 3 

(i < h _< j ,  A E VD) is derived iff A[dh] ~* wi,j 

is derived iff A[dh] ~* wi,j for some j _> h 

is derived iff A[dh] ~* w~,j for some i _< h 

is derived iff A[dh] ~ B[dh,]C[dh] ~* wi,jC[dh] ~* wi,k for 
some B, h ~, k 

is derived iff A[dh] ~ C[dh]B[dh,] ~* C[dh]wi,j ~* Wk,j for 
some B, h ~, k 

(b) As in Figure l(b) above, but add HALVE and change ATTACH-LEFT and ATTACH-RIGHT as shown. 
H A L V E :  ATTACH-LEFT:  ATTACH-RIGHT: 

A B C C B 

A A A A[dh] ---4 B[dh,]V[dh] d d[dh] ---+ C[dh]B[dh,] 

Figure 2: A more efficient variant of the O(n 4) algorithm in Figure 1, in the same format.  
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6 M u l t i p l e  w o r d  s e n s e s  

Rather  than  parsing an input  string directly, it 
is often desirable to parse another  string related 
by a (possibly stochastic) t ransduct ion.  Let T 
be a finite-state t ransducer  tha t  maps a mor- 
pheme sequence w E V~ to its or thographic  re- 
alization, a g rapheme sequence v~. T may re- 
alize arbi t rary morphological  processes, includ- 
ing affixation, local clitic movement ,  deletion 
of phonological  nulls, forbidden or dispreferred 
k-grams, typographical  errors, and mapping  of 
mult iple senses onto the same grapheme. Given 
g rammar  G and an input  @, we ask whether  

E T(L(G)). We have extended all the algo- 
r i thms in this paper  to this case: the i tems sim- 
ply keep track of the t ransducer  state as well. 

Due to space constraints,  we sketch only the 
special case of mult iple  senses. Suppose tha t  
the input  is ~ = d l  . . .  dn, and each di has up to 

• g possible senses. Each i tem now needs to track 
its head 's  sense along wi th  its head's  posi t ion in 
@. Wherever  an i tem formerly recorded a head 
posi t ion h (similarly h~), it must  now record a 
pair (h, dh) , where dh E VT is a specific sense of 
d-h. No rule in Figures 1-2 (or Figure 3 below) 
will ment ion  more than  two such pairs. So the 
t ime complexi ty increases by a factor of O(g2). 

7 H e a d  a u t o m a t o n  g r a m m a r s  i n  
t i m e  O(n 4) 

In this section we show tha t  a length-n string 
generated by a head au tomaton  g rammar  (A1- 
shawi, 1996) can be parsed in t ime O(n4). We 
do this by providing a t ranslat ion from head 
au toma ton  grammars  to bilexical CFGs. 4 This  
result improves on the head-au tomaton  parsing 
a lgor i thm given by Alshawi, which is analogous 
to the CKY algor i thm on bilexical CFGs and is 
likewise O(n  5) in practice (see §3). 

A h e a d  a u t o m a t o n  g r a m m a r  (HAG) is a 
funct ion H : a ~ Ha tha t  defines a h e a d  au-  
t o m a t o n  (HA) for each element of its (finite) 
domain.  Let VT =- domain(H)  and D = { ~ ,  +-- 
-}. A special symbol  $ E VT plays the role of 
s tart  symbol.  For each a E VT, Ha is a tuple 
(Qa,  VT, (~a, In,  Fa) ,  where 

• Qa is a f in i te  set  o f  s ta tes ;  

4Translation in the other direction is possible if the 
HAG formalism is extended to allow multiple senses per 
word (see §6). This makes the formalisms equivalent. 

• In, Fa C Qa are sets of initial and  final 
states, respectively; 

• 5a is a t ransi t ion funct ion mapp ing  Qa x 
VT × D to 2 Qa, the power set of Qa. 

