
Efficient probabilistic top-down and left-corner parsingt

B r i a n R o a r k a n d M a r k J o h n s o n
Cogni t ive and Linguist ic Sciences

Box 1978, Brown Universi ty
Providence, RI 02912, USA

brian-roark@brown, edu mj @cs. brown, edu

A b s t r a c t

This paper examines efficient predictive broad-
coverage parsing without dynamic program-
ming. In contrast to bot tom-up methods,
depth-first top-down parsing produces partial
parses that are fully connected trees spanning
the entire left context, from which any kind of
non-local dependency or partial semantic inter-
pretation can in principle be read. We con-
trast two predictive parsing approaches, top-
down and left-corner parsing, and find both to
be viable. In addition, we find that enhance-
ment with non-local information not only im-
proves parser accuracy, but also substantially
improves the search efficiency.

1 I n t r o d u c t i o n

Strong empirical evidence has been presented
over the past 15 years indicating that the hu-
man sentence processing mechanism makes on-

l ine use of contextual information in the preced-
ing discourse (Crain and Steedman, 1985; Alt-
mann and Steedman, 1988; Britt, 1994) and in
the visual environment (Tanenhaus et al., 1995).
These results lend support to Mark Steedman's
(1989) "intuition" that sentence interpretation
takes place incrementally, and that partial in-
terpretations are being built while the sentence
is being perceived. This is a very commonly
held view among psycholinguists today.

Many possible models of human sentence pro-
cessing can be made consistent with the above
view, but the general assumption that must un-
derlie them all is that explicit relationships be-
tween lexical items in the sentence must be spec-
ified incrementally. Such a processing mecha-

tThis material is based on work supported by the
National Science Foundation under Grant No. SBR-
9720368.

nism stands in marked contrast to dynamic pro-
gramming parsers, which delay construction of a
constituent until all of its sub-constituents have
been completed, and whose partial parses thus
consist of disconnected tree fragments. For ex-
ample, such parsers do not integrate a main verb
into the same tree structure as i ts subject NP
until the VP has been completely parsed, and
in many cases this is the final step of the entire
parsing process. Without explicit on-line inte-
gration, it would be difficult (though not impos-
sible) to produce partial interpretations on-line.
Similarly, it may be difficult to use non-local
statistical dependencies (e.g. between subject
and main verb) to actively guide such parsers.

Our predictive parser does not use dynamic
programming, but rather maintains fully con-
nected trees spanning the entire left context,
which make explicit the relationships between
constituents required for partial interpretation.
The parser uses probabilistic best-first pars-
ing methods to pursue the most likely analy-
ses first, and a beam-search to avoid the non-
termination problems typical of non-statistical
top-down predictive parsers.

There are two main results. First, this ap-
proach works and, with appropriate attention
to specific algorithmic details, is surprisingly
efficient. Second, not just accuracy but also
efficiency improves as the language model is
made more accurate. This bodes well for fu-
ture research into the use of other non-local (e.g.
lexical and semantic) information to guide the
parser.

In addition, we show that the improvement
in accuracy associated with left-corner parsing
over top-down is attributable to the non-local
information supplied by the strategy, and can
thus be obtained through other methods that
utilize that same information.

421

2 P a r s e r a r c h i t e c t u r e

The parser proceeds incrementally from left to
right, with one i tem of look-ahead. Nodes are
expanded in a s tandard top-down, left-to-right
fashion. The parser utilizes: (i) a probabilis-
tic context-free g rammar (PCFG), induced via
s tandard relative frequency estimation from a
corpus of parse trees; and (ii) look-ahead prob-
abilities as described below. Multiple compet-
ing partial parses (or analyses) are held on a
priority queue, which we will call the pending
heap. They are ranked by a figure of merit
(FOM), which will be discussed below. Each
analysis has its own stack of nodes to be ex-
panded, as well as a history, probability, and
FOM. The highest ranked analysis is popped
from the pending heap, and the category at the
top of its stack is expanded. A category is ex-
panded using every rule which could eventually
reach the look-ahead terminal. For every such
rule expansion, a new analysis is created 1 and
pushed back onto the pending heap.

