
Efficient Pars ing for Bilexical Context -Free G r a m m a r s
and Head A u t o m a t o n Grammars*

Jason Eisner
Dept. of Computer ~ Information Science

University of Pennsylvania
200 South 33rd Street,

Philadelphia, PA 19104 USA
j eisner@linc, cis. upenn, edu

Giorgio Satta
Dip. di Elet t ronica e Informat ica

Universit£ di Padova
via Gradenigo 6/A,
35131 Padova, I taly
satt a@dei, unipd, it

A b s t r a c t

Several recent stochastic parsers use bilexical
grammars, where each word type idiosyncrat-
ically prefers particular complements with par-
ticular head words. We present O(n 4) parsing
algorithms for two bilexical formalisms, improv-
ing the prior upper bounds of O(n5). For a com-
mon special case that was known to allow O(n 3)
parsing (Eisner, 1997), we present an O(n 3) al-
gorithm with an improved grammar constant.

1 Introduct ion
Lexicalized grammar formalisms are of both
theoretical and practical interest to the com-
putational linguistics community. Such for-
malisms specify syntactic facts about each word
of the language--in particular, the type of
arguments that the word can or must take.
Early mechanisms of this sort included catego-
rial grammar (Bar-Hillel, 1953) and subcatego-
rization frames (Chomsky, 1965). Other lexi-
calized formalisms include (Schabes et al., 1988;
Mel'~uk, 1988; Pollard and Sag, 1994).

Besides the possible arguments of a word, a
natural-language grammar does well to specify
possible head words for those arguments. "Con-
vene" requires an NP object, but some NPs are
more semantically or lexically appropriate here
than others, and the appropriateness depends
largely on the NP's head (e.g., "meeting"). We
use the general term bilexical for a grammar
that records such facts. A bilexical grammar
makes many stipulations about the compatibil-
ity of particular pairs of words in particular
roles. The acceptability of "Nora convened the

" The authors were supported respectively under ARPA
Grant N6600194-C-6043 "Human Language Technology"
and Ministero dell'Universitk e della Ricerca Scientifica
e Tecnologica project "Methodologies and Tools of High
Performance Systems for Multimedia Applications."

party" then depends on the grammar writer's
assessment of whether parties can be convened.

Several recent real-world parsers have im-
proved state-of-the-art parsing accuracy by re-
lying on probabilistic or weighted versions of
bilexical grammars (Alshawi, 1996; Eisner,
1996; Charniak, 1997; Collins, 1997). The ra-
tionale is that soft selectional restrictions play
a crucial role in disambiguation, i

The chart parsing algorithms used by most of
the above authors run in time O(nS), because
bilexical grammars are enormous (the part of
the grammar relevant to a length-n input has
size O(n 2) in practice). Heavy probabilistic
pruning is therefore needed to get acceptable
runtimes. But in this paper we show that the
complexity is not so bad after all:

• For bilexicalized context-free grammars,
O(n 4) is possible.

• The O(n 4) result also holds for head au-
tomaton grammars.

• For a very common special case of these
grammars where an O(n 3) algorithm was
previously known (Eisner, 1997), the gram-
mar constant can be reduced without
harming the O(n 3) property.

Our algorithmic technique throughout is to pro-
pose new kinds of subderivations that are not
constituents. We use dynamic programming to
assemble such subderivations into a full parse.

2 N o t a t i o n for c o n t e x t - f r e e
g r a m m a r s

The reader is assumed to be familiar with
context-free grammars. Our notation fol-

1Other relevant parsers simultaneously consider two
or more words that are not necessarily in a dependency
relationship (Lafferty et al., 1992; Magerman, 1995;
Collins and Brooks, 1995; Chelba and Jelinek, 1998).

457

lows (Harrison, 1978; Hopcroft and Ullman,
1979). A context-free grammar (CFG) is a tuple
G = (VN, VT, P, S), where VN and VT are finite,
disjoint sets of nonterminal and terminal sym-
bols, respectively, and S E VN is the start sym-
bol. Set P is a finite set of productions having
the form A --+ a, where A E VN, a E (VN U VT)*.
If every product ion in P has the form A -+ BC
or A --+ a, for A , B , C E VN,a E VT, then the
grammar is said to be in Chomsky Normal Form
(CNF). 2 Every language that can be generated
by a CFG can also be generated by a CFG in
CNF.