A single head au toma ton  is an acceptor  for a 
language of string pairs (z~, Zr) E V~ x V~. In- 
formally, if b is the leftmost symbol  of Zr and 
q~ E 5a(q, b, -~), then  Ha can move from state q 
to state q~, matching symbol b and removing it 
from the left end of Zr. Symmetrically,  if b is the 
r ightmost  symbol of zl and ql E 5a(q, b, ~---) then  
from q Ha can move to q~, matching  symbol b 
and removing it f rom the right end of zl.5 

More formally, we associate wi th  the head au- 
toma ton  Ha a "derives" relation F-a, defined as 
a binary relation on Qa × V~ x V~. For ev- 
ery q E Q, x ,y  E V~, b E VT, d E D, and 
q' E ~a(q, b, d), we specify tha t  

(q, xb, y) ~-a (q',x,Y) if d =+-;  

(q, x, by) ~-a (q', x, y) if d =--+. 

The  reflexive and transit ive closure of F-a is writ- 
ten ~-~. The  language generated by Ha is the set 

L(Ha) = {<zl,Zr) I (q, zl,Zr) I - ;  (r ,e,e) ,  

qEIa ,  r E F a } .  

We may now define the language generated 
by the entire g rammar  H. To generate,  we ex- 
pand  the start  word $ E VT into xSy for some 
(x, y) E L(H$), and then  recursively expand the 
words in strings x and y. More formally, given 
H,  we simultaneously define La for all a E VT 
to be minimal  such tha t  if (x,y) E L(Ha),  
x r E Lx, yl E L y ,  then  x~ay ~ E La, where 
Lal...ak stands for the concatenat ion language 
Lal "'" La k. Then  H generates language L$. 

We next present a simple const ruct ion tha t  
t ransforms a HAG H into a bilexical CFG G 
generating the same language. The  construc- 
t ion also preserves derivation ambiguity. This  
means tha t  for each string w, there is a linear- 
t ime 1-to-1 mapping  between (appropriately de- 

~Alshawi (1996) describes HAs as accepting (or equiv- 
alently, generating) zl and z~ from the outside in. To 
make Figure 3 easier to follow, we have defined HAs as 
accepting symbols in the opposite order, from the in- 
side out. This amounts to the same thing if transitions 
are reversed, Is is exchanged with Fa, and any transi- 
tion probabilities are replaced by those of the reversed 
Markov chain. 
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fined) canonical derivations of w by H and 
canonical derivations of w by G. 

We adopt  the notat ion above for H and the 
components  of its head automata.  Let VD be 
an arbi t rary  set of size t = max{[Qa[ : a • VT}, 
and for each a, define an arbi trary injection fa : 
Qa --+ YD. We define G -- (VN, VT, P,T[$]), 
where 

(i) VN = {A[a] : A • VD, a • VT}, in the usual 
manner  for bilexical CFG; 

(ii) P is the set of all productions having one 
of the following forms, where a, b • VT: 

• A[a] --+ B[b] C[a] where 
A = fa(r),  B = fb(q'), C = f~(q) for 
some qr • Ib, q • Qa, r • 5a(q, b, +-) 

• A[a] -~ C[a] Bib] where 
A = fa(r),  B = fb(q'), C = fa(q) for 
some q' • Ib, q • Qa, r • 5a (q, b,--+) 

] • A[a --+ a where 
A = fa(q) for some q • Fa 

(iii) T = f$(q), where we assume W L O G  that  
I$ is a singleton set {q}. 

We omit the formal proof  that  G and H 
admit isomorphic derivations and hence gen- 
erate the same languages, observing only that  
if (x,y)  = (bib2.. .  bj, b j+l . . ,  bk) E L ( H a ) - -  
a condition used in defining La above- - then  
g[a] 3 "  BI[bl]""  Bj[bj]aBj+l[bj+l].. .  Bk[bk], 
for any A, B1 , . . .  Bk that  map to initial states 
in Ha, Hb l , . . .  Hb~ respectively. 

In general, G has p = O(IVDI 3) = O(t3). The 
construct ion therefore implies that  we can parse 
a length-n sentence under H in time O(n4t3). If 
the HAs in H happen to be deterministic, then 
in each binary product ion given by (ii) above, 
symbol  A is fully determined by a, b, and C. In 
this case p = O(t2), so the parser will operate 
in t ime O(n4t2). 

