
Conditions on Consistency of
Probabilistic Tree Adjoining Grammars*

A n o o p S a r k a r
Dept. of C o m p u t e r and Informat ion Science

Universi ty of Pennsylvania
200 South 33rd Street ,

Phi ladelphia , PA 19104-6389 USA
anoop@linc, cis. upenn, edu

A b s t r a c t

Much of the power of probabilistic methods in
modelling language comes from their ability to
compare several derivations for the same string
in the language. An important starting point
for the s tudy of such cross-derivational proper-
ties is the notion of consistency. The probabil-
ity model defined by a probabilistic grammar is
said to be consistent if the probabilities assigned
to all the strings in the language sum to one.
From the literature on probabilistic context-free
grammars (CFGs), we know precisely the con-
ditions which ensure that consistency is true for
a given CFG. This paper derives the conditions
under which a given probabilistic Tree Adjoin-
ing Grammar (TAG) can be shown to be con-
sistent. It gives a simple algorithm for checking
consistency and gives the formal justification
for its correctness. The conditions derived here
can be used to ensure that probability models
that use TAGs can be checked for deficiency
(i.e. whether any probability mass is assigned
to strings that cannot be generated).

1 I n t r o d u c t i o n

Much of the power of probabilistic methods
in modelling language comes from their abil-
ity to compare several derivations for the same
string in the language. This cross-derivational
power arises naturally from comparison of vari-
ous derivational paths, each of which is a prod-
uct of the probabilities associated with each step
in each derivation. A common approach used
to assign structure to language is to use a prob-
abilistic grammar where each elementary rule

* This research was partially supported by NSF grant
SBR8920230 and ARO grant DAAH0404-94-G-0426.
The author would like to thank Aravind Joshi, Jeff Rey-
nat, Giorgio Satta, B. Srinivas, Fei Xia and the two
anonymous reviewers for their valuable comments.

or production is associated with a probability.
Using such a grammar, a probability for each
string in the language is computed. Assum-
ing that the probability of each derivation of a
sentence is well-defined, the probability of each
string in the language is simply the sum of the
probabilities of all derivations of the string. In
general, for a probabilistic grammar G the lan-
guage of G is denoted by L(G). Then if a string
v is in the language L(G) the probabilistic gram-
mar assigns v some non-zero probability.

There are several cross-derivational proper-
ties that can be studied for a given probabilis-
tic grammar formalism. An important starting
point for such studies is the notion of consis-
tency. The probability model defined by a prob-
abilistic grammar is said to be consistent if the
probabilities assigned to all the strings in the
language sum to 1. That is, if Pr defined by a
probabilistic grammar, assigns a probability to
each string v 6 E*, where Pr(v) = 0 ifv ~ L(G),
then

Pr(v) = i (i)
veL(G)

From the literature on probabilistic context-
free grammars (CFGs) we know precisely the
conditions which ensure that (1) is true for a
given CFG. This paper derives the conditions
under which a given probabilistic TAG can be
shown to be consistent.

TAGs are important in the modelling of nat-
ural language since they can be easily lexical-
ized; moreover the trees associated with words
can be used to encode argument and adjunct re-
lations in various syntactic environments. This
paper assumes some familiarity with the TAG
formalism. (Joshi, 1988) and (Joshi and Sch-
abes, 1992) are good introductions to the for-
malism and its linguistic relevance. TAGs have

1164

been shown to have relations with both phrase-
structure grammars and dependency grammars
(Rambow and Joshi, 1995) and can handle
(non-projective) long distance dependencies.

Consistency of probabilistic TAGs has prac-
tical significance for the following reasons:

• The conditions derived here can be used
to ensure that probability models that use
TAGs can be checked for deficiency.

• Existing EM based estimation algorithms
for probabilistic TAGs assume that the
property of consistency holds (Schabes,
1992). EM based algorithms begin with an
initial (usually random) value for each pa-
rameter. If the initial assignment causes
the grammar to be inconsistent, then it-
erative re-estimation might converge to an
inconsistent grammar 1.

