
The CommandTalk Spoken Dialogue System*

A m a n d a S t e n t , J o h n D o w d i n g
J e a n M a r k G a w r o n , E l i z a b e t h O w e n B r a t t , a n d R o b e r t M o o r e

SRI Internat ional
333 Ravenswood Avenue
Menlo Park, CA 94025

{stent,dowding,gawron,owen,bmoore}@ai.sri .com

1 I n t r o d u c t i o n

CommandTalk (Moore et al., 1997) is a spoken-
language interface to the ModSAF battlefield
simulator that allows simulation operators to
generate and execute military exercises by cre-
ating forces and control measures, assigning
missions to forces, and controlling the display
(Ceranowicz, 1994). CommandTalk consists
of independent, cooperating agents interacting
through SRI's Open Agent Architecture (OAA)
(Martin et al., 1998). This architecture allows
components to be developed independently, and
then flexibly and dynamically combined to sup-
port distributed computation. Most of the
agents that compose CommandTalk have been
described elsewhere !for more detail, see (Moore
et al., 1997)). This paper describes extensions
to CommandTalk to support spoken dialogue.
While we make no theoretical claims about the
nature and structure of dialogue, we are influ-
enced by the theoretical work of (Grosz and
Sidner, 1986) and will use terminology from
that tradition when appropriate. We also follow
(Chu-Carroll and Brown, 1997) in distinguish-
ing task initiative and dialogue initiative.

Section 2 demonstrates the dialogue capabil-
ities of CommandTalk by way of an extended
example. Section 3 describes how language
in CommandTalk is modeled for understanding
and generation. Section 4 describes the archi-
tecture of the dialogue manager in detail. Sec-
tion 5 compares CommandTalk with other spo-

* This research was supported by the Defense Advanced
Research Projects Agency under Contract N66001-94-C-
6046 with the Space and Naval Warfare Systems Cen-
ter. The views and conclusions contained in this doc-
ument are those of the authors and should not be in-
terpreted as necessarily representing the official policies,
either express or implied, of the Defense Advanced Re-
search Projects Agency of the U.S. Government.

ken dialogue systems.

2 E x a m p l e D i a l o g u e s

The following examples constitute a single ex-
tended dialogue illustrating the capabilities of
the dialogue manager with regard to structured
dialogue, clarification and correction, changes in
initiative, integration of speech and gesture, and
sensitivity to events occurring in the underlying
simulated world. 1

E x . 1-"

U 1

S 2
U 3
S 4
U 5
S 6

Confirmation

Create a point named Checkpoint
1 at 64 53
®
Create a CEV at Checkpoint 1
®
Create a CEV here < click>
® I will create CEV at FQ 643 576

Utterances 1 and 3 illustrate typical success-
ful interactions between an operator and the
system. When no exceptional event occurs,
CommandTalk does not respond verbally. How-
ever, it does provide an audible tone to indicate
that it has completed processing. For a suc-
cessful command, it produces a rising tone, il-
lustrated by the ® symbol in utterances 2 and
4. For an unsuccessful command it produces a
falling tone, illustrated by the ® symbol in ut-
terances 12 and 14. 2

1U indicates a user utterance as recognized by the
system, and S indicates a system utterance. Bracketed
items in italics are gestures.

2The rising and falling tones come from the predia-
logue version of the system. They were added because
we observed that users did not always notice when the
system had not understood them correctly, and a tex-
tual error message alone did not always get the user's
attention. These tones also perform basic grounding be-
havior.

183

Utterance 6 demonstrates a case where, al-
though the system successfully completed the
command, it chose to provide an explicit con-
firmation. Explicit confirmations can be given
at any time. In this case, the system chose
to give the confirmation because it performed
a nontrivial reference, resolving "here" to the
map coordinates given by the gesture, FQ 643
576. Similar situations in which the system
gives an explicit confirmation are the resolution
of pronouns and elided, definite or plural noun
phrases.