We note that  this construction can be 
straightforwardly extended to convert stochas- 
tic HAGs as in (Alshawi, 1996) into stochastic 
CFGs. Probabil i t ies  that  Ha assigns to state q's 
various transit ion and halt actions are copied 
onto the corresponding productions A[a] --~ c~ 
of G, where A = fa(q). 

8 S p l i t  h e a d  a u t o m a t o n  g r a m m a r s  
in  t i m e  O ( n  3) 

For many bilexical CFGs or HAGs of practical 
significance, just  as for the bilexical version of 
link grammars (Lafferty et al., 1992), it is possi- 
ble to parse length-n inputs  even faster, in time 
O(n 3) (Eisner, 1997). In this section we de- 
scribe and discuss this special case, and give a 
new O(n 3) algorithm that  has a smaller gram- 
mar constant than previously reported.  

A head automaton  Ha is called sp l i t  if it has 
no states that  can be entered on a +-- transi- 
tion and exited on a ~ transition. Such an au- 
tomaton can accept (x, y) only by reading all of 
y - - immedia te ly  after which it is said to be in 
a flip s t a t e - - a n d  then reading all of x. For- 
mally, a flip state is one that  allows entry on a 
--+ transition and that  either allows exit on a e-- 
transition or is a final state. 

We are concerned here with head automa-  
ton grammars H such that  every Ha is split. 
These correspond to bilexical CFGs in which 
any derivation A[a] 3 "  xay has the form 
A[a] 3 "  xB[a] =~* xay. That  is, a word's  left 
dependents  are more oblique than its right de- 
pendents and c-command them. 

Such grammars are broadly applicable. Even 
if Ha is not split, there usually exists a split head 
automaton  H~ recognizing the same language. 
H a' exists iff { x # y  : {x,y) e L(Ha)}  is regular 
(where # ¢ VT). In particular,  H~a must  exist 
unless Ha has a cycle that  includes bo th  +-- and 
--+ transitions. Such cycles would be necessary 
for Ha itself to accept a formal language such 
as {(b n, c n) : n > 0}, where word a takes 2n de- 
pendents,  but  we know of no natural- language 
motivation for ever using them in a HAG. 

One more definition will help us bound  the 
complexity. A split head au tomaton  Ha is said 
to be g-sp l i t  if its set of flip states, denoted 
Qa C_ Qa, has size < g. The languages that  can 
be recognized by g-split HAs are those that  can 

g be writ ten as [Ji=l Li x Ri, where the Li and 
Ri are regular languages over VT. Eisner (1997) 
actually defined (g-split) bilexical grammars  in 
terms of the latter property. 6 

6That paper associated a product language Li x Ri, or 
equivalently a 1-split HA, with each of g senses of a word 
(see §6). One could do the same without penalty in our 
present approach: confining to l-split automata would 
remove the g2 complexity factor, and then allowing g 
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We now present our result: Figure 3 specifies 
an O(n3g2t 2) recognition algorithm for a head 
au tomaton  grammar  H in which every Ha is 
g-split. For deterministic automata,  the run- 
t ime is O(n3g2t)--a considerable improvement 
on the O(n3g3t 2) result of (Eisner, 1997), which 
also assumes deterministic automata.  As in §4, 
a simple bot tom-up implementat ion will suffice. 

s 
For a practical speedup, add . ["'. as an an- 

h j 
tecedent to the MID rule (and fill in the parse 
table from right to left). 

Like our previous algorithms, this one takes 
two steps (ATTACH, COMPLETE) to a t tach a 
child consti tuent  to a parent  constituent. But 
instead of full const i tuents--s tr ings xd~y E 
Ld~--it uses only half-constituents like xdi and 

diy. Where CKY combines z ~  
i h j j + l n  

we save two degrees of freedom i, k (so improv- 

ing O(n 5) to O(n3)) and combine, , ~ : ~ . . . ~ J ;  
n 2 J ~ 1  n 

The other halves of these constituents can be at- 
tached later, because to find an accepting path  
for (zl, Zr) in a split head automaton,  one can 
separately find the half-path before the flip state 
(which accepts zr) and the half-path after the 
flip state (which accepts zt). These two half- 
paths can subsequently be joined into an ac- 
cepting path  if they have the same flip state s, 
i.e., one path  starts where the other ends. An- 
notat ing our left half-constituents with s makes 
this check possible. 