In this paper we adopt the following conven-
tions: a, b, c, d denote symbols in VT, w, x, y de-
note strings in V~, and a, ~ , . . . denote strings
in (VN t_J VT)*. The input to the parser will be a
CFG G together with a string of terminal sym-
bols to be parsed, w = did2.. , dn. Also h , i , j , k
denote positive integers, which are assumed to
be ~ n when we are treating them as indices
into w. We write wi,j for the input substring
di'." d j (and put w i , j = e for i > j).

A "derives" relation, written =~, is associated
with a CFG as usual. We also use the reflexive
and transitive closure of o , written ~* , and
define L(G) accordingly. We write a fl 5 =~*

a75 for a derivation in which only fl is rewritten.

3 B i l e x i c a l c o n t e x t - f r e e g r a m m a r s

We introduce next a grammar formalism that
captures lexical dependencies among pairs of
words in VT. This formalism closely resem-
bles stochastic grammatical formalisms that are
used in several existing natural language pro-
cessing systems (see §1). We will specify a non-
stochastic version, noting that probabilities or
other weights may be attached to the rewrite
rules exactly as in stochastic CFG (Gonzales
and Thomason, 1978; Wetherell, 1980). (See
§4 for brief discussion.)

Suppose G = (VN, VT, P,T[$]) is a CFG in
CNF. 3 We say that G is b i lexical iff there exists
a set of "delexicalized nonterminals" VD such
that VN = {A[a] : A E VD,a E VT} and every
product ion in P has one of the following forms:

2 P r o d u c t i o n S --~ e is also allowed in a C N F g r a m m a r
if S never a p p e a r s on t he r igh t side of any p roduc t ion .
However, S --+ e is no t allowed in our bilexical CFGs.

,awe have a more general def ini t ion t h a t drops t he
r e s t r i c t ion to CNF, b u t do not give i t here.

• A[a] ~ B[b] C[a] (1)
• A[a] --+ C[a] B[b] (2)
• A[a] ~ a (3)

Thus every nonterminal is l ex ica l ized at some
terminal a. A constituent of nonterminal type
A[a] is said to have terminal symbol a as its lex-
ical head , "inherited" from the constituent 's
h e a d ch i ld in the parse tree (e.g., C[a]).

Notice that the start symbol is necessarily a
lexicalized nonterminal, T[$]. Hence $ appears
in every string of L(G); it is usually convenient
to define G so that the language of interest is
actually L'(G) = {x: x$ E L(G)}.

Such a grammar can encode lexically specific
preferences. For example, P might contain the
productions

• VP [solve] --+ V[solve] NP[puzzles]

• NP[puzzles] --+ DEW[two] N[puzzles]

• V[solve] ~ solve

• N[puzzles] --4 puzzles

• DEW[two] --+ two

in order to allow the derivation VP[solve] ~ *
solve two puzzles, but meanwhile omit the sim-
ilar productions

• VP[eat] -+ V[eat] NP[puzzles]

• VP[solve] --~ V[solve] NP[goat]

• VP[sleep] -+ V[sleep] NP[goat]

• NP[goat] -+ DET[two] N[goat]

since puzzles are not edible, a goat is not solv-
able, "sleep" is intransitive, and "goat" cannot
take plural determiners. (A stochastic version
of the grammar could implement "soft prefer-
ences" by allowing the rules in the second group
but assigning them various low probabilities.)

The cost of this expressiveness is a very large
grammar. Standard context-free parsing algo-
ri thms are inefficient in such a case. The CKY
algorithm (Younger, 1967; Aho and Ullman,
1972) is time O(n 3. IPI), where in the worst case
IPI = [VNI 3 (one ignores unary productions).
For a bilexical grammar, the worst case is IPI =
I VD 13. I VT 12, which is large for a large vocabulary
VT. We may improve the analysis somewhat by
observing that when parsing dl ... dn, the CKY
algorithm only considers nonterminals of the
form A[di]; by restricting to the relevant pro-
ductions we obtain O(n 3. IVDI 3. min(n, IVTI)2).