The FOM for an analysis is the product of the
probabilities of all PCFG rules used in its deriva-
tion and what we call its look-ahead probabil-
ity (LAP). The LAP approximates the product
of the probabilities of the rules that will be re-
quired to link the analysis in its current state
with the look-ahead terminal 2. Tha t is, for a
g rammar G, a stack state [C1 ... C,] and a look-
ahead terminal i tem w:

(1) L A P --- PG([C1. . . Cn] -~ wa)

We recursively est imate this with two empir-
ically observed conditional probabilities for ev-
ery non-terminal Ci on the stack: /~(Ci 2+ w)

and /~ (C i -~ e). The LAP approximation for a
given stack state and look-ahead terminal is:

(2) PG([Ci . .. Ca] wot) P(Ci w) +

When the topmost stack category of an analy-
sis matches the look-ahead terminal, the termi-
nal is popped from the stack and the analysis

1We count each of these as a parser state (or rule
expansion) considered, which can be used as a measure
of efficiency.

2Since this is a non-lexicalized grammar, we are tak-
ing pre-terminal POS markers as our terminal items.

is pushed onto a second priority queue, which
we will call the success heap. Once there are
"enough" analyses on the success heap, all those
remaining on the pending heap are discarded.
The success heap then becomes the pending
heap, and the look-ahead is moved forward to
the next i tem in the input string. When the end
of the input string is reached, the analysis with
the highest probability and an empty stack is
re turned as the parse. If no such parse is found,
an error is returned.

The specifics of the beam-search dictate how
many analyses on the success heap consti tute
"enough". One approach is to set a constant
beam width, e.g. 10,000 analyses on the suc-
cess heap, at which point the parser moves to
the next i tem in the input. A problem with
this approach is that parses towards the bo t tom
of the success heap may be so unlikely relative
to those at the top that they have little or no
chance of becoming the most likely parse at the
end of the day, causing wasted effort. An al-
ternative approach is to dynamical ly vary the
beam width by stipulating a factor, say 10 -5,
and proceed until the best analysis on the pend-
ing heap has an FOM less than 10 -5 times the
probability of the best analysis on the success
heap. Sometimes, however, the number of anal-
yses that fall within such a range can be enor-
mous, creating nearly as large of a processing
burden as the first approach. As a compromise
between these two approaches, we st ipulated a
base beam factor a (usually 10-4), and the ac-
tual beam factor used was a •/~, where/3 is the
number of analyses on the success heap. Thus,
when f~ is small, the beam stays relatively wide,
to include as many analyses as possible; but as
/3 grows, the beam narrows. We found this to
be a simple and successful compromise.

Of course, with a left recursive grammar, such
a top-down parser may never terminate. If
no analysis ever makes it to the success heap,
then, however one defines the beam-search, a
top-down depth-first search with a left-recursive
grammar will never terminate. To avoid this,
one must place an upper bound on the number
of analyses allowed to be pushed onto the pend-
ing heap. If that bound is exceeded, the parse
fails. Wi th a left-corner strategy, which is not
prey to left recursion, no such upper bound is
necessary.

4 2 2

(a) (b) (c) (d)

NP NP

DT+JJ+JJ NN DT NP-DT

DT+JJ JJ cat the JJ NP-DT-JJ

DT JJ happy fat JJ NN
I I I I

the fat happy cat

NP NP

DT NP-DT DT NP-DT

l
the JJ NP-DT-JJ tLe JJ NP-DT-JJ

_J
fat JJ NP-DT-JJ-JJ fiat JJ NP-DT-JJ-JJ

happy NN happy NN NP-DT-JJ-JJ-NN
I I I

cat cat e

Figure 1: Binaxized trees: (a) left binaxized (LB); (b) right binaxized to binary (RB2); (c) right
binaxized to unary (RB1); (d) right binarized to nullaxy (RB0)

3 G r a m m a r t r a n s f o r m s

Nijholt (1980) characterized parsing strategies
in terms of announce points: the point at which
a parent category is announced (identified) rel-
ative to its children, and the point at which the
rule expanding the parent is identified. In pure
top-down parsing, a parent category and the
rule expanding it are announced before any of
its children. In pure bot tom-up parsing, they
are identified after all of the children. Gram-
mar transforms are one method for changing
the announce points. In top-down parsing with
an appropriately binaxized grammar, the pax-
ent is identified before, but the rule expanding
the parent after, all of the children. Left-corner
parsers announce a parent category and its ex-
panding rule after its leftmost child has been
completed, but before any of the other children.

