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A b s t r a c t  

Distributional similarity is a useful notion in es- 
t imating the probabilities of rare joint events. 
It has been employed both to cluster events ac- 
cording to their distributions, and to directly 
compute averages of est imates for distributional 
neighbors of a target  event. Here, we examine 
the tradeoffs between model size and prediction 
accuracy for cluster-based and nearest neigh- 
bors distributional models of unseen events. 

1 I n t r o d u c t i o n  

In many statistical language-processing prob- 
lems, it is necessary to est imate the joint proba- 
bility or cooeeurrence probability of events drawn 
from two prescribed sets. Data  sparseness can 
make such est imates difficult when the events 
under consideration are sufficiently fine-grained, 
for instance, when they correspond to occur- 
rences of specific words in given configurations. 
In particular, in many  practical modeling tasks, 
a substantial  fraction of the cooccurrences of in- 
terest have never been seen in training data. In 
most previous work (Jelinek and Mercer, 1980; 
Katz, 1987; Church and Gale, 1991; Ney and 
Essen, 1993), this lack of information is ad- 
dressed by reserving some mass in the proba- 
bility model for unseen joint events, and then 
assigning tha t  mass to those events as a func- 
tion of their marginal  frequencies. 

An intuitively appealing alternative to relying 
on marginal frequencies alone is to combine es- 
t imates of the probabilities of "similar" events. 
More specifically, a joint event (x, y) would be 
considered similar to another  (x t, y) if the distri- 
butions of Y given x and Y given x' (the cooc- 
currence distributions of x and x ') meet an ap- 
propriate definition of distributional similarity. 
For example, one can infer that  the bigram "af- 
ter ACL-99" is plausible - -  even if it has never 
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occurred before - -  from the fact tha t  the bigram 
"after ACL-95" has occurred, if "ACL-99" and 
"ACL-95" have similar cooccurrence distribu- 
tions. 

For concreteness and experimental  evalua- 
tion, we focus in this paper on a part icular  type 
of cooccurrence, tha t  of a main verb and the 
head noun of its direct object in English text. 
Our main goal is to obtain est imates ~(vln ) of 
the conditional probability of a main verb v 
given a direct object head noun n, which can 
then be used in particular prediction tasks. 

In previous work, we and our co-authors have 
proposed two different probabili ty est imation 
methods that  incorporate word similarity infor- 
mation: distributional clustering and nearest- 
neighbors averaging. Distributional clustering 
(Pereira et al., 1993) assigns to each word a 
probabili ty distribution over clusters to which 
it may  belong, and characterizes each cluster 
by a centroid, which is an average of cooccur- 
rence distributions of words weighted according 
to cluster membership probabilities. Cooccur- 
rence probabilities can then be derived from ei- 
ther  a membership-weighted average of the clus- 
ters to which the words in the cooccurrence be- 
long, or just from the highest-probabili ty clus- 
ter. 

In contrast,  nearest-neighbors averaging 1 
(Dagan et al., 1999) does not explicitly clus- 
ter words. Rather,  a given cooccurrence prob- 
ability is est imated by averaging probabilities 
for the set of cooccurrences most similar to the 
target  cooccurrence. Tha t  is, while both meth- 
ods involve appealing to similar "witnesses" (in 
the clustering case, these witnesses are the cen- 
troids; for nearest-neighbors averaging, they are 

1In prev ious  papers ,  we have  used the  t e r m  
"s imi la r i ty -based" ,  bu t  th i s  t e r m  would  cause  confusion 
in t h e  p resen t  art icle.  



the most similar words), in nearest-neighbors 
averaging the witnesses vary for different cooc- 
currences, whereas in distributional clustering 
the same set of witnesses is used for every cooc- 
currence (see Figure 1). 

We thus see that distributional clustering and 
nearest-neighbors averaging are complementary 
approaches. Distributional clustering gener- 
ally creates a compact representation of the 
data, namely, the cluster membership probabil- 
ity tables and the cluster centroids. Nearest- 
neighbors averaging, on the other hand, asso- 
ciates a specific set of similar words to each word 
and thus typically increases the amount of stor- 
age required. In a way, it is clustering taken to 
the limit - each word forms its own cluster. 

