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A b s t r a c t  

This paper examines efficient predictive broad- 
coverage parsing without dynamic program- 
ming. In contrast to bot tom-up methods, 
depth-first top-down parsing produces partial 
parses that  are fully connected trees spanning 
the entire left context, from which any kind of 
non-local dependency or partial semantic inter- 
pretation can in principle be read. We con- 
trast two predictive parsing approaches, top- 
down and left-corner parsing, and find both to 
be viable. In addition, we find that  enhance- 
ment with non-local information not only im- 
proves parser accuracy, but also substantially 
improves the search efficiency. 

1 I n t r o d u c t i o n  

Strong empirical evidence has been presented 
over the past 15 years indicating that  the hu- 
man sentence processing mechanism makes on- 

l ine use of contextual information in the preced- 
ing discourse (Crain and Steedman, 1985; Alt- 
mann and Steedman, 1988; Britt, 1994) and in 
the visual environment (Tanenhaus et al., 1995). 
These results lend support  to Mark Steedman's 
(1989) "intuition" that  sentence interpretation 
takes place incrementally, and that  partial in- 
terpretations are being built while the sentence 
is being perceived. This is a very commonly 
held view among psycholinguists today. 

Many possible models of human sentence pro- 
cessing can be made consistent with the above 
view, but  the general assumption that  must un- 
derlie them all is that  explicit relationships be- 
tween lexical items in the sentence must be spec- 
ified incrementally. Such a processing mecha- 

tThis material is based on work supported by the 
National Science Foundation under Grant No. SBR- 
9720368. 

nism stands in marked contrast to dynamic pro- 
gramming parsers, which delay construction of a 
constituent until all of its sub-constituents have 
been completed, and whose partial parses thus 
consist of disconnected tree fragments. For ex- 
ample, such parsers do not integrate a main verb 
into the same tree structure as i ts  subject NP 
until the VP has been completely parsed, and 
in many cases this is the final step of the entire 
parsing process. Without  explicit on-line inte- 
gration, it would be difficult (though not impos- 
sible) to produce partial interpretations on-line. 
Similarly, it may be difficult to use non-local 
statistical dependencies (e.g. between subject 
and main verb) to actively guide such parsers. 

Our predictive parser does not use dynamic 
programming, but rather maintains fully con- 
nected trees spanning the entire left context, 
which make explicit the relationships between 
constituents required for partial interpretation. 
The parser uses probabilistic best-first pars- 
ing methods to pursue the most likely analy- 
ses first, and a beam-search to avoid the non- 
termination problems typical of non-statistical 
top-down predictive parsers. 

There are two main results. First, this ap- 
proach works and, with appropriate attention 
to specific algorithmic details, is surprisingly 
efficient. Second, not just  accuracy but  also 
efficiency improves as the language model is 
made more accurate. This bodes well for fu- 
ture research into the use of other non-local (e.g. 
lexical and semantic) information to guide the 
parser. 

In addition, we show that the improvement 
in accuracy associated with left-corner parsing 
over top-down is attributable to the non-local 
information supplied by the strategy, and can 
thus be obtained through other methods that  
utilize that  same information. 
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2 P a r s e r  a r c h i t e c t u r e  

The parser proceeds incrementally from left to 
right, with one i tem of look-ahead. Nodes are 
expanded in a s tandard  top-down, left-to-right 
fashion. The parser utilizes: (i) a probabilis- 
tic context-free g rammar  (PCFG), induced via 
s tandard  relative frequency estimation from a 
corpus of parse trees; and (ii) look-ahead prob- 
abilities as described below. Multiple compet- 
ing partial  parses (or analyses) are held on a 
priority queue, which we will call the pending 
heap. They  are ranked by a figure of merit  
(FOM), which will be discussed below. Each 
analysis has its own stack of nodes to be ex- 
panded, as well as a history, probability, and 
FOM. The highest ranked analysis is popped 
from the pending heap, and the category at the 
top of its stack is expanded. A category is ex- 
panded using every rule which could eventually 
reach the look-ahead terminal.  For every such 
rule expansion, a new analysis is created 1 and 
pushed back onto the pending heap. 