458

We observe that in practical applications we
always have n << IVTI. Let us then restrict
our analysis to the (infinite) set of input in-
stances of the parsing problem that satisfy re-
lation n < IVTI. With this assumption, the
asymptotic time complexity of the CKY algo-
rithm becomes O(n 5. IVDt3). In other words,
it is a factor of n 2 slower than a comparable
non-lexicalized CFG.

4 B i l e x i c a l C F G in t i m e O(n 4)

In this section we give a recognition algorithm
for bilexical CNF context-free grammars, which
runs in time O(n 4. max(p, IVDI2)) = O(n 4.
IVDI3). Here p is the maximum number of pro-
ductions sharing the same pair of terminal sym-
bols (e.g., the pair (b, a) in production (1)). The
new algorithm is asymptotically more efficient
than the CKY algorithm, when restricted to in-
put instances satisfying the relation n < IVTI.

Where CKY recognizes only constituent sub-
strings of the input, the new algorithm can rec-
ognize three types of subderivations, shown and
described in Figure l(a). A declarative specifi-
cation of the algorithm is given in Figure l(b).
The derivability conditions of (a) are guaran-
teed by (b), by induction, and the correctness of
the acceptance condition (see caption) follows.

This declarative specification, like CKY, may
be implemented by bottom-up dynamic pro-
gramming. We sketch one such method. For
each possible item, as shown in (a), we maintain
a bit (indexed by the parameters of the item)
that records whether the item has been derived
yet. All these bits are initially zero. The algo-
rithm makes a single pass through the possible
items, setting the bit for each if it can be derived
using any rule in (b) from items whose bits are
already set. At the end of this pass it is straight-
forward to test whether to accept w (see cap-
tion). The pass considers the items in increas-
ing order of width, where the width of an item
in (a) is defined as max{h,i , j} -min{h,i,j}.
Among items of the same width, those of type
A should be considered last.

The algorithm requires space proportional to
the number of possible items, which is at most
na]VDI 2. Each of the five rule templates can
instantiate its free variables in at most n4p or
(for COMPLETE rules) n41VDI 2 different ways,
each of which is tested once and in constant

time; so the runtime is O(n 4 max(p, IVDI2)).
By comparison, the CKY algorithm uses only

the first type of item, and relies on rules whose
B C

inputs are pairs . ~ . ~ . z ~ : : ~ . Such rules

can be instantiated in O(n 5) different ways for a
fixed grammar, yielding O(n 5) time complexity.
The new algorithm saves a factor of n by com-
bining those two constituents in two steps, one
of which is insensitive to k and abstracts over its
possible values, the other of which is insensitive
to h ~ and abstracts over its possible values.

It is straightforward to turn the new O(n 4)
recognition algorithm into a parser for stochas-
tic bilexical CFGs (or other weighted bilexical
CFGs). In a stochastic CFG, each nonterminal
A[a] is accompanied by a probability distribu-
tion over productions of the form A[a] --+ ~. A

T

is just a derivation (proof tree) of l Z ~ n , . o parse

and its probability--like that of any derivation
we find--is defined as the product of the prob-
abilities of all productions used to condition in-
ference rules in the proof tree. The highest-
probability derivation for any item can be re-
constructed recursively at the end of the parse,
provided that each item maintains not only a
bit indicating whether it can be derived, but
also the probability and instantiated root rule
of its highest-probability derivation tree.

5 A m o r e e f f i c i en t v a r i a n t

We now give a variant of the algorithm of §4; the
variant has the same asymptotic complexity but
will often be faster in practice.