In previous work, we have shown that both 
distributional clustering and nearest-neighbors 
averaging can yield improvements of up to 40% 
with respect to Katz's (1987) state-of-the-art 
backoffmethod in the prediction of unseen cooc- 
currences. In the case of nearest-neighbors aver- 
aging, we have also demonstrated perplexity re- 
ductions of 20% and statistically significant im- 
provement in speech recognition error rate. Fur- 
thermore, each method has generated some dis- 
cussion in the literature (Hofmann et al., 1999; 
Baker and McCallum, 1998; Ide and Veronis, 
1998). Given the relative success of these meth- 
ods and their complementarity, it is natural to 
wonder how they compare in practice. 

Several authors (Schiitze, 1993; Dagan et al., 
1995; Ide and Veronis, 1998) have suggested 
that clustering methods, by reducing data to 
a small set of representatives, might perform 
less well than nearest-neighbors averaging-type 
methods. For instance, Dagan et al. (1995, 
p. 124) argue: 

This [class-based] approach, which fol- 
lows long traditions in semantic clas- 
sification, is very appealing, as it at- 
tempts to capture "typical" properties 
of classes of words. However .... it is 
not clear that word co-occurrence pat- 
terns can be generalized to class co- 
occurrence parameters without losing 
too much information. 

Furthermore, early work on class-based lan- 
guage models was inconclusive (Brown et al., 
1992). 
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In this paper, we present a detailed com- 
parison of distributional clustering and nearest- 
neighbors averaging on several large datasets, 
exploring the tradeoff in similarity-based mod- 
eling between memory usage on the one hand 
and estimation accuracy on the other. We find 
that the performances of the two methods are 
in general very similar: with respect to Katz's 
back-off, they both provide average error reduc- 
tions of up to 40% on one task and up to 7% 
on a related, but somewhat more difficult, task. 
Only in a fairly unrealistic setting did nearest- 
neighbors averaging clearly beat distributional 
clustering, but even in this case, both meth- 
ods were able to achieve average error reduc- 
tions of at least 18% in comparison to back- 
off. Therefore, previous claims that clustering 
methods are necessarily inferior are not strongly 
supported by the evidence of these experiments, 
although it is of course possible that the situa- 
tion may be different for other tasks. 

2 T w o  m o d e l s  

We now survey the distributional clustering 
(section 2.1) and nearest-neighbors averaging 
(section 2.2) models. Section 2.3 examines the 
relationships between these two methods. 

2.1 C l u s t e r i n g  

The distributional clustering model that we 
evaluate in this paper is a refinement of our ear- 
lier model (Pereira et al., 1993). The new model 
has important theoretical advantages over the 
earlier one and interesting mathematical prop- 
erties, which will be discussed elsewhere. Here, 
we will outline the main motivation for the 
model, the iterative equations that implement 
it, and their practical use in clustering. 

The model involves two discreterandom vari- 
ables N (nouns) and V (verbs) whose joint dis- 
tribution we have sampled, and a new unob- 
served discrete random variable C representing 
probabilistic clusters of elements of N. The 
role of the hidden variable C is specified by 
the conditional distribution p(cln), which can 
be thought of as the probability that n belongs 
to cluster c. We want to preserve in C as much 
as possible of the information that N has about 
V, that  is, maximize the mutual information 2 
I(V, C). On the other hand, we would also 

2I( X, Y) = ~-]~x ~ P(x, y) log (P(x, y)/P(x)P(y)). 
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Figure 1: Difference between clustering and nearest neighbors. Although A and B belong mostly to 
the same cluster (dotted ellipse), the two nearest neighbors to A are not the nearest two neighbors 
to B. 

like to control the degree of compression of C 
relative to N,  that  is, the mutual  information 
I (C ,N) .  Furthermore,  since C is intended to 
summarize N in its role as a predictor of V, it 
should carry no information about  V that  N 
does not already have. Tha t  is, V should be 
conditionally independent of C given N,  which 
allows us to write 

p(vlc ) = ~-]p(vln)p(nlc ) . (1) 
n 

The distribution p(VIc ) is the centroid for clus- 
ter c. 