The FOM for an analysis is the product  of the 
probabilities of all PCFG rules used in its deriva- 
tion and what  we call its look-ahead probabil- 
ity (LAP). The LAP approximates the product  
of the probabilities of the rules that  will be re- 
quired to link the analysis in its current  state 
with the look-ahead terminal  2. Tha t  is, for a 
g rammar  G, a stack state [C1 ... C,] and a look- 
ahead terminal  i tem w: 

(1) L A P  --- PG([C1. . . Cn] -~ wa)  

We recursively est imate this with two empir- 
ically observed conditional probabilities for ev- 
ery non-terminal  Ci on the stack: /~(Ci 2+ w) 

and /~ (C i  -~ e). The LAP approximation for a 
given stack state and look-ahead terminal  is: 

(2) PG([Ci . .. Ca] wot) P(Ci w) + 

When the topmost  stack category of an analy- 
sis matches the look-ahead terminal,  the termi- 
nal is popped from the stack and the analysis 

1We count each of these as a parser state (or rule 
expansion) considered, which can be used as a measure 
of efficiency. 

2Since this is a non-lexicalized grammar, we are tak- 
ing pre-terminal POS markers as our terminal items. 

is pushed onto a second priority queue, which 
we will call the success heap. Once there are 
"enough" analyses on the success heap, all those 
remaining on the pending heap are discarded. 
The success heap then becomes the pending 
heap, and the look-ahead is moved forward to 
the next i tem in the input string. When  the end 
of the input string is reached, the analysis with 
the highest probability and an empty  stack is 
re turned as the parse. If no such parse is found, 
an error is returned. 

The specifics of the beam-search dictate  how 
many analyses on the success heap consti tute 
"enough". One approach is to set a constant  
beam width, e.g. 10,000 analyses on the suc- 
cess heap, at which point the parser moves to 
the next i tem in the input. A problem with 
this approach is that  parses towards the bo t tom 
of the success heap may be so unlikely relative 
to those at the top that  they have little or no 
chance of becoming the most likely parse at the 
end of the day, causing wasted effort. An al- 
ternative approach is to dynamical ly  vary the 
beam width by stipulating a factor, say 10 -5, 
and proceed until the best analysis on the pend- 
ing heap has an FOM less than  10 -5 times the 
probability of the best analysis on the success 
heap. Sometimes, however, the number  of anal- 
yses that  fall within such a range can be enor- 
mous, creating nearly as large of a processing 
burden as the first approach. As a compromise 
between these two approaches, we st ipulated a 
base beam factor a (usually 10-4), and the ac- 
tual beam factor used was a •/~, where/3  is the 
number of analyses on the success heap. Thus, 
when f~ is small, the beam stays relatively wide, 
to include as many analyses as possible; but  as 
/3 grows, the beam narrows. We found this to 
be a simple and successful compromise. 

Of course, with a left recursive grammar,  such 
a top-down parser may never terminate.  If 
no analysis ever makes it to the success heap, 
then, however one defines the beam-search, a 
top-down depth-first search with a left-recursive 
grammar  will never terminate.  To avoid this, 
one must place an upper bound on the number  
of analyses allowed to be pushed onto the pend- 
ing heap. If that  bound is exceeded, the parse 
fails. Wi th  a left-corner strategy, which is not 
prey to left recursion, no such upper  bound is 
necessary. 
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the JJ NP-DT-JJ tLe JJ NP-DT-JJ 

_J 
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happy NN happy NN NP-DT-JJ-JJ-NN 
I I I 

cat cat e 

Figure 1: Binaxized trees: (a) left binaxized (LB); (b) right binaxized to binary (RB2); (c) right 
binaxized to unary  (RB1); (d) right binarized to nullaxy (RB0) 