9 F i n a l  r e m a r k s  

We have formally described, and given faster 
parsing algorithms for, three practical gram- 
matical  rewriting systems that  capture depen- 
dencies between pairs of words. All three sys- 
tems admit  naive O(n 5) algorithms. We give 
the first O(n 4) results for the natural  formalism 
of bilexical context-free grammar,  and for AI- 
shawi's (1996) head automaton grammars.  For 
the usual case, split head automaton grammars  
or equivalent bilexical CFGs, we replace the 
O(n 3) algorithm of (Eisner, 1997) by one with a 
smaller g rammar  constant. Note that,  e.g., all 

senses would restore the g2 factor. Indeed, this approach 
gives added flexibility: a word's sense, unlike its choice 
of flip state, is visible to the HA that reads it. 

three models in (Collins, 1997) are susceptible 
to the O(n 3) method (cf. Collins's O(nh)). 

Our dynamic programming techniques for 
cheaply attaching head information to deriva- 
tions can also be exploited in parsing formalisms 
other than rewriting systems. The authors have 
developed an O(nT)-time parsing algorithm for 
bilexicalized tree adjoining grammars  (Schabes, 
1992), improving the naive O(n s) method.  

The results mentioned in §6 are related to the 
closure property of CFGs under generalized se- 
quential machine mapping (Hopcroft and Ull- 
man, 1979). This property also holds for our 
class of bilexical CFGs. 
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(a) 
q 

q 

i4 
q 

h 
q 

s:6 
h h 

(h < j ,  q E Qdh) 

(i <_ h, q E Qdh U {F}, s E (~dh) 

(h < h', q E Qdh, s' E Qd h,) 

(h' < h, q • Qdh, s • Qd~, s' • Q. dh) 

is derived iff dh : I z ~ q where Whq_l, j E L~ 

is derived iff dh : q ( x s where W~,h-1 E Lx 

is derived iff dh : I xdh~ q and dh, : F ( Y S I where 
W h T l , h ' - i  ~ Lzy 

is der ivedif fdh,  : I =~ s ~ and dh : q ~h,Y s where 
WhTl,h ' --I  E i x y  

(b) 
START: - -  q E Ida MID: - -  

q s 

h 'h hA h 
8 E Odh FINISH: 

ATTACH-RIGHT: q F 

h [~ _ l i ~ h ' ,  
r E 5d~ (q, dh,, --->) 

r 

ATTACH-LEFT:  s ~ q 

' s' E Qdh,, r E 5dh (q, dh,, t--) 
r 

s:6 
h h 

F s 

(e) Accept input w just if l z ~ ' n a n d n  n ' ~ "  

C O M P L E T E - R I G H T :  q 

COMPLETE-LEFT:  

S I 

h h l ~ i  
q 

F q 

i h h h 
q 

i4 
are derived for some h, s such that dh ---- $. 

q 

F 
- -  q E Fdh 

Figure  3: An O ( n  3) recogni t ion a lgor i thm for split  head a u t o m a t o n  grammars .  T he  fo rma t  is as 
in F igure  1, except  tha t  (c) gives the  accep tance  condit ion.  T he  following no ta t i on  indica tes  tha t  
a head  a u t o m a t o n  can consume a s t r ing x from its left or right input :  a : q x)  qr means  tha t  
(q, e, x) ~-a (q', e, c), and  a : I x ~ q, means  this is t rue  for some q E Ia. Similarly, a : q' ~ x q means  

tha t  (q, x, e) t-* (q~, c, c), and  a : F (x q means  this is t rue  for some q~ E Fa. T he  special  s y m b o l  
F also appea r s  as a l i teral in some i tems,  and effectively means  "an unspeci f ied  final s ta te ."  
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