It can be shown that  I(V, C) is maximized 
subject to fixed I(C, N) and the above condi- 
tional independence assumption when 

p(c) 
p(cln ) = ~ exp [-/3D(p(Yln)]]p(Ylc) ) ] , (2) 

where /3 is the Lagrange multiplier associated 
with fixed I(C, N),  Zn is the normalizat ion 

Zn = y~ p(c) exp [-/3D(p(Y[n)llp(Ylc ))] , 
c 

and D is the KuUback-Leiber (KL) divergence, 
which measures the distance, in an information- 
theoretic sense, between two distributions q and 
r :  

• q ( v )  
D(qllr ) = ~ q(v) lOgr(v) . 

v 

The main behavioral difference between this 
model and our previous one is the p(c) factor in 
(2), which tends to sharpen cluster membership 
distributions. In addition, our earlier experi- 
ments used a uniform marginal distribution for 
the nouns instead of the marginal distribution 
in the actual data,  in order to make clustering 
more sensitive to informative but  relatively rare 
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nouns. While neither difference leads to major  
changes in clustering results, we prefer the cur- 
rent model for its bet ter  theoretical foundation. 

For fixed /3, equations (2) and (1) together 
with Bayes rule and marginalization can be used 
in a provably convergent i terative reestimation 
process for p ( g l c ) ,  p(YlC ) and p(C). These 
distributions form the  model for the given/3. 

It is easy to see tha t  for/3 = 0, p(nlc ) does not 
depend on the cluster distribution p(VIc), so the 
natural  number of clusters (distinct values of 
C) is one. At the other  extreme, for very large 
/3 the natural  number of clusters is the same 
as the number  of nouns. In general, a higher 
value of /3  corresponds to a larger number of 
clusters. The natura l  number  of clusters k and 
the probabilistic model for different values of/3 
are est imated as follows. We specify an increas- 
ing sequence {/3i} of/3 values (the "annealing" 
schedule), s tar t ing with a very low value/30 and 
increasing slowly (in our experiments, /30 = 1 
and/3i+1 = 1-1/30. Assuming that  the natural  
number of clusters and model for/3i have been 
computed,  we set/3 =/3i+1 and split each clus- 
ter into two twins by taking small random per- 
turbat ions of the original cluster centroids. We 
then apply the i terative reest imation procedure 
until convergence. If two twins end up with sig- 
nificantly different centroids, we conclude that  
they  are now separate clusters. Thus, for each 
i we have a number  of clusters ki and a model 
relating those clusters to the da ta  variables N 
and V. 

A cluster model can be used to est imate 
p(vln ) when v and n have not occurred together 
in training. We consider two heuristic ways of 
doing this estimation: 



• all-cluster weighted average: 

p(vln) = ~-]p(vlc)p(cln) 
c 

• nearest-cluster estimate: 

~(vln) -- p(vlc*), 

where c* maximizes p(c*ln). 

2.2 N e a r e s t - n e i g h b o r s  a v e r a g i n g  

As noted earlier, the nearest-neighbors averag- 
ing method is an alternative to clustering for 
estimating the probabilities of unseen cooccur- 
fences. Given an unseen pair (n, v), we calcu- 
late an estimate 15(vln ) as an appropriate aver- 
age of p(vln I) where n I is distributionally sim- 

ilar to n. Many distributional similarity mea- 
sures can be considered (Lee, 1999). In this 
paper, we focus on the one that gave the best 
results in our earlier work (Dagan et al., 1999), 
the Jensen-Shannon divergence (Rao, 1982; Lin, 
1991). The Jensen-Shannon divergence of two 
discrete distributions p and q over the same do- 
main is defined as 

1 
gS(p, q) = ~ 

It is easy to see that JS(p, q) is always defined. 
In previous work, we used the estimate 

~5(vln ) = 1 ~ p(vln,)exp(_Zj(n,n,)),  
(In nlES(n,k) 

where J(n,n') = JS (p(VIn),p(Yln')), Z and 
k are tunable parameters, S(n, k) is the set of 
k nouns with the smallest Jensen-Shannon di- 
vergence to n, and an is a normalization term. 
However, in the present work we use the simpler 
unweighted average 

1 
/~(vln) = -~ ~ p(vln'), (3) 

n'ES(n,k) 

and examine the effect of the choice of k on 
modeling performance. By eliminating extra 
parameters, this restricted formulation allows a 
more direct comparison of nearest-neighbors av- 
eraging to distributional clustering, as discussed 
in the next section. Furthermore, our earlier 
experiments showed that an exponentially de- 
creasing weight has much the same effect on per- 
formance as a bound on the number of nearest 
neighbors participating in the estimate. 