Ex. 2: Correct ion

U 7 Put Objective Golf here <click>
S 8 ® I will locate Objective Golf at FQ

658 583
U 9 I meant Objective Alpha
S 10 ® I will locate Objective Alpha at

FQ 658 583

Example 2 contains a correction sub-dialogue.
Utterance 9 is a correction of utterance 7, and
is interpreted as though the operator had said
"Put Objective Alpha here". This illustrates
two points. First, since utterance 7 was suc-
cessful, the system undoes its effects (that is,
deletes Objective Golf) before creating Objec-
tive Alpha. Second, although the edited utter-
ance contains the word "here", the gesture that
was used to resolve that is no longer available.
The system keeps track of gestural information
along with linguistic information in its repre-
sentation of context in order to interpret cor-
rections.

Ex. 3: S tructured Sub-dia logue

U 11 CEV advance to Objective Golf
S 12 ® There are 2 CEVs. Do you mean

100All or 100A127
U 13 100All
S 14 @ There is no point named Ob-

jective Golf. Which point should
100All proceed to?

U 15 I said Objective Alpha
S 16 ® 100All will proceed to Objective

Alpha

Example 3 illustrates a structured discourse
segment containing two subsegments. Utter-
ance 11 is uninterpretable for two reasons: the
reference to "CEV" is ambiguous, and Objec-

tive Golf does not exist. The first difficulty
is resolved in discourse segment 12-13, and the
second in discourse segment 14-16. Notice that
the operator is not required to answer the ques-
tion posed by the system in utterance 14, but
is free to correct the system's misunderstanding
of utterance 11 even though it is not the im-
mediately prior utterance. This is true because
utterance 13 (the most recent utterance) is in-
terpreted as if the operator had said "100All
advance to Objective Golf".

Ex. 4: Required A r g u m e n t

U 17 A12 conduct crater breach facing
north

S 18 ® Which point should 100A12 con-
duct crater breach oriented north
at?

U 19 <click>
S 20 ® 100A12 will conduct crater

breach oriented north at FQ 542
595

Example 4 demonstrates a case where, al-
though there are no errors in the operator's ut-
terance, the system requires additional informa-
tion before it can execute the command. Also
note that the question asked by the system in
utterance 18 is answered with an isolated ges-
ture.

Ex. 5: De layed R e s p o n s e

U 21 A13 continue to Checkpoint 1 in a
column formation.

S 22 ® There is no A13. Which unit
should proceed in a column forma-
tion to Checkpoint 17

U 23 What units are there?
S 24 ® There are 2 units: 100All and

100A12.
U 25 A l l proceed to Checkpoint 1.
S 26 ® 100All will proceed in a column

formation to Checkpoint 1.

In example 5, the system asks a question but
the operator needs to perform some other ac-
tivity before answering it. The question asked
by the system in utterance 22 is answered by
the operator in utterance 25. Due to the in-
tervening material, the most natural way to an-
swer the question posed in utterance 22 is with a

154

complete sentence, rather than an isolated noun
phrase.

Ex. 6: C h a n g e s in t h e S i m u l a t e d W o r l d

U 27 A12 advance to Objective Bravo.
S 28 ® There is no Objective Bravo.

What point should 100A12 ad-
vance to?

U 29 Create it at 635 545.
S 30 ®
S 31 Should 100A12 proceed to Objec-

tive Bravo?
U 32 Yes.
S 33 ® 100A12 will proceed to Objective

Bravo.

Example 6 demonstrates the use of a guard,
or test to see if a situation holds. In utterance
27, a presupposition failure occurs, leading to
the open proposition expressed in utterance 28.
A guard, associated with the open proposition,
tests to see if the system can successfully resolve
"Objective Bravo". Ra the r than answering the
question in utterance 28, the operator chooses
to create Objective Bravo. The system then
tests the guard, which succeeds because Objec-
tive Bravo now exists. The system therefore
takes dialogue initiative by asking the operator
in utterance 31 if that operator would like to
carry out the original command. Although, in
this case, the simulated world changed in direct
response to a linguistic act, in general the world
can change for a variety of reasons, including the
operator's activities on the GUI or the activities
of other operators.