Notice that the ATTACH-LEFT rule of Fig-
ure l(b) tries to combine the nonterminal label
B[dh,] of a previously derived constituent with
every possible nonterminal label of the form
C[dh]. The improved version, shown in Figure 2,
restricts C[dh] to be the label of a previously de-
rived adjacent constituent. This improves speed
if there are not many such constituents and we
can enumerate them in O(1) time apiece (using
a sparse parse table to store the derived items).

It is necessary to use an agenda data struc-
ture (Kay, 1986) when implementing the declar-
ative algorithm of Figure 2. Deriving narrower
items before wider ones as before will not work
here because the rule HALVE derives narrow
items from wide ones.

4 5 9

(a)
A

i4 ,
A

A

h z j

(i g h < j , A E VD)

(i < j < h , A , C E VD)

(h < i < j, A, C E VD)

is derived iff A[dh] ~* wi,j

is derived iff A[dh] ~ B[dh,]C[dh] ~* wi,jC[dh] for some B, h'

is derived iff A[dh] ~ C[dh]B[dh,] ~* C[dh]wi,j for some B, h'

(b) STAaT: ~ A[dh] ~ dh

h@h
ATTACH-LEFT: B

A

. / Q " . c
~ 3 h

ATTACH-RIGHT: B

.4

h ~ 3

A[dh] -~ B[dh,]C[dh]

A[dh] -~ C[dh]B[dh,]

COMPLETE-RIGHT:

COMPLETE-LEFT:

A C

3 h j

A

iz k
C A

A

iz@k
Figure 1: An O(n 4) recognition algorithm for CNF bilexical CFG. (a) Types of items in the
parse table (chart). The first is syntactic sugar for the tuple [A, A, i, h,j], and so on. The s ta ted
conditions assume that d l , . . . d n are all distinct. (b) Inference rules. The algorithm derives the
item below - - if the items above - - have already been derived and any condition to the right
of is met. It accepts input w just if i tem I/k, T, 1, h, n] is derived for some h such that dh -= $.

(a)
A

A

i//]h (i <_ h, A e VD)
A

h ~ (h < j, A E VD)

, ~ . ~C (i _< j < h, A,C E VD)
3 h

A
A

C ~ . (h < i < j , A,C E VD)
h ~ 3

(i < h _< j , A E VD) is derived iff A[dh] ~* wi,j

is derived iff A[dh] ~* wi,j for some j _> h

is derived iff A[dh] ~* w~,j for some i _< h

is derived iff A[dh] ~ B[dh,]C[dh] ~* wi,jC[dh] ~* wi,k for
some B, h ~, k

is derived iff A[dh] ~ C[dh]B[dh,] ~* C[dh]wi,j ~* Wk,j for
some B, h ~, k

(b) As in Figure l(b) above, but add HALVE and change ATTACH-LEFT and ATTACH-RIGHT as shown.
H A L V E : ATTACH-LEFT: ATTACH-RIGHT:

A B C C B

A A A A[dh] ---4 B[dh,]V[dh] d d[dh] ---+ C[dh]B[dh,]

Figure 2: A more efficient variant of the O(n 4) algorithm in Figure 1, in the same format.

4 6 0

6 M u l t i p l e w o r d s e n s e s

Rather than parsing an input string directly, it
is often desirable to parse another string related
by a (possibly stochastic) t ransduct ion. Let T
be a finite-state t ransducer tha t maps a mor-
pheme sequence w E V~ to its or thographic re-
alization, a g rapheme sequence v~. T may re-
alize arbi t rary morphological processes, includ-
ing affixation, local clitic movement , deletion
of phonological nulls, forbidden or dispreferred
k-grams, typographical errors, and mapping of
mult iple senses onto the same grapheme. Given
g rammar G and an input @, we ask whether

E T(L(G)). We have extended all the algo-
r i thms in this paper to this case: the i tems sim-
ply keep track of the t ransducer state as well.

Due to space constraints, we sketch only the
special case of mult iple senses. Suppose tha t
the input is ~ = d l . . . dn, and each di has up to

• g possible senses. Each i tem now needs to track
its head 's sense along wi th its head's posi t ion in
@. Wherever an i tem formerly recorded a head
posi t ion h (similarly h~), it must now record a
pair (h, dh) , where dh E VT is a specific sense of
d-h. No rule in Figures 1-2 (or Figure 3 below)
will ment ion more than two such pairs. So the
t ime complexi ty increases by a factor of O(g2).