2.3  D i s c u s s i o n  

In the previous two sections, we presented 
two complementary paradigms for incorporat- 
ing distributional similarity information into 
cooccurrence probability estimates. Now, one 
cannot always draw conclusions about the rel- 
ative fitness of two methods simply from head- 
to-head performance comparisons; for instance, 
one method might actually make use of inher- 
ently more informative statistics but produce 
worse results because the authors chose a sub- 
optimal weighting scheme. In the present case, 
however, we are working with two models which, 
while representing opposite extremes in terms of 
generalization, share enough features to make 
the comparison meaningful. 

First, both models use linear combinations 
of cooccurrence probabilities for similar enti- 
ties. Second, each has a single free param- 
eter k, and the two k's enjoy a natural in- 
verse correspondence: a large number of clus- 
ters in the distributional clustering case results 
in only the closest centroids contributing sig- 
nificantly to the cooccurrence probability esti- 
mate, whereas a large number of neighbors in 
the nearest-neighbors averaging case means that 
relatively distant words are consulted. And fi- 
nally, the two distance functions are similar in 
spirit: both are based on the KL divergence to 
some type of averaged distribution. We have 
thus attempted to eliminate functional form, 
number and type of parameters, and choice of 
distance function from playing a role in the com- 
parison, increasing our confidence that we are 
truly comparing paradigms and not implemen- 
tation details. 

What are the fundamental differences be- 
tween the two methods? From the foregoing 
discussion it is clear that  distributional clus- 
tering is theoretically more satisfying and de- 
pends on a single model complexity parameter. 
On the other hand, nearest-neighbors averaging 
in its most general form offers more flexibility 
in defining the set of most similar words and 
their relative weights (Dagan et al., 1999). Also, 
the training phase requires little computation, 
as opposed to the iterative re-estimation proce- 
dure employed to build the cluster model. But 
the key difference is the amount of data com- 
pression, or equivalently the amount of general- 
ization, produced by the two models. Cluster- 
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ing yields a far more compact representation of 
the data when k, the model size parameter, is 
smaller than INf. As noted above, various au- 
thors have conjectured that this data reduction 
must inevitably result in lower performance in 
comparison to nearest-neighbor methods, which 
store the most specific information for each in- 
dividual word. Our experiments aim to ex- 
plore this hypothesized generalization-accuracy 
tradeoff. 

3 E v a l u a t i o n  

3.1 M e t h o d o l o g y  

We compared the  two similari ty-based esti- 
mat ion  techniques at the  following decision 
task, which evaluates their  ability to choose 
the more likely of two unseen cooccurrences. 
Test instances consist of noun-verb-verb triples 
(n, vl, v2), where bo th  (n, Vl) and (n, v2) are un- 
seen cooccurrences, but  (n, vl) is more likely 
(how this is de te rmined  is discussed below). For 
each test instance, the  language model  prob- 

abilities 151 dej 15(vlln) and i52 dej 15(v2]n) are 
computed;  the result of the  test  is either cor- 
rect (151 > 152), incorrect (/51 < ~52,) or a tie 
(151 = 152). Overall performance is measured by 
the error rate on the  entire test set, defined as 

1 
~ ( #  of incorrect choices + ( #  of t i es ) /2 ) ,  

where T is the number  of test  triples, not count- 
ing multiplicities. 

Our global exper imental  design was to run 
ten-fold cross-validation experiments  compar ing 
distr ibut ional  clustering, nearest-neighbors av- 
eraging, and Katz 's  backoff (the baseline) on the 
decision task just  outl ined.  All results we report  
below are averages over the  ten t rain-test  splits. 
For each split, test triples were created from the 
held-out test set. Each model  used the  t raining 
set to calculate all basic quanti t ies  (e.g., p(vln ) 
for each verb and noun),  but  not to t rain k. 
Then,  the performance of each similari ty-based 
model  was evaluated on the  test triples for a 
sequence of set t ings for k. 

We expected tha t  clustering performance 
with respect to the  baseline would initially im- 
prove and then decline. T h a t  is, we conjec- 
tured  tha t  the model  would overgeneralize at 
small k but  overfit the  t ra ining da ta  at large 

k. In contrast ,  for nearest-neighbors averag- 
ing, we hypothesized monotonical ly  decreasing 
performance curves: using only the very most  
similar words would yield high performance,  
whereas including more distant ,  uninformat ive  
words would result in lower accuracy. From pre- 
vious experience, we believed tha t  bo th  meth-  
ods would do well with  respect to backoff. 