3 L a n g u a g e I n t e r p r e t a t i o n a n d
G e n e r a t i o n

The language used in CommandTalk is derived
from a single grammar using Gemini (Dowding
et al., 1993), a unification-based grammar for-
malism. This grammar is used to provide all the
language modeling capabilities of the system,
including the language model used in the speech
recognizer, the syntactic and semantic interpre-
tation of user utterances (Dowding et al., 1994),
and the generation of system responses (Shieber
et al., 1990).

For speech recognition, Gemini uses the Nu-
ance speech recognizer. Nuance accepts lan-
guage models written in a Grammar Speci-
fication Language (GSL) format that allows

context-free, as well as the more commonly used
finite-state, models. 3 Using a technique de-
scribed in (Moore, 1999), we compile a context-
free covering grammar into GSL format from
the main Gemini grammar.

This approach of using a single grammar
source for both sides of the dialogue has sev-
eral advantages. First, although there are differ-
ences between the language used by the system
and that used by the speaker, there is a large de-
gree of overlap, and encoding the grammar once
is efficient. Second, anecdotal evidence suggests
that the language used by the system influences
the kind of language that speakers use in re-
sponse. This gives rise to a consistency problem
if the language models used for interpretation
and generation are developed independently.

The grammar used in CommandTalk contains
features that allow it to be parti t ioned into
a set of independent top-level grammars. For
instance, CommandTalk contains related, but
distinct, grammars for each of the four armed
services (Army, Navy, Air Force, and Marine
Corps). The top-level grammar currently in use
by the speech recognizer can be changed dy-
namically. This feature is used in the dialogue
manager to change the top-level grammar, de-
pending on the state of the dialogue. Currently
in CommandTalk, for each service there are two
main grammars, one in which the user is free to
give any top-level command, and another that
contains everything in the first grammar, plus
isolated noun phrases of the semantic types that
can be used as answers to wh-questions, as well
as answers to yes/no questions.

3.1 P r o s o d y

A separate Prosody agent annotates the sys-
tem's utterances to provide cues to the speech
synthesizer about how they should be produced.
It takes as input an utterance to be spoken,
along with its parse tree and logical form. The
output is an expression in the Spoken Text
Markup Language 4 (STML) that annotates the
locations and lengths of pauses and the loca-
tions of pitch changes.

3GSL g r a m m a r s t h a t are contex t - f ree c a n n o t con ta in
indi rec t lef t-recursion.

4See h t t p ://www. c s t r . ed . ac . u k / p r o j e c t s / s s m l .
h t m l for details.

185

3.2 Speech Synthesis
Speech synthesis is performed by another agent
that encapsulates the Festival speech synthe-
sizer. Festival 5 was developed by the Centre
for Speech Technology Research (CSTR) at the
University of Edinburgh. Festival was selected
because it accepts STML commands, is avail-
able for research, educational, and individual
use without charge, and is open-source.

4 D i a l o g u e M a n a g e r

The role of the dialogue manager in Com-
mandTalk is to manage the representation of
linguistic context, interpret user utterances
within that context, plan system responses,
and set the speech recognition system's lan-
guage model. The system supports natural,
structured mixed-initiative dialogue and multi-
modal interactions.

When interpreting a new utterance from the
user, the dialogue manager considers these pos-
sibilities in order:

1. Corrections: The utterance is a correction
of a prior utterance.

2. Transitions/Responses: The utterance is a
continuation of the current discourse seg-
ment.

3. New Commands/Questions: The utterance
is initiating a new discourse segment.

The following sections will describe the data
structures maintained by the dialogue manager,
and show how they are affected as the dialogue
manager processes each of these three types of
user utterances.

4.1 Dialogue Stack
CommandTalk uses a dialogue stack to keep
track of the current discourse context. The
dialogue stack attempts to keep track of the
open discourse segments at each point in the
dialogue. Each stack frame corresponds to one
user-system discourse pair, and contains at least
the following elements:

• an atomic dialogue state identifier (see Sec-
tion 4.2)

5See h t t p : / / ~ w , c s t r . ed . ac . u . k / p r o j e c t s /
f e s t i v a l . h t r a l for full i n f o r m a t i on on Festival.

• a semantic representation of the user's ut-
terance(s)

• a semantic representation of the system's
response, if any

• a representation of the background (i.e.,
open proposition) for the anticipated user
response.