3.1 D e l a y i n g r u l e i d e n t i f i c a t i o n t h r o u g h
b i n a r i z a t i o n

Suppose that the category on the top of the
stack is an N P and there is a determiner (DT)
in the look-ahead. In such a situation, there is
no information to distinguish between the rules
N P ~ DT J J N N a n d N P - - + D T J J N N S .
If the decision can be delayed, however, until
such a t ime as the relevant pre-terminal is in
the look-ahead, the parser can make a more in-
formed decision. Grammar binaxization is one
way to do this, by allowing the parser to use
a rule like N P --+ D T N P - D T , where the new
non-terminal N P - D T can expand into anything
that follows a D T in an NP. The expansion of
N P - D T occurs only after the next pre-terminal
is in the look-ahead. Such a delay is essential

for an efficient implementat ion of the kind of
incremental parser that we are proposing.

There axe actually several ways to make a
grammar binary, some of which are bet ter than
others for our parser. The first distinction that
can be drawn is between what we will call left
binaxization (LB) versus right binaxization (RB,
see figure 1). In the former, the leftmost items
on the righthand-side of each rule are grouped
together; in the latter, the rightmost items on
the righthand-side of the rule are grouped to-
gether. Notice that, for a top-down, left-to-right
parser, RB is the appropriate transform, be-
cause it underspecifies the right siblings. With
LB, a top-down parser must identify all of the
siblings before reaching the leftmost item, which
does not aid our purposes.

Within RB transforms, however, there is some
variation, with respect to how long rule under-
specification is maintained. One method is to
have the final underspecified category rewrite as
a binary rule (hereafter RB2, see figure lb). An-
other is to have the final underspecified category
rewrite as a unary rule (RB1, figure lc). The
last is to have the final underspecified category
rewrite as a nullaxy rule (RB0, figure ld). No-
tice that the original motivation for RB, to delay
specification until the relevant items are present
in the look-ahead, is not served by RB2, because
the second child must be specified without being
present in the look-ahead. RB0 pushes the look-
ahead out to the first i tem in the string after the
constituent being expanded, which can be use-
ful in deciding between rules of unequal length,
e.g. NP---+ DT N N and N P ~ D T N N N N .

Table 1 summarizes some trials demonstrat-

423

Binarization Rules in Percent of Avg. States Avg. Labelled Avg. MLP Ratio of Avg.
Grammar Sentences Considered Precision and Labelled Prob to Avg.

Parsed* Recall t Prec/Rec t MLP Prob t
None 14962 34.16 19270 .65521 .76427 .001721
LB 37955 33.99 96813 .65539 .76095 .001440
I~B1 29851 91.27 10140 .71616 .72712 .340858
RB0 41084 97.37 13868 .73207 .72327 .443705

Beam Factor = 10 -4 *Length ~ 40 (2245 sentences in F23 Avg. length -- 21.68) t o f those sentences parsed

Table 1: The effect of different approaches to binarization

ing the effect of different binarization ap-
proaches on parser performance. The gram-
mars were induced from sections 2-21 of the
Penn Wall St. Journal Treebank (Marcus et
al., 1993), and tested on section 23. For each
transform tested, every tree in the training cor-
pus was t ransformed before grammar induc-
tion, resulting in a t ransformed PCFG and look-
ahead probabil i t ies est imated in the s tandard
way. Each parse returned by the parser was de-
t ransformed for evaluation 3. The parser used
in each trial was identical, with a base beam
factor c~ = 10 -4. The performance is evaluated
using these measures: (i) the percentage of can-
didate sentences for which a parse was found
(coverage); (ii) the average number of states
(i.e. rule expansions) considered per candidate
sentence (efficiency); and (iii) the average la-
belled precision and recall of those sentences for
which a parse was found (accuracy). We also
used the same grammars with an exhaustive,
bo t tom-up CKY parser, to ascertain bo th the
accuracy and probabil i ty of the maximum like-
lihood parse (MLP). We can then additionally
compare the parser 's performance to the MLP's
on those same sentences.

As expected, left binarization conferred no
benefit to our parser. Right binarization, in con-
trast, improved performance across the board.
RB0 provided a substantial improvement in cov-
erage and accuracy over RB1, with something
of a decrease in efficiency. This efficiency hit
is par t ly a t t r ibu tab le to the fact that the same
tree has more nodes with RB0. Indeed, the effi-
ciency improvement with right binarization over
the s tandard grammar is even more interesting
in light of the great increase in the size of the
grammars.