7 H e a d a u t o m a t o n g r a m m a r s i n
t i m e O(n 4)

In this section we show tha t a length-n string
generated by a head au tomaton g rammar (A1-
shawi, 1996) can be parsed in t ime O(n4). We
do this by providing a t ranslat ion from head
au toma ton grammars to bilexical CFGs. 4 This
result improves on the head-au tomaton parsing
a lgor i thm given by Alshawi, which is analogous
to the CKY algor i thm on bilexical CFGs and is
likewise O(n 5) in practice (see §3).

A h e a d a u t o m a t o n g r a m m a r (HAG) is a
funct ion H : a ~ Ha tha t defines a h e a d au-
t o m a t o n (HA) for each element of its (finite)
domain. Let VT =- domain(H) and D = { ~ , +--
-}. A special symbol $ E VT plays the role of
s tart symbol. For each a E VT, Ha is a tuple
(Qa, VT, (~a, In, Fa) , where

• Qa is a f in i te set o f s ta tes ;

4Translation in the other direction is possible if the
HAG formalism is extended to allow multiple senses per
word (see §6). This makes the formalisms equivalent.

• In, Fa C Qa are sets of initial and final
states, respectively;

• 5a is a t ransi t ion funct ion mapp ing Qa x
VT × D to 2 Qa, the power set of Qa.

A single head au toma ton is an acceptor for a
language of string pairs (z~, Zr) E V~ x V~. In-
formally, if b is the leftmost symbol of Zr and
q~ E 5a(q, b, -~), then Ha can move from state q
to state q~, matching symbol b and removing it
from the left end of Zr. Symmetrically, if b is the
r ightmost symbol of zl and ql E 5a(q, b, ~---) then
from q Ha can move to q~, matching symbol b
and removing it f rom the right end of zl.5

More formally, we associate wi th the head au-
toma ton Ha a "derives" relation F-a, defined as
a binary relation on Qa × V~ x V~. For ev-
ery q E Q, x ,y E V~, b E VT, d E D, and
q' E ~a(q, b, d), we specify tha t

(q, xb, y) ~-a (q',x,Y) if d =+-;

(q, x, by) ~-a (q', x, y) if d =--+.

The reflexive and transit ive closure of F-a is writ-
ten ~-~. The language generated by Ha is the set

L(Ha) = {<zl,Zr) I (q, zl,Zr) I - ; (r ,e,e) ,

qEIa , r E F a } .

We may now define the language generated
by the entire g rammar H. To generate, we ex-
pand the start word $ E VT into xSy for some
(x, y) E L(H$), and then recursively expand the
words in strings x and y. More formally, given
H, we simultaneously define La for all a E VT
to be minimal such tha t if (x,y) E L(Ha),
x r E Lx, yl E L y , then x~ay ~ E La, where
Lal...ak stands for the concatenat ion language
Lal "'" La k. Then H generates language L$.

We next present a simple const ruct ion tha t
t ransforms a HAG H into a bilexical CFG G
generating the same language. The construc-
t ion also preserves derivation ambiguity. This
means tha t for each string w, there is a linear-
t ime 1-to-1 mapping between (appropriately de-

~Alshawi (1996) describes HAs as accepting (or equiv-
alently, generating) zl and z~ from the outside in. To
make Figure 3 easier to follow, we have defined HAs as
accepting symbols in the opposite order, from the in-
side out. This amounts to the same thing if transitions
are reversed, Is is exchanged with Fa, and any transi-
tion probabilities are replaced by those of the reversed
Markov chain.

461

fined) canonical derivations of w by H and
canonical derivations of w by G.