• focus spaces containing semantic represen-
tations of the items referred to in each sys-
tem and user utterance

a gesture space containing the gestures
used in the interpretation of each user ut-
terance

• an optional guard

The semantic representation of the system re-
sponse is related to the background, but there
are cases where the background may contain
more information than the response. For ex-
ample, in utterance 28 the system could have
simply said "There is no Objective Bravo", and
omitted the explicit follow-up question. In this
case, the background may still contain the open
proposition.

Unlike in dialogue analyses carried out on
completed dialogues (Grosz and Sidner, 1986),
the dialogue manager needs to maintain a stack
of all open discourse segments at each point in
an on-going dialogue. When a system allows
corrections, it can be difficult to determine when
a user has completed a discourse segment.

Ex. 7: C o n s e c u t i v e C o r r e c t i o n s

U 34
S 35

U 36
S 37
U 38
S 39

Center on Objective Charlie
® There is no point named Objec-
tive Charlie. What point should I
center on?
95 65
® I will center on FQ 950 650
I said 55 65
® I will center on FQ 550 650

In example 7, for instance, when the user an-
swers the question in utterance 36, the system
will pop the frame corresponding to utterances
34-35 off the stack. However, the information in
that frame is necessary to properly interpret the
correction in utterance 38. Without some other
mechanism it would be unsafe to ever pop a

186

frame from the stack, and the stack would grow
indefinitely. Since the dialogue stack represents
our best guess as to the set of currently open dis-
course segments, we want to allow the system to
pop frames from the stack when it believes dis-
course segments have been closed. We make use
of another representation, the dialogue trail, to
let us to recover from these moves if they prove
to be incorrect.

The dialogue trail acts as a history of all di-
alogue stack operations performed. Using the
trail, we record enough information to be able
to restore the dialogue stack to any previous
configuration (each trail entry records one op-
eration taken, the top of the dialog stack before
the operation, and the top of the dialog stack
after). Unlike the stack, the dialogue trail rep-
resents the entire history of the dialogue, not
just the set of currently open propositions. The
fact that the dialogue trail can grow arbitrarily
long has not proven to be a problem in practice
since the system typically does not look past the
top i tem in the trail.

4.2 F i n i t e S t a t e M a c h i n e s

Each stack frame in the dialogue manager con-
tains a unique dialogue state identifier. These
states form a collection of finite-state machines
(FSMs), where each FSM describes the turns
comprising a particular discourse segment. The
dialogue stack is reminiscent of a recursive tran-
sition network, in that the stack records the sys-
tem's progress through a series of FSMs in par-
allel. However, in this case, the stack operations
are not dictated explicitly by the labels on the
FSMs, but stack push operations correspond to
the onset of a discourse segment, and stack pop
operations correspond to the conclusion of a dis-
course segment.

Most of the FSMs currently used in Com-
mandTalk coordinate dialogue initiative. These
FSMs have a very simple s tructure of at most
two states. For instance, there are FSMs rep-
resenting discourse segments for clarification
questions (utterances 23-24), reference failures
(utterances 27-28), corrections (utterances 9-
10), and guards becoming true (utterances 31-
33). CommandTalk currently uses 22 such small
FSMs. Although they each have a very simple
structure, they compose natural ly to support
more complex dialogues. In these sub-dialogues
the user retains the task initiative, but the sys-

tem may temporari ly take the dialogue initia-
tive. This set of FSMs comprises the core dia-
logue competence of the system.

In a similar way, more complex FSMs can
be designed to support more s t ructured dia-
logues, in which the system may take more of
the task initiative. The addit ional s t ructure im-
posed varies from short 2-3 tu rn interactions to
longer "form-filling" dialogues. We currently
have three such FSMs in CommandTalk:

The Embark /Debark command has four re-
quired parameters; a user may have diffi-
culty expressing them all in a single utter-
ance. CommandTalk will query the user for
missing parameters to fill in the s tructure
of the command.