3See Johnson (1998) for details of the transform/de-
transform paradigm.

It is worth noting at this point that , wi th the
RB0 grammar, this parser is now a viable broad-
coverage statistical parser, with good coverage,
accuracy, and efficiency 4. Next we considered
the left-corner parsing strategy.

3.2 L e f t - c o r n e r p a r s i n g

Left-corner (LC) parsing (Rosenkrantz and
Lewis II, 1970) is a well-known stra tegy that
uses bo th bo t tom-up evidence (from the left
corner of a rule) and top-down predict ion (of
the rest of the rule). Rosenkrantz and Lewis
showed how to transform a context-free gram-
mar into a grammar that , when used by a top-
down parser, follows the same search pa th as an
LC parser. These LC grammars allow us to use
exactly the same predictive parser to evaluate
top-down versus LC parsing. Naturally, an LC
grammar performs best with our parser when
right binarized, for the same reasons outl ined
above. We use transform composit ion to apply
first one transform, then another to the ou tpu t
of the first. We denote this A o B where (A o
B) (t) = B (A (t)). After applying the left-corner
transform, we then binarize the resulting gram-
mar 5, i.e. LC o RB.

Another probabilistic LC parser investigated
(Manning and Carpenter, 1997), which uti-
lized an LC parsing architecture (not a trans-
formed grammar), also got a performance boost

4The very efficient bottom-up statistical parser de-
tailed in Charniak et al. (1998) measured efficiency in
terms of total edges popped. An edge (or, in our case, a
parser state) is considered when a probability is calcu-
lated for it, and we felt that this was a better efficiency
measure than simply those popped. As a baseline, their
parser considered an average of 2216 edges per sentence
in section 22 of the WSJ corpus (p.c.).

5Given that the LC transform involves nullary pro-
ductions, the use of RB0 is not needed, i.e. nullary pro-
ductions need only be introduced from one source. Thus
binarization with left corner is always to unary (RB1).

4 2 4

Transform Rules in Pct. of Avg. States Avg Labelled Avg. MLP Ratio of Avg.
Grammar Sentences Considered Precision and Labelled Prob to Avg.

Parsed* Recall t Prec/Rec t MLP Prob t
Left Corner (LC) 21797 91.75 9000 .76399 .78156 .175928
LB o LC 53026 96.75 7865 .77815 .78056 .359828
LC o RB 53494 96.7 8125 .77830 .78066 .359439
LC o RB o ANN 55094 96.21 7945 .77854 .78094 .346778
RB o LC 86007 93.38 4675 .76120 .80529

*Leng th _ 40 (2245 sentences in F23 - Avg. l eng th ---- 21.68 B e a m Fac to r ---- 1 0 - 4

.267330
tOf those sentences parsed

Table 2: Left Corner Results

through right binarization. This, however, is
equivalent to RB o LC, which is a very differ-
ent grammar from LC o RB. Given our two bi-
narization orientations (LB and RB), there are
four possible compositions of binarization and
LC transforms:

(a) LB o LC (b) RB o LC (c) LC o LB (d) LC o RB

Table 2 shows left-corner results over various
conditions 6. Interestingly, options (a) and (d)
encode the same information, leading to nearly
identical performance 7. As s tated before, right
binarization moves the rule announce point
from before to after all of the children. The
LC transform is such that LC o RB also delays
parent identification until after all of the chil-
dren. The transform LC o RB o ANN moves the
parent announce point back to the left corner by
introducing unary rules at the left corner that
simply identify the parent of the binarized rule.
This allows us to test the effect of the position of
the parent announce point on the performance
of the parser. As we can see, however, the ef-
fect is slight, with similar performance on all
measures.

RB o LC performs with higher accuracy than
the others when used with an exhaustive parser,
but seems to require a massive beam in order to
even approach performance at the MLP level.
Manning and Carpenter (1997) used a beam
width of 40,000 parses on the success heap at
each input item, which must have resulted in an
order of magni tude more rule expansions than
what we have been considering up to now, and

6Opt ion (c) is no t t he a p p r o p r i a t e k ind of b ina r i za t ion
for our parser , as a rgued in the prev ious sect ion, a n d so
is omi t t ed .