3 G r a m m a r  t r a n s f o r m s  

Nijholt (1980) characterized parsing strategies 
in terms of announce points: the point at which 
a parent category is announced (identified) rel- 
ative to its children, and the point at which the 
rule expanding the parent  is identified. In pure 
top-down parsing, a parent category and the 
rule expanding it are announced before any of 
its children. In pure bot tom-up parsing, they 
are identified after all of the children. Gram- 
mar transforms are one method for changing 
the announce points. In top-down parsing with 
an appropriately binaxized grammar,  the pax- 
ent is identified before, but the rule expanding 
the parent after, all of the children. Left-corner 
parsers announce a parent category and its ex- 
panding rule after its leftmost child has been 
completed, but  before any of the other children. 

3.1 D e l a y i n g  r u l e  i d e n t i f i c a t i o n  t h r o u g h  
b i n a r i z a t i o n  

Suppose that  the category on the top of the 
stack is an N P  and there is a determiner (DT) 
in the look-ahead. In such a situation, there is 
no information to distinguish between the rules 
N P  ~ DT J J  N N  a n d N P - - + D T  J J  N N S .  
If the decision can be delayed, however, until 
such a t ime as the relevant pre-terminal is in 
the look-ahead, the parser can make a more in- 
formed decision. Grammar  binaxization is one 
way to do this, by allowing the parser to use 
a rule like N P  --+ D T  N P - D T ,  where the new 
non-terminal  N P - D T  can expand into anything 
that  follows a D T  in an NP.  The expansion of 
N P - D T  occurs only after the next pre-terminal 
is in the look-ahead. Such a delay is essential 

for an efficient implementat ion of the kind of 
incremental parser that  we are proposing. 

There axe actually several ways to make a 
grammar  binary, some of which are bet ter  than  
others for our parser. The first distinction that  
can be drawn is between what  we will call left 
binaxization (LB) versus right binaxization (RB, 
see figure 1). In the former, the leftmost items 
on the righthand-side of each rule are grouped 
together; in the latter, the rightmost items on 
the righthand-side of the rule are grouped to- 
gether. Notice that,  for a top-down, left-to-right 
parser, RB is the appropriate transform, be- 
cause it underspecifies the right siblings. With  
LB, a top-down parser must identify all of the 
siblings before reaching the leftmost item, which 
does not aid our purposes. 

Within RB transforms, however, there is some 
variation, with respect to how long rule under- 
specification is maintained. One method is to 
have the final underspecified category rewrite as 
a binary rule (hereafter RB2, see figure lb). An- 
other is to have the final underspecified category 
rewrite as a unary  rule (RB1, figure lc). The 
last is to have the final underspecified category 
rewrite as a nullaxy rule (RB0, figure ld).  No- 
tice that  the original motivation for RB, to delay 
specification until the relevant items are present 
in the look-ahead, is not served by RB2, because 
the second child must be specified without  being 
present in the look-ahead. RB0 pushes the look- 
ahead out to the first i tem in the string after the 
constituent being expanded, which can be use- 
ful in deciding between rules of unequal length, 
e.g. NP---+ DT N N  and N P  ~ D T  N N  N N .  

Table 1 summarizes some trials demonstrat-  
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Binarization Rules in Percent of Avg. States Avg. Labelled Avg. MLP Ratio of Avg. 
Grammar Sentences Considered Precision and Labelled Prob to Avg. 

Parsed* Recall t Prec/Rec t MLP Prob t 
None 14962 34.16 19270 .65521 .76427 .001721 
LB 37955 33.99 96813 .65539 .76095 .001440 
I~B1 29851 91.27 10140 .71616 .72712 .340858 
RB0 41084 97.37 13868 .73207 .72327 .443705 

Beam Factor = 10 -4 *Length ~ 40 (2245 sentences in F23 Avg. length -- 21.68) t o f  those sentences parsed 