We adopt the notat ion above for H and the
components of its head automata. Let VD be
an arbi t rary set of size t = max{[Qa[: a • VT},
and for each a, define an arbi trary injection fa :
Qa --+ YD. We define G -- (VN, VT, P,T[$]),
where

(i) VN = {A[a] : A • VD, a • VT}, in the usual
manner for bilexical CFG;

(ii) P is the set of all productions having one
of the following forms, where a, b • VT:

• A[a] --+ B[b] C[a] where
A = fa(r), B = fb(q'), C = f~(q) for
some qr • Ib, q • Qa, r • 5a(q, b, +-)

• A[a] -~ C[a] Bib] where
A = fa(r), B = fb(q'), C = fa(q) for
some q' • Ib, q • Qa, r • 5a (q, b,--+)

] • A[a --+ a where
A = fa(q) for some q • Fa

(iii) T = f$(q), where we assume W L O G that
I$ is a singleton set {q}.

We omit the formal proof that G and H
admit isomorphic derivations and hence gen-
erate the same languages, observing only that
if (x,y) = (bib2.. . bj, b j+l . . , bk) E L (H a) - -
a condition used in defining La above- - then
g[a] 3 " BI[bl]"" Bj[bj]aBj+l[bj+l].. . Bk[bk],
for any A, B1 , . . . Bk that map to initial states
in Ha, Hb l , . . . Hb~ respectively.

In general, G has p = O(IVDI 3) = O(t3). The
construct ion therefore implies that we can parse
a length-n sentence under H in time O(n4t3). If
the HAs in H happen to be deterministic, then
in each binary product ion given by (ii) above,
symbol A is fully determined by a, b, and C. In
this case p = O(t2), so the parser will operate
in t ime O(n4t2).

We note that this construction can be
straightforwardly extended to convert stochas-
tic HAGs as in (Alshawi, 1996) into stochastic
CFGs. Probabil i t ies that Ha assigns to state q's
various transit ion and halt actions are copied
onto the corresponding productions A[a] --~ c~
of G, where A = fa(q).

8 S p l i t h e a d a u t o m a t o n g r a m m a r s
in t i m e O (n 3)

For many bilexical CFGs or HAGs of practical
significance, just as for the bilexical version of
link grammars (Lafferty et al., 1992), it is possi-
ble to parse length-n inputs even faster, in time
O(n 3) (Eisner, 1997). In this section we de-
scribe and discuss this special case, and give a
new O(n 3) algorithm that has a smaller gram-
mar constant than previously reported.

A head automaton Ha is called sp l i t if it has
no states that can be entered on a +-- transi-
tion and exited on a ~ transition. Such an au-
tomaton can accept (x, y) only by reading all of
y - - immedia te ly after which it is said to be in
a flip s t a t e - - a n d then reading all of x. For-
mally, a flip state is one that allows entry on a
--+ transition and that either allows exit on a e--
transition or is a final state.

We are concerned here with head automa-
ton grammars H such that every Ha is split.
These correspond to bilexical CFGs in which
any derivation A[a] 3 " xay has the form
A[a] 3 " xB[a] =~* xay. That is, a word's left
dependents are more oblique than its right de-
pendents and c-command them.

Such grammars are broadly applicable. Even
if Ha is not split, there usually exists a split head
automaton H~ recognizing the same language.
H a' exists iff { x # y : {x,y) e L(Ha)} is regular
(where # ¢ VT). In particular, H~a must exist
unless Ha has a cycle that includes bo th +-- and
--+ transitions. Such cycles would be necessary
for Ha itself to accept a formal language such
as {(b n, c n) : n > 0}, where word a takes 2n de-
pendents, but we know of no natural- language
motivation for ever using them in a HAG.