The Infantry Attack command has a num-
ber of required parameters, a potentially
unbounded number of optional parameters,
and some constraints between optional ar-
guments (e.g., two parameters are each op-
tional, but if one is specified then the other
must be also).

The Nine Line Brief is a strMght-forward
form-filling command with nine parameters
that should be provided in a specified or-
der.

When the system interprets a new user ut-
terance that is not a correction, the next alter-
native is that it is a continuation of the current
discourse segment. Simple examples of this kind
of transit ion occur when the user is answering a
question posed by the system, or when the user
has provided the next entry in a form-filling di-
alogue. Once the transit ion is recognized, the
current frame on top of the stack is popped. If
the next state is not a final state, then a new
frame is pushed corresponding to the next state.
If it is a final state, then a new frame is not
created, indicating the end of the discourse seg-
ment.

The last alternative for a new user ut terance
is that it is the onset of a new discourse segment.
During the course of interpretat ion of the ut-
terance, the conditions for entering one or more
new FSMs may be satisfied by the utterance.
These conditions may be linguistic, such as pre-
supposition failures, or can arise from events
that occur in the simulation, as when a guard

187

is tested in example 6. Each potential FSM
has a corresponding priority (error, warning, or
good). An FSM of the highest priority will be
chosen to dictate the system's response.

One last decision that must be made is
whether the new discourse segment is a subseg-
ment of the current segment, or if it should be
a sibling of that segment. The heuristic that-
we use is to consider the new segment a subseg-
ment if the discourse frame on top of the stack
contains an open proposition (as in ut terance
23). In this case, we push the new frame on the
stack. Otherwise, we consider the previous seg-
ment to now be closed (as in ut terance 3), and
we pop the frame corresponding to it prior to
pushing on the new frame.

4.3 M e c h a n i s m s for R e f e r e n c e

CommandTalk employs two mechanisms for
maintaining local context and performing refer-
ence: a list of salient objects in the simulation,
and focus spaces of linguistic items used in the
dialogue.

Since CommandTalk is controlling a dis-
t r ibuted simulation, events can occur asyn-
chronously with the operator 's linguistic acts,
and objects may become available for reference
independent ly of the on-going dialogue. For in-
stance, if an enemy unit suddenly appears on
the operator 's display, that unit is available for
immediate reference, even if no prior linguistic
reference to it has been made. The ModSAF
agent notifies the dialogue manager whenever
an object is created, modified, or destroyed, and
these objects are stored in a salience list in or-
der of recency. The salience list can also be up-
dated when simulation objects are referred to
using language.

The salience list is not part of the dialogue
stack. It does not reflect at tentional state;
rather, it captures recency and "known" infor-
mation.

While the salience list contains only entities
that directly correspond to objects in the sim-
ulation, focus spaces contain representations of
entities realized in linguistic acts, including ob-
jects not directly represented in the simulation.
This includes objects that do not exist (yet),
as in "Objective Bravo" in ut terance 28, which
is referred to with a pronoun in ut terance 29,
and sets of objects introduced by plural noun
phrases. All i tems referred to in an ut terance

are stored in a focus space associated with that
ut terance in the stack frame. There is one focus
space per utterance.

Focus spaces can be used during the genera-
tion of pronouns and definite noun phrases. Al-
though at present CommandTalk does not gen-
erate pronouns (we choose to err on the side of
verbosity, to avoid potential confusion due to
misrecognitions), focus spaces could be used to
make intelligent decisions about when to use a
pronoun or a definite reference. In particular,
while it might be dangerous to generate a pro-
noun referring to a noun phrase tha t the user
has used, it would be appropriate to use a pro-
noun to refer to a noun phrase tha t the system
has used.

Focus spaces are also used during the inter-
pretat ion of responses and corrections. In these
cases the salience list reflects what is known
now, not what was known at the t ime the ut-
terance being corrected or clarified was made.
The focus spaces reflect what was known and
in focus at that earlier time; they track atten-
tional state. For instance, imagine example 6
had instead been:

Ex . 6b:

U 4O
S 41

U 42

Focusing
A14 advance there.
® There is no A14. Which unit
should advance to Checkpoint 1?
Create CEV at 635 545 and name
it A14.