• Techniques used in this paper can be used
to determine consistency for other proba-
bility models based on TAGs (Carroll and
Weir, 1997).

2 N o t a t i o n

In this section we establish some notational con-
ventions and definitions that we use in this pa-
per. Those familiar with the TAG formalism
only need to give a cursory glance through this
section.

A probabilistic TAG is represented by
(N, E, 2:, A, S, ¢) where N, E are, respectively,
non-terminal and terminal symbols. 2: U ,4 is a
set of trees termed as elementary trees. We take
V to be the set of all nodes in all the elementary
trees. For each leaf A E V, label(A) is an ele-
ment from E U {e}, and for each other node A,
label(A) is an element from N. S is an element
from N which is a distinguished start symbol.
The root node A of every initial tree which can
start a derivation must have label(A) = S.

2: axe termed initial trees and ,4 are auxil-
iary trees which can rewrite a tree node A E V.
This rewrite step is called a d j u n c t i o n . ¢ is a
function which assigns each adjunction with a
probabili ty and denotes the set of parameters

1Note that for CFGs it has been shown in (Chaud-
hari et al., 1983; S~nchez and Bened~, 1997) that inside-
outside reestimation can be used to avoid inconsistency.
We will show later in the paper that the method used to
show consistency in this paper precludes a straightfor-
ward extension of that result for TAGs.

in the model. In practice, TAGs also allow a
leaf nodes A such that label(A) is an element
from N. Such nodes A are rewritten with ini-
tial trees from I using the rewrite step called
s u b s t i t u t i o n . Except in one special case, we
will not need to treat substi tut ion as being dis-
tinct from adjunction.

For t E 2: U .4, `4(t) are the nodes in tree
t that can be modified by adjunction. For
label(A) E N we denote Adj(label(A)) as the
set of trees that can adjoin at node A E V.
The adjunction of t into N E V is denoted by
N ~-~ t. No adjunction at N E V is denoted
by N ~ nil. We assume the following proper-
ties hold for every probabilistic TAG G that we
consider:

1. G is lexicalized. There is at least one
leaf node a that lexicalizes each elementary
tree, i.e. a E E.

2. G is proper. For each N E V,

¢ (g ~-~ nil) + ~ ¢ (g ~-+ t) = 1
t

.

.

Adjunction is prohibited on the foot node
of every auxiliary tree. This condition is
imposed to avoid unnecessary ambiguity
and can be easily relaxed.

There is a distinguished non-lexicalized ini-
tial tree T such that each initial tree rooted
by a node A with label(A) = S subst i tutes
into T to complete the derivation. This en-
sures that probabilities assigned to the in-
put string at the start of the derivation are
well-formed.

We use symbols S, A, B , . . . to range over V,
symbols a , b , c , . . , to range over E. We use
t l , t 2 , . . , to range over I U A and e to denote
the empty string. We use Xi to range over all i
nodes in the grammar.

3 A p p l y i n g p r o b a b i l i t y m e a s u r e s t o
T r e e A d j o i n i n g L a n g u a g e s

To gain some intuition about probabili ty assign-
ments to languages, let us take for example, a
language well known to be a tree adjoining lan-
guage:

L(G) = {anbncndnln > 1}

1165

It seems that we should be able to use a func-
tion ¢ to assign any probability distribution to
the strings in L(G) and then expect that we can
assign appropriate probabilites to the adjunc-
tions in G such that the language generated by
G has the same distribution as that given by
¢. However a function ¢ that grows smaller
by repeated multiplication as the inverse of an
exponential function cannot be matched by any
TAG because of the constant growth property of
TAGs (see (Vijay-Shanker, 1987), p. 104). An
example of such a function ¢ is a simple Pois-
son distribution (2), which in fact was also used
as the counterexample in (Booth and Thomp-
son, 1973) for CFGs, since CFGs also have the
constant growth property.