7The difference is due to t he i n t r o d u c t i o n of vacuous
u n a r y rules w i th RB.

yet their average labelled precision and recall
(.7875) still fell well below what we found to be
the MLP accuracy (.7987) for the grammar. We
are still investigating why this grammar func-
tions so poorly when used by an incremental
parser.

3.3 N o n - l o c a l a n n o t a t i o n

Johnson (1998) discusses the improvement of
PCFG models via the annotat ion of non-local in-
formation onto non-terminal nodes in the trees
of the training corpus. One simple example
is to copy the parent node onto every non-
terminal, e.g. the rule S ~ N P V P becomes
S ~ NP~S VP~S. The idea here is that the
distr ibution of rules of expansion of a part icular
non-terminal may differ depending on the non-
terminal 's parent. Indeed, it was shown that
this additional information improves the MLP
accuracy dramatically.

We looked at two kinds of non-local infor-
mation annotation: parent (PA) and left-corner
(LCA). Left-corner parsing gives improved accu-
racy over top-down or bo t tom-up parsing with
the same grammar. Why? One reason may be
that the ancestor category exerts the same kind
of non-local influence upon the parser that the
parent category does in parent annotation. To
test this, we annota ted the left-corner ancestor
category onto every leftmost non-terminal cat-
egory. The results of our annotat ion trials are
shown in table 3.

There are two important points to notice from
these results. First, with PA we get not only the
previously reported improvement in accuracy,
but additionally a fairly dramatic decrease in
the number of parser states that must be vis-
ited to find a parse. That is, the non-local in-
formation not only improves the final product of
the parse, but it guides the parser more quickly

425

Transform Rules in Pct. of Avg. States Avg Labelled Avg. MLP Ratio of Avg.
Grammar Sentences Considered Precision and Labelled Prob to Avg.

Parsed* Recall t Prec/Rec t MLP Prob t
RB0 41084 97.37 13868 .73207 .72327 .443705
PA o RB0 63467 95.19 8596 .79188 .79759 .486995
LC o RB 53494 96.7 8125 .77830 .78066 .359439
LCA o RB0 58669 96.48 11158 .77476 .78058 .495912
PA o LC o RB 80245 93.52 4455 .81144 .81833 .484428

Beam Factor -- 10 -4 *Length ~ 40 (2245 sentences in F23 - Avg. length -= 21.68) tOf those sentences parsed

Table 3: Non-local annotat ion results

to the final product . The annota ted grammar
has 1.5 times as many rules, and would slow
a bo t tom-up CKY parser proportionally. Yet
our parser actually considers far fewer states en
route to the more accurate parse.

Second, LC-annotat ion gives nearly all of the
accuracy gain of left-corner parsing s, in support
of the hypothesis that the ancestor information
was responsible for the observed accuracy im-
provement. This result suggests that if we can
determine the information that is being anno-
ta ted by the t roublesome RB o LC transform,
we may be able to get the accuracy improve-
ment with a relatively narrow beam. Parent-
annotat ion before the LC transform gave us the
best performance of all, with very few states
considered on average, and excellent accuracy
for a non-lexicalized grammar.

4 A c c u r a c y / E f f i c i e n c y t r a d e o f f

One point that deserves to be made is that there
is something of an accuracy/efficiency tradeoff
with regards to the base beam factor. The re-
sults given so far were at 10 -4 , which func-
tions pre t ty well for the transforms we have
investigated. Figures 2 and 3 show four per-
formance measures for four of our transforms
at base beam factors of 10 -3 , 10 -4 , 10 -5 , and
10 -6. There is a dramatical ly increasing effi-
ciency burden as the beam widens, with vary-
ing degrees of payoff. Wi th the top-down trans-
forms (RB0 and PA o RB0), the ratio of the av-
erage probabil i ty to the MLP probabil i ty does
improve substantial ly as the beam grows, yet
with only marginal improvements in coverage
and accuracy. Increasing the beam seems to do
less with the left-corner transforms.

SThe rest could very well be within noise.

5 C o n c l u s i o n s a n d F u t u r e R e s e a r c h

We have examined several probabilist ic predic-
tive parser variations, and have shown the ap-
proach in general to be a viable one, bo th in
terms of the quality of the parses, and the ef-
ficiency with which they are found. We have
shown that the improvement of the grammars
with non-local information not only results in
bet ter parses, bu t guides the parser to them
much more efficiently, in contrast to dynamic
programming methods. Finally, we have shown
that the accuracy improvement that has been
demonstra ted with left-corner approaches can
be a t t r ibuted to the non-local information uti-
lized by the method.