At the end of ut terance 42 the system will
reinterpret u t terance 40, but the most recent
location in the salience list is FQ 635 545 rather
than Checkpoint 1. The system uses the focus
space to determine the referent for "there" at
t h e t ime ut terance 40 was originally made.

In conclusion, CommandTalk ' s dialogue man-
ager uses a dialogue stack and trail, refer-
ence mechanisms, and finite state machines to
handle a wide range of different kinds of di-
alogue, including form-filling dialogues, free-
flowing mixed-initiative dialogues, and dia-
logues involving multi-modality.

5 R e l a t e d W o r k

CommandTalk differs from other recent spoken
language systems in that it is a command and
control application. It provides a part icularly

188

interesting environment in which to design spo-
ken dialogue systems in that it supports dis-
t r ibuted stochastic simulations, in which one
operator controls a certain collection of forces
while other operators simultaneously control
other allied and/or opposing forces, and unex-
pected events can occur that require responses
in real time. Other applications (Litman et al.,
1998; Walker et al., 1998) have been in domains
that were sufficiently limited (e.g., queries about
train schedules, or reading email) that the sys-
tem could presume much about the user's goals,
and make significant contributions to task ini-
tiative. However, the high number of possible
commands available in CommandTalk, and the
more abstract nature of the user's high-level
goals (to carry out a simulation of a complex
military engagement) preclude the system from
taking significant task initiative in most cases.

The system most closely related to Com-
mandTalk in terms of dialogue use is TRIPS
(Ferguson and Allen, 1998), although there are
several important differences. In contrast to
TRIPS, in CommandTalk gestures are fully in-
corporated into the dialogue state. Also, Com-
mandTalk provides the same language capabil-
ities for user and system utterances.

Unlike other simulation systems, such as
QuickSet (Cohen et al., 1997), CommandTalk
has extensive dialogue capabilities. In Quick-
Set, the user is required to confirm each spoken
utterance before it is processed by the system
(McGee et al., 1998).

Our earlier work on spoken dialogue in the air
travel planning domain (Bratt et al., 1995) (and
related systems) interpreted speaker utterances
in context, but did not support structured dia-
logues. The technique of using dialogue context
to control the speech recognition state is similar
to one used in (Andry, 1992).

6 F u t u r e W o r k

We have discussed some aspects of Com-
mandTalk that make it especially suited to han-
dle different kinds of interactions. We have
looked at the use of a dialogue stack, salience
information, and focus spaces to assist inter-
pretation and generation. We have seen that
structured dialogues can be represented by com-
posing finite-state models. We have briefly dis-
cussed the advantages of using the same gram-

mar for all linguistic aspects of the system. It is
our belief that most of the items discussed could
easily be transferred to a different domain.

The most significant difficulty with this work
is that it has been impossible to perform a for-
mal evaluation of the system. This is due to
the difficulty of collecting data in this domain,
which requires speakers who are both knowl-
edgeable about the domain and familiar with
ModSAF. CommandTalk has been used in sim-
ulations of real military exercises, but those ex-
ercises have always taken place in classified en-
vironments where data collection is not permit-
ted.

To facilitate such an evaluation, we are cur-
rently porting the CommandTalk dialogue man-
ager to the domain of air travel planning. There
is a large body of existing data in that domain
(MADCOW, 1992), and speakers familiar with
the domain are easily available.

The internal representation of actions in
CommandTalk is derived from ModSAF. We
would like to port that to a domain-independent
representation such as frames or explicit repre-
sentations of plans.

Finally, there are interesting options regard-
ing the finite state model. We are investigating
other representations for the semantic contents
of a discourse segment, such as frames or active
templates.

7 A c k n o w l e d g m e n t s

We would like to thank Andrew Kehler, David
Israel, Jerry Hobbs, and Sharon Goldwater for
comments on an earlier version of this paper,
and we have benefited from the very helpful
comments from several anonymous reviewers.

R e f e r e n c e s

F. Andry. 1992. Static and Dynamic Predic-
tions: A Method to Improve Speech Under-
standing in Cooperative Dialogues. In Pro-
ceedings of the International Conference on
Spoken Language Processing, Banff, Canada.