Table 1: The effect of different approaches to binarization 

ing the effect of different binarization ap- 
proaches on parser performance. The gram- 
mars were induced from sections 2-21 of the 
Penn Wall St. Journal  Treebank (Marcus et 
al., 1993), and tested on section 23. For each 
transform tested, every tree in the training cor- 
pus was t ransformed before grammar induc- 
tion, resulting in a t ransformed PCFG and look- 
ahead probabil i t ies est imated in the s tandard 
way. Each parse returned by the parser was de- 
t ransformed for evaluation 3. The parser used 
in each trial was identical, with a base beam 
factor c~ = 10 -4. The performance is evaluated 
using these measures: (i) the percentage of can- 
didate sentences for which a parse was found 
(coverage); (ii) the average number  of states 
(i.e. rule expansions) considered per candidate 
sentence (efficiency); and (iii) the average la- 
belled precision and recall of those sentences for 
which a parse was found (accuracy). We also 
used the same grammars with an exhaustive, 
bo t tom-up  CKY parser, to ascertain bo th  the 
accuracy and probabil i ty  of the maximum like- 
lihood parse (MLP). We can then additionally 
compare the parser 's performance to the MLP's 
on those same sentences. 

As expected,  left binarization conferred no 
benefit to our parser. Right binarization, in con- 
trast,  improved performance across the board. 
RB0 provided a substantial  improvement in cov- 
erage and accuracy over RB1, with something 
of a decrease in efficiency. This efficiency hit 
is par t ly  a t t r ibu tab le  to the fact that  the same 
tree has more nodes with RB0. Indeed, the effi- 
ciency improvement with right binarization over 
the s tandard  grammar is even more interesting 
in light of the great increase in the size of the 
grammars.  

3See Johnson (1998) for details of the transform/de- 
transform paradigm. 

It is worth noting at this point that ,  wi th  the 
RB0 grammar,  this parser is now a viable broad- 
coverage statistical parser, with good coverage, 
accuracy, and efficiency 4. Next we considered 
the left-corner parsing strategy. 

3.2  L e f t - c o r n e r  p a r s i n g  

Left-corner (LC) parsing (Rosenkrantz and 
Lewis II, 1970) is a well-known stra tegy that  
uses bo th  bo t tom-up  evidence (from the left 
corner of a rule) and top-down predict ion (of 
the rest of the rule). Rosenkrantz and Lewis 
showed how to transform a context-free gram- 
mar into a grammar that ,  when used by a top- 
down parser, follows the same search pa th  as an 
LC parser. These LC grammars  allow us to use 
exactly the same predictive parser to evaluate 
top-down versus LC parsing. Naturally, an LC 
grammar performs best  with our parser when 
right binarized, for the same reasons outl ined 
above. We use transform composit ion to apply 
first one transform, then another to the ou tpu t  
of the first. We denote this A o B where (A o 
B) (t) = B (A (t)). After applying the left-corner 
transform, we then binarize the resulting gram- 
mar 5, i.e. LC o RB. 

Another probabilistic LC parser investigated 
(Manning and Carpenter,  1997), which uti- 
lized an LC parsing architecture (not a trans- 
formed grammar),  also got a performance boost  

4The very efficient bottom-up statistical parser de- 
tailed in Charniak et al. (1998) measured efficiency in 
terms of total edges popped. An edge (or, in our case, a 
parser state) is considered when a probability is calcu- 
lated for it, and we felt that  this was a better efficiency 
measure than simply those popped. As a baseline, their 
parser considered an average of 2216 edges per sentence 
in section 22 of the WSJ corpus (p.c.). 

5Given that the LC transform involves nullary pro- 
ductions, the use of RB0 is not needed, i.e. nullary pro- 
ductions need only be introduced from one source. Thus 
binarization with left corner is always to unary (RB1). 
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Transform Rules in Pct. of Avg. States Avg Labelled Avg. MLP Ratio of Avg. 
Grammar Sentences Considered Precision and Labelled Prob to Avg. 