3 .2 D a t a  

In order to implement  the  exper imental  
me thodology  just  described, we employed the 
follow data prepara t ion  method:  

i. Gather verb-object pairs using the CASS 
partial parser (Abney, 1996) 

Partition set of pairs into ten folds . 

3. For each test fold, 

(a) discard seen pairs and duplicates 

(b) discard pairs with  unseen nouns or un- 
seen verbs 

(e) for each remaining (n, vl), create 
(n, vl, v2) such tha t  (n, v~) is less likely 

Step 3b is necessary because nei ther  the  
similari ty-based methods  nor backoff handle 
novel unigrams gracefully. 

We ins tant ia ted  this schema in three ways: 

A P 8 9  We retrieved 1,577,582 verb-object  
pairs from 1989 Associated Press (AP) 
newswire, discarding singletons (pairs occurring 
only once) as is commonly  done in language 
modeling.  We split this set by type  3, which 
does not  realistically model  how new da ta  oc- 
curs in real life, but  does conveniently guaran- 
tee tha t  the  entire test set is unseen. In step 
3c all (n, v2) were found such tha t  (n, vl) oc- 
curred at least twice as often as (n, v2) in the  
test  fold; this gives reasonable reassurance tha t  
n is indeed more likely to cooccur with Vl, even 
though  (n, v2) is plausible (since it did in fact 
o c c u r ) .  

3When a corpus is split by type, all instances of a 
given type must end up in the same partition. If the 
split is by token, then instances of the same type may 
end up in different partitions. For example, for corpus 
'% b a c ' ,  "a b" +"a  c" is a valid split by token, but not 
by type. 

37 



Test type 

AP89 
AP90unseen 
AP90fake 

split singletons? ~ training % of test ~ test baseline 
pairs unseen triples error 

type no 1033870 100 42795 28.3% 
token yes 1123686 14 4019 39.6% 

" " " " 14479 79.9% 

Table 1: Data for the three types of experiments. All numbers are averages over the ten splits. 

A P 9 0 u n s e e n  1,483,728 pairs were extracted 
from 1990 AP newswire and split by token. Al- 
though splitting by token is undoubtedly a bet- 
ter way to generate train-test splits than split- 
ting by type, it had the unfortunate side effect 
of diminishing the average percentage of unseen 
cooccurrences in the test sets to 14%. While 
this is still a substantial fraction of the data 
(demonstrating the seriousness of the sparse 
data problem), it caused difficulties in creat- 
ing test triples: after applying filtering step 3b, 
there were relatively few candidate nouns and 
verbs satisfying the fairly stringent condition 3c. 
Therefore, singletons were retained in the AP90 
data. Step 3c was carried out as for AP89. 

AP90fake The procedure for creating the 
AP90unseen data resulted in much smaller test 
sets than in the AP89 case (see Table I). To 
generate larger test sets, we used the same folds 
as in AP90unseen, but implemented step 3c dif- 
ferently. Instead of selecting v2 from cooccur- 
rences (n, v2) in the held-out set, test triples 
were constructed using v2 that never cooccurred 
with n in either the training or the test data. 
That is, each test triple represented a choice 
between a plausible cooccurrence (n, Vl) and an 
implausible ("fake") cooccurrence (n, v2). To 
ensure a large differential between the two al- 
ternatives, we further restricted (n, Vl) to occur 
at least twice (in the test fold). We also chose v2 
from the set of 50 most frequent verbs, resulting 
in much higher error rates for backoff. 

3 . 3  R e s u l t s  

We now present evaluation results ordered by 
relative difficulty of the decision task. 

Figure 2 shows the performance of distribu- 
tional clustering and nearest-neighbors averag- 
ing on the AP90fake data (in all plots, error bars 
represent one standard deviation). Recall that 
the task here was to distinguish between plau- 
sible and implausible cooccurrences, making it 
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a somewhat easier problem than that posed in 
the AP89 and AP90unseen experiments. Both 
similarity-based methods improved on the base- 
line error (which, by construction of the test 
triples, was guaranteed to be high) by as much 
as 40%. Also, the curves have the shapes pre- 
dicted in section 3.1. 

all clu'sters 
nearest cluster 

5'0 ,~0 ,~0 2~0 2;0 ~0 g0 ,~ 
k 

Figure 2: Average error reduction with respect 
to backoff on AP90fake test sets. 