This is relevant to the s tudy of the human
sentence processing mechanism insofar as it
demonstrates that it is possible to have a model
which makes explicit the syntactic relationships
between items in the input incrementally, while
still scaling up to broad-coverage.

Future research will include:
• lexicalization of the parser

• utilization of fully connected trees for ad-
ditional syntactic and semantic processing

• the use of syntactic predictions in the beam
for language modeling

• an examination of predictive parsing with
a left-branching language (e.g. German)

In addition, it may be of interest to the psy-
cholinguistic community if we introduce a t ime
variable into our model, and use it to compare
such competing sentence processing models as
race-based and competi t ion-based parsing.

R e f e r e n c e s

G. Al tmann and M. Steedman. 1988. Interac-
tion with context during human sentence pro-
cessing. Cognition, 30:198-238.

4 2 6

x lO 4 Average States Considered per Sentence

98

96

94

14 i i

R B 0
. L C 0 R B

12 - - - P A 0 R B 0
. P A 0 L C 0 R B

10

8

6

4 q " -

0 r -
10 -3 10 .-4 Base Beam Factor 10 -s 10-6

Percentage of Sentences Parsed
100

R B 0
. L C o R B
- - - P A o R B 0 ~ ~ . , , , , =

............... P A o L C o R B ~,~"~,.....,.,"'~, ~ ~ .

92 ~ ,4"~

9 0

880_ 3 I =
10 ..4 Base Beam Factor 10 -5 10 -6

Figure 2: Changes in performance with beam factor variation

M. Britt. 1994. The interaction of referential
ambiguity and argument structure. Journal
o/ Memory and Language, 33:251-283.

E. Charniak, S. Goldwater, and M. Johnson.
1998. Edge-based best-first chart parsing. In
Proceedings of the Sixth Workshop on Very
Large Corpora, pages 127-133.

S. Crain and M. Steedman. 1985. On not be-
ing led up the garden path: The use of con-
text by the psychological parser. In D. Dowty,

L. Karttunen, and A. Zwicky, editors, Natu-
ral Language Parsing. Cambridge University
Press, Cambridge, UK.

M. Johnson. 1998. P C F G models of linguistic
tree representations. Computational Linguis-
tics, 24:617-636.

C. Manning and B. Carpenter. 1997. Prob-
abilistic parsing using left corner language
models. In Proceedings of the Fifth Interna-
tional Workshop on Parsing Technologies.

4 2 7

A v e r a g e Labelled Precision and Recal l
82 , ,

81

80

79

78

o~ 7~
(1.

76

75

74

73

72
10"-3

0.65

0.6

0.55

0.5

.o
0,45 rr

0 .4

0.35

0.3

0.25
10 -3

RB0
. LC o R B
- - - P A o R B 0

P A O L C o R B

i
10 -4

i

Base B e a m Factor 10 -6 10 -s

Average Rat io of Parse Probabil i ty to Maximum Likelihood Probability

, RB0 -' '
. LC o RB
- - - P A o R B 0 / ~ ~ . - "

I I

10 -4 Base Beam Factor 10 -s 10 -6

Figure 3: Changes in performance with beam factor variation

M.P. Marcus, B. Santorini, and M.A.
Marcinkiewicz. 1993. Building a large
annotated corpus of English: The Penn
Treebank. Computational Linguistics,
19(2):313-330.

A. Nijholt. 1980. Context-/tee Grammars: Cov-
ers, Normal Forms, and Parsing. Springer
Verlag, Berlin.

S.J. Rosenkrantz and P.M. Lewis II. 1970. De-
terministic left corner parsing. In IEEE Con-
ference Record of the 11th Annual Symposium

on Switching and Automata, pages 139-152.
M. Steedman. 1989. Grammar, interpreta-

tion, and processing from the lexicon. In
W. Marslen-Wilson, editor, Lexical represen-
tation and process. MIT Press, Cambridge,
MA.

M. Tanenhaus, M. Spivey-Knowlton, K. Eber-
hard, and J. Sedivy. 1995. Integration of vi-
sual and linguistic information during spoken
language comprehension. Science, 268:1632-
1634.

4 2 8