Parsed* Recall t Prec/Rec t MLP Prob t 
Left Corner (LC) 21797 91.75 9000 .76399 .78156 .175928 
LB o LC 53026 96.75 7865 .77815 .78056 .359828 
LC o RB 53494 96.7 8125 .77830 .78066 .359439 
LC o RB o ANN 55094 96.21 7945 .77854 .78094 .346778 
RB o LC 86007 93.38 4675 .76120 .80529 

*Leng th  _ 40 (2245 sentences  in F23 - Avg. l eng th  ---- 21.68 B e a m  Fac to r  ---- 1 0  - 4  

.267330 
tOf those sentences parsed 

Table 2: Left Corner Results 

through right binarization. This, however, is 
equivalent to RB o LC, which is a very differ- 
ent grammar from LC o RB. Given our two bi- 
narization orientations (LB and RB), there are 
four possible compositions of binarization and 
LC transforms: 

(a) LB o LC (b) RB o LC (c) LC o LB (d) LC o RB 

Table 2 shows left-corner results over various 
conditions 6. Interestingly, options (a) and (d) 
encode the same information, leading to nearly 
identical performance 7. As s tated before, right 
binarization moves the rule announce point 
from before to after all of the children. The 
LC transform is such that  LC o RB also delays 
parent identification until after all of the chil- 
dren. The transform LC o RB o ANN moves the 
parent announce point back to the left corner by 
introducing unary rules at the left corner that  
simply identify the parent of the binarized rule. 
This allows us to test the effect of the position of 
the parent announce point on the performance 
of the parser. As we can see, however, the ef- 
fect is slight, with similar performance on all 
measures. 

RB o LC performs with higher accuracy than 
the others when used with an exhaustive parser, 
but  seems to require a massive beam in order to 
even approach performance at the MLP level. 
Manning and Carpenter  (1997) used a beam 
width of 40,000 parses on the success heap at 
each input  item, which must have resulted in an 
order of magni tude more rule expansions than 
what  we have been considering up to now, and 

6Opt ion  (c) is no t  t he  a p p r o p r i a t e  k ind  of b ina r i za t ion  
for our  parser ,  as a rgued  in the  prev ious  sect ion,  a n d  so 
is omi t t ed .  

7The difference is due  to t he  i n t r o d u c t i o n  of vacuous 
u n a r y  rules  w i th  RB.  

yet their average labelled precision and recall 
(.7875) still fell well below what  we found to be 
the MLP accuracy (.7987) for the grammar.  We 
are still investigating why this grammar  func- 
tions so poorly when used by an incremental 
parser. 

3.3 N o n - l o c a l  a n n o t a t i o n  

Johnson (1998) discusses the improvement of 
PCFG models via the annotat ion of non-local in- 
formation onto non-terminal nodes in the trees 
of the training corpus. One simple example 
is to copy the parent node onto every non- 
terminal, e.g. the rule S ~ N P  V P  becomes 
S ~ NP~S  VP~S.  The idea here is that  the 
distr ibution of rules of expansion of a part icular 
non-terminal may differ depending on the non- 
terminal 's  parent. Indeed, it was shown that  
this additional information improves the MLP 
accuracy dramatically. 

We looked at two kinds of non-local infor- 
mation annotation: parent (PA) and left-corner 
(LCA). Left-corner parsing gives improved accu- 
racy over top-down or bo t tom-up  parsing with 
the same grammar. Why? One reason may be 
that  the ancestor category exerts the same kind 
of non-local influence upon the parser that  the 
parent category does in parent annotation.  To 
test this, we annota ted  the left-corner ancestor 
category onto every leftmost non-terminal cat- 
egory. The results of our annotat ion trials are 
shown in table 3. 

There are two important  points to notice from 
these results. First, with PA we get not only the 
previously reported improvement in accuracy, 
but  additionally a fairly dramatic  decrease in 
the number of parser states that  must be vis- 
ited to find a parse. That  is, the non-local in- 
formation not only improves the final product  of 
the parse, but  it guides the parser more quickly 
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Transform Rules in Pct. of Avg. States Avg Labelled Avg. MLP Ratio of Avg. 
Grammar Sentences Considered Precision and Labelled Prob to Avg. 