H. Bratt, J.Dowding, and K. Hunicke-Smith.
1995. The SRI Telephone ATIS System.
In Proceedings of the Spoken Language Sys-
terns Technology Workshop, pages 218-220,
Austin, Texas.

A. Ceranowicz. 1994. Modular Semi-
Automated Forces. In J.D. Tew et al.,

189

editor, Proceedings of the Winter Simulation
Conference, pages 755-761.

J. Chu-Carroll and M. Brown. 1997. Tracking
Initiative in Collaborative Dialogue Interac-
tions. In Proceedings of the Thirty-Fifth An-
nual Meeting of the A CL and 8th Conference
of the European Chapter of the ACL, Madrid,
Spain.

P. Cohen, M. Johnston, D. McGee, S. Oviatt,
J. Pittman, I. Smith, L. Chen, and J. Clow.
1997. QuickSet: Multimodal Interaction for
Distributed Applications. In Proceedings of
the Fifth Annual International Multimodal
Conference, Seattle, WA.

J. Dowding, J. Gawron, D. Appelt, L. Cherny,
R. Moore, and D. Moran. 1993. Gemini: A
Natural Language System for Spoken Lan-
guage Understanding. In Proceedings of the
Thirty-First Annual Meeting of the ACL,
Columbus, OH. Association for Computa-
tional Linguistics.

J. Dowding, R. Moore, F. Andry, and D. Moran.
1994. Interleaving Syntax and Semantics in
an Efficient Bottom-Up Parser. In Proceed-
ings of the Thirty-Second Annual Meeting of
the A CL, Las Cruces, New Mexico. Associa-
tion for Computational Linguistics.

G. Ferguson and J. Allen. 1998. TRIPS: An
Intelligent Integrated Problem-Solving Assis-
tant. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-
98), Madison, WI.

B. Grosz and C. Sidner. 1986. Attention, Inten-
tions, and the Structure of Discourse. Com-
putational Linguistics, 12(3):175-204.

D. Litman, S. Pan, and M. Walker. 1998. Eval-
uating Response Strategies in a Web-Based
Spoken Dialogue Agent. In Proceedings of
the 38th Annual Meeting of the Association
for Computational Linguistics, pages 780-
786, Montreal, Canada.

MADCOW. 1992. Multi-Site Data Collection
for a Spoken Language Corpus. In Proceed-
ings of the DARPA Speech and Natural Lan-
guage Workshop, pages 200-203, Harriman,
New York.

D. Martin, A. Cheyer, and D. Moran. 1998.
Building Distributed Software Systems with
the Open Agent Architecture. In Proceed-
ings of the Third International Conference on
the Practical Application of Intelligent Agents

and Multi-Agent Technology, Blackpool, Lan-
cashire, UK. The Practical Application Com-
pany Ltd.

D. McGee, P. Cohen, and S. Oviatt. 1998. Con-
firmation in Multimodal Systems. In Proceed-
ings of the 38th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages
823-829, Montreal, Canada.

R. Moore, J. Dowding, H. Bratt, J. Gawron,
Y. Gorfu, and A. Cheyer. 1997. Com-
mandTalk: A Spoken-Language Interface for
Battlefield Simulations. In Proceedings of the
Fifth Conference on Applied Natural Lan-
guage Processing, pages 1-7, Washington,
DC. Association for Computational Linguis-
tics.

R. Moore. 1999. Using Natural Language
Knowledge Sources in Speech Recognition. In
Keith Ponting, editor, Speech Pattern Pro-
cessing. Springer-Verlag.

S. M. Shieber, G. van Noord, R. Moore,
and F. Pereira. 1990. A Semantic Head-
Driven Generation Algorithm for Unification-
Based Formalisms. Computational Linguis-
tics, 16(1), March.

M. Walker, J. Fromer, and S. Narayanan.
1998. Learning Optimal Dialogue Strategies:
A Case Study of a Spoken Dialogue Agent
for Email. In Proceedings of the 38th An-
nual Meeting of the Association for Compu-
tational Linguistics, pages 1345-1351, Mon-
treal, Canada.

190