We next examine our AP89 experiment re- 
sults, shown in Figure 3. The similarity-based 
methods clearly outperform backoff, with the 
best error reductions occurring at small k for 
both types of models. Nearest-neighbors aver- 
aging appears to have the advantage over dis- 
tributional clustering, and the nearest cluster 
method yields lower error rates than the aver- 
aged cluster method (the differences are statisti- 
cally significant according to the paired t-test). 
We might hypothesize that nearest-neighbors 
averaging is better in situations of extreme spar- 
sity of data. However, these results must be 
taken with some caution given their unrealistic 
type-based train-test split. 

A striking feature of Figure 3 is that all the 
curves have the same shape, which is not at all 
what we predicted in section 3.1. The reason 
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all clusters 
nearest cluster 
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Figure 3: Average error reduction with respect 
to backoff on AP89 test sets. 

0.26 

0.26 

0.24 

0.23 

0.22 

0.21 
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0.1~ 

tha t  the very most similar words are appar- 
ently not as informative as slightly more dis- 
tant  words is due to recall errors. Observe that  
if (n, vl) and (n, v2) are unseen in the train- 
ing data,  and if word n'  has very small Jensen- 
Shannon divergence to n, then chances are tha t  
n ~ also does not occur with either Vl or v2, re- 
sulting in an est imate of zero probabili ty for 
both test cooccurrences. Figure 4 proves tha t  
this is the case: if zero-ties are ignored, then the 
error rate  curve for nearest-neighbors averaging 
has the expected shape. Of course, clustering is 
not prone to this problem because it automati-  
cally smoothes its probability estimates. 

average error over APe9, normal vs. precision results 

nearest neighbors 
nearest neighbors. Ignodng recall errors 

• ' 0  
' ' ' ' ' ' 

100 150 200 250 300 350 400 
k 

Figure 4: Average error (not error reduction) 
using nearest-neighbors averaging on AP89, 
showing the effect of ignoring recall mistakes. 

Finally, Figure 5 presents the results of 
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our AP90unseen experiments. Again, the use 
of similarity information provides bet ter- than- 
baseline performance, but, due to the relative 
difficulty of the decision task in these exper- 
iments (indicated by the higher baseline er- 
ror rate with respect to AP89), the maximum 
average improvements are in the 6-8% range. 
The error rate  reductions posted by weighted- 
average clustering, nearest-centroid clustering, 
and nearest-neighbors averaging are all well 
within the s tandard  deviations of each other. 

I 

all clusters 
nearest cluster 

nearest neighbors 

-2 
0 50 100 150 200 250 300 350 400 

k 

Figure 5: Average error reduction with respect 
to backoff on AP90unseen test sets. As in the 
AP89 case, the nonmonotonici ty  of the nearest- 
neighbors averaging curve is due to recall errors. 

4 C o n c l u s i o n  

In our experiments,  the performances of distri- 
butional clustering and nearest-neighbors aver- 
aging proved to be in general very similar: only 
in the unor thodox AP89 setting did nearest- 
neighbors averaging clearly yield bet ter  error 
rates. Overall, both methods achieved peak per- 
formances at relatively small values of k, which 
is gratifying from a computat ional  point of view. 

Some questions remain. We observe tha t  
distributional clustering seems to suffer higher 
variance. It is not clear whether  this is due 
to poor est imates of the KL divergence to cen- 
troids, and thus cluster membership, for rare 
nouns, or to noise sensitivity in the search for 
cluster splits. Also, weighted-average clustering 
never seems to outperform the nearest-centroid 
method,  suggesting tha t  the advantages of prob- 
abilistic clustering over "hard" clustering may  
be computat ional  ra ther  than  in modeling el- 



fectiveness (Boolean clustering is NP-complete 
(Brucker, 1978)). Last but not least, we do not 
yet have a principled explanation for the similar 
performance of nearest-neighbors averaging and 
distributional clustering. Further experiments, 
especially in other tasks such as language mod- 
eling, might help tease apart  the two methods 
or bet ter  unders tand the reasons for their simi- 
larity. 
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