Parsed* Recall t Prec/Rec t MLP Prob t 
RB0 41084 97.37 13868 .73207 .72327 .443705 
PA o RB0 63467 95.19 8596 .79188 .79759 .486995 
LC o RB 53494 96.7 8125 .77830 .78066 .359439 
LCA o RB0 58669 96.48 11158 .77476 .78058 .495912 
PA o LC o RB 80245 93.52 4455 .81144 .81833 .484428 

Beam Factor -- 10 -4 *Length ~ 40 (2245 sentences in F23 - Avg. length -= 21.68) tOf those sentences parsed 

Table 3: Non-local annotat ion results 

to the final product .  The annota ted  grammar 
has 1.5 times as many rules, and would slow 
a bo t tom-up  CKY parser proportionally. Yet 
our parser actually considers far fewer states en 
route to the more accurate parse. 

Second, LC-annotat ion gives nearly all of the 
accuracy gain of left-corner parsing s, in support  
of the hypothesis  that  the ancestor information 
was responsible for the observed accuracy im- 
provement.  This result suggests that  if we can 
determine the information that  is being anno- 
ta ted by the t roublesome RB o LC transform, 
we may be able to get the accuracy improve- 
ment with a relatively narrow beam. Parent- 
annotat ion before the LC transform gave us the 
best  performance of all, with very few states 
considered on average, and excellent accuracy 
for a non-lexicalized grammar.  

4 A c c u r a c y / E f f i c i e n c y  t r a d e o f f  

One point  that  deserves to be  made is that  there 
is something of an accuracy/efficiency tradeoff 
with regards to the base beam factor. The re- 
sults given so far were at 10 -4 , which func- 
tions pre t ty  well for the transforms we have 
investigated. Figures 2 and 3 show four per- 
formance measures for four of our transforms 
at base beam factors of 10 -3 , 10 -4 , 10 -5 , and 
10 -6. There is a dramatical ly increasing effi- 
ciency burden  as the beam widens, with vary- 
ing degrees of payoff. Wi th  the top-down trans- 
forms (RB0 and PA o RB0), the ratio of the av- 
erage probabil i ty  to the MLP probabil i ty does 
improve substantial ly as the beam grows, yet 
with only marginal improvements in coverage 
and accuracy. Increasing the beam seems to do 
less with the left-corner transforms. 

SThe rest could very well be within noise. 

5 C o n c l u s i o n s  a n d  F u t u r e  R e s e a r c h  

We have examined several probabilist ic predic- 
tive parser variations, and have shown the ap- 
proach in general to be  a viable one, bo th  in 
terms of the quality of the parses, and the ef- 
ficiency with which they are found. We have 
shown that  the improvement of the grammars  
with non-local information not only results in 
bet ter  parses, bu t  guides the parser to them 
much more efficiently, in contrast  to dynamic 
programming methods.  Finally, we have shown 
that  the accuracy improvement that  has been 
demonstra ted with left-corner approaches can 
be a t t r ibuted  to the non-local information uti- 
lized by the method.  

This is relevant to the s tudy  of the human 
sentence processing mechanism insofar as it 
demonstrates  that  it is possible to have a model  
which makes explicit the syntactic relationships 
between items in the input  incrementally, while 
still scaling up to broad-coverage. 

Future research will include: 
• lexicalization of the parser 

• utilization of fully connected trees for ad- 
ditional syntactic and semantic processing 

• the use of syntactic predictions in the beam 
for language modeling 

• an examination of predictive parsing with 
a left-branching language (e.g. German) 

In addition, it may be of interest to the psy- 
cholinguistic community  if we introduce a t ime 
variable into our model, and use it to compare 
such competing sentence processing models as 
race-based and competi t ion-based parsing. 
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Figure 3: Changes in performance with beam factor variation 
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