One more definition will help us bound the
complexity. A split head au tomaton Ha is said
to be g-sp l i t if its set of flip states, denoted
Qa C_ Qa, has size < g. The languages that can
be recognized by g-split HAs are those that can

g be writ ten as [Ji=l Li x Ri, where the Li and
Ri are regular languages over VT. Eisner (1997)
actually defined (g-split) bilexical grammars in
terms of the latter property. 6

6That paper associated a product language Li x Ri, or
equivalently a 1-split HA, with each of g senses of a word
(see §6). One could do the same without penalty in our
present approach: confining to l-split automata would
remove the g2 complexity factor, and then allowing g

4 6 2

We now present our result: Figure 3 specifies
an O(n3g2t 2) recognition algorithm for a head
au tomaton grammar H in which every Ha is
g-split. For deterministic automata, the run-
t ime is O(n3g2t)--a considerable improvement
on the O(n3g3t 2) result of (Eisner, 1997), which
also assumes deterministic automata. As in §4,
a simple bot tom-up implementat ion will suffice.

s
For a practical speedup, add . ["'. as an an-

h j
tecedent to the MID rule (and fill in the parse
table from right to left).

Like our previous algorithms, this one takes
two steps (ATTACH, COMPLETE) to a t tach a
child consti tuent to a parent constituent. But
instead of full const i tuents--s tr ings xd~y E
Ld~--it uses only half-constituents like xdi and

diy. Where CKY combines z ~
i h j j + l n

we save two degrees of freedom i, k (so improv-

ing O(n 5) to O(n3)) and combine, , ~ : ~ . . . ~ J ;
n 2 J ~ 1 n

The other halves of these constituents can be at-
tached later, because to find an accepting path
for (zl, Zr) in a split head automaton, one can
separately find the half-path before the flip state
(which accepts zr) and the half-path after the
flip state (which accepts zt). These two half-
paths can subsequently be joined into an ac-
cepting path if they have the same flip state s,
i.e., one path starts where the other ends. An-
notat ing our left half-constituents with s makes
this check possible.

9 F i n a l r e m a r k s

We have formally described, and given faster
parsing algorithms for, three practical gram-
matical rewriting systems that capture depen-
dencies between pairs of words. All three sys-
tems admit naive O(n 5) algorithms. We give
the first O(n 4) results for the natural formalism
of bilexical context-free grammar, and for AI-
shawi's (1996) head automaton grammars. For
the usual case, split head automaton grammars
or equivalent bilexical CFGs, we replace the
O(n 3) algorithm of (Eisner, 1997) by one with a
smaller g rammar constant. Note that, e.g., all

senses would restore the g2 factor. Indeed, this approach
gives added flexibility: a word's sense, unlike its choice
of flip state, is visible to the HA that reads it.

three models in (Collins, 1997) are susceptible
to the O(n 3) method (cf. Collins's O(nh)).

Our dynamic programming techniques for
cheaply attaching head information to deriva-
tions can also be exploited in parsing formalisms
other than rewriting systems. The authors have
developed an O(nT)-time parsing algorithm for
bilexicalized tree adjoining grammars (Schabes,
1992), improving the naive O(n s) method.

The results mentioned in §6 are related to the
closure property of CFGs under generalized se-
quential machine mapping (Hopcroft and Ull-
man, 1979). This property also holds for our
class of bilexical CFGs.

R e f e r e n c e s

A. V. Aho and J. D. Ullman. 1972. The Theory
of Parsing, Translation and Compiling, volume 1.
Prentice-Hall, Englewood Cliffs, NJ.

H. Alshawi. 1996. Head automata and bilingual
tiling: Translation with minimal representations.
In Proc. of ACL, pages 167-176, Santa Cruz, CA.

Y. Bar-Hillel. 1953. A quasi-arithmetical notation
for syntactic description. Language, 29:47-58.

E. Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In
Proc. o] the l~th AAAI, Menlo Park.

C. Chelba and F. Jelinek. 1998. Exploiting syntac-
tic structure for language modeling. In Proc. of
COLING-ACL.

N. Chomsky. 1965. Aspects of the Theory o] Syntax.
MIT Press, Cambridge, MA.

M. Collins and J. Brooks. 1995. Prepositional
phrase attachment through a backed-off model.
In Proe. of the Third Workshop on Very Large
Corpora, Cambridge, MA.

M. Collins. 1997. Three generative, lexicalised mod-
els for statistical parsing. In Proc. of the 35th
A CL and 8th European A CL, Madrid, July.

J. Eisner. 1996. An empirical comparison of proba-
bility models for dependency grammar. Technical
Report IRCS-96-11, IRCS, Univ. of Pennsylvania.

J. Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the
~th Int. Workshop on Parsing Technologies, MIT,
Cambridge, MA, September.

R. C. Gonzales and M. G. Thomason. 1978. Syntac-
tic Pattern Recognition. Addison-Wesley, Read-
ing, MA.

M. A. Harrison. 1978. Introduction to Formal Lan-
guage Theory. Addison-Wesley, Reading, MA.

J. E. Hopcroft and J. D. Ullman. 1979. Introduc-
tion to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, MA.

463

(a)
q

q

i4
q

h
q

s:6
h h

(h < j , q E Qdh)

(i <_ h, q E Qdh U {F}, s E (~dh)

(h < h', q E Qdh, s' E Qd h,)

(h' < h, q • Qdh, s • Qd~, s' • Q. dh)

is derived iff dh : I z ~ q where Whq_l, j E L~

is derived iff dh : q (x s where W~,h-1 E Lx

is derived iff dh : I xdh~ q and dh, : F (Y S I where
W h T l , h ' - i ~ Lzy

is der ivedif fdh, : I =~ s ~ and dh : q ~h,Y s where
WhTl,h ' --I E i x y

(b)
START: - - q E Ida MID: - -

q s

h 'h hA h
8 E Odh FINISH:

ATTACH-RIGHT: q F

h [~ _ l i ~ h ' ,
r E 5d~ (q, dh,, --->)

r

ATTACH-LEFT: s ~ q

' s' E Qdh,, r E 5dh (q, dh,, t--)
r

s:6
h h

F s

(e) Accept input w just if l z ~ ' n a n d n n ' ~ "

C O M P L E T E - R I G H T : q

COMPLETE-LEFT:

S I

h h l ~ i
q

F q

i h h h
q

i4
are derived for some h, s such that dh ---- $.

q

F
- - q E Fdh

Figure 3: An O (n 3) recogni t ion a lgor i thm for split head a u t o m a t o n grammars . T he fo rma t is as
in F igure 1, except tha t (c) gives the accep tance condit ion. T he following no ta t i on indica tes tha t
a head a u t o m a t o n can consume a s t r ing x from its left or right input : a : q x) qr means tha t
(q, e, x) ~-a (q', e, c), and a : I x ~ q, means this is t rue for some q E Ia. Similarly, a : q' ~ x q means

tha t (q, x, e) t-* (q~, c, c), and a : F (x q means this is t rue for some q~ E Fa. T he special s y m b o l
F also appea r s as a l i teral in some i tems, and effectively means "an unspeci f ied final s ta te ."

M. Kay. 1986. Algorithm schemata and data struc-
tures in syntactic processing. In K. Sparck Jones
B. J. Grosz and B. L. Webber, editors, Natu-
ral Language Processing, pages 35-70. Kaufmann,
Los Altos, CA.

J. Lafferty, D. Sleator, and D. Temperley. 1992.
Grammatical trigrams: A probabilistic model of
link grammar. In Proc. of the A A A I Conf. on
Probabilistic Approaches to Nat. Lang., October.

D. Magerman. 1995. Statistical decision-tree mod-
els for parsing. In Proceedings of the 33rd A CL.

I. Mel'~uk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

C. Pollard and I. Sag. 1994. Head-Driven Phrase

Structure Grammar. University of Chicago Press.
Y. Schabes, A. Abeill@, and A. Joshi. 1988. Parsing

strategies with 'lexicalized' grammars: Applica-
tion to Tree Adjoining Grammars. In Proceedings
of COLING-88, Budapest, August.

Yves Schabes. 1992. Stochastic lexicalized tree-
adjoining grammars. In Proc. of the l~th COL-
ING, pages 426-432, Nantes, France, August.

C. S. Wetherell. 1980. Probabilistic languages: A
review and some open questions. Computing Sur-
veys, 12(4):361-379.

D. H. Younger. 1967. Recognition and parsing of
context-free languages in time n 3. Information
and Control, 10(2):189-208, February.

4 6 4