1
¢(anbncndn) = e. n! (2)

This shows that probabilistic TAGs, like CFGs,
are constrained in the probabilistic languages
that they can recognize or learn. As shown
above, a probabilistic language can fail to have
a generating probabilistic TAG.

The reverse is also true: some probabilis-
tic TAGs, like some CFGs, fail to have a
corresponding probabilistic language, i.e. they
are not consistent. There are two reasons
why a probabilistic TAG could be inconsistent:
"dirty" grammars, and destructive or incorrect
probabili ty assignments.

" D i r t y " g r a m m a r s . Usually, when applied
to language, TAGs are lexicalized and so prob-
abilities assigned to trees are used only when
the words anchoring the trees are used in a
derivation. However, if the TAG allows non-
lexicalized trees, or more precisely, auxiliary
trees with no yield, then looping adjunctions
which never generate a string are possible. How-
ever, this can be detected and corrected by a
simple search over the grammar. Even in lexi-
calized grammars, there could be some auxiliary
trees that are assigned some probability mass
but which can never adjoin into another tree.
Such auxiliary trees are termed unreachable and
techniques similar to the ones used in detecting
unreachable productions in CFGs can be used
here to detect and eliminate such trees.

Destructive probability assignments.
This problem is a more serious one, and is the
main subject of this paper. Consider the prob-

abilistic TAG shown in (3) 2.

t l ~1 t2 $2

! S3

12-o ¢(S1 t2) = 1.o
¢($2 ~+ t2) = 0.99

-+ ni l) = 0.01
¢($3 ~-+ t2) = 0.98
¢($3 ~ nd) = 0.02 (3)

Consider a derivation in this TAG as a genera-
tive process. It proceeds as follows: node $1 in
tl is rewritten as t2 with probabil i ty 1.0. Node
$2 in t2 is 99 times more likely than not to be
rewritten as t2 itself, and similarly node $3 is 49
times more likely than not to be rewrit ten as t2.
This however, creates two more instances of $2
and $3 with same probabilities. This continues,
creating multiple instances of t2 at each level of
the derivation process with each instance of t2
creating two more instances of itself. The gram-
mar itself is not malicious; the probabili ty as-
signments are to blame. It is important to note
that inconsistency is a problem even though for
any given string there are only a finite number
of derivations, all halting. Consider the prob-
ability mass function (pmf) over the set of all
derivations for this grammar. An inconsistent
grammar would have a pmfwhich assigns a large
portion of probabili ty mass to derivations that
are non-terminating. This means there is a fi-
nite probability the generative process can enter
a generation sequence which has a finite proba-
bility of non-termination.

4 C o n d i t i o n s fo r C o n s i s t e n c y

A probabilistic TAG G is consistent if and only
if:

Pr(v) = 1 (4)
veLCG)

where Pr(v) is the probabili ty assigned to a
string in the language. If a grammar G does
not satisfy this condition, G is said to be incon-
sistent.

To explain the conditions under which a prob-
abilistic TAG is consistent we will use the TAG

2The subscripts are used as a simple notation to
uniquely refer to the nodes in each elementary tree. They
are not part of the node label for purposes of adjunction.

1166

in (5) as an example.

tl ~ t2

¢(A1 ~-~ t2) = 0.8
¢(A1 ~-+ nil) = 0.2

B1 A*

I

I
a2

B* a3

¢(A2 ~-~ t2) = 0.2 ¢(B2 ~-~ t3) = 0.1
¢ (A 2 ~ + n i l) = 0 . 8 ¢ (B 2 ~ n i l) = 0 . 9
¢(B1 ~+ t3) = 0.2
¢(B1 ~-+ nil) = 0.8
¢(A3 ~-~ t2) = 0.4
¢(A3 ~-~ nil) = 0.6 (5)

From this grammar, we compute a square ma-
trix A4 which of size IVI, where V is the set
of nodes in the grammar that can be rewrit-
ten by adjunction. Each AzIij contains the ex-
pected value of obtaining node Xj when node
Xi is rewritten by adjunction at each level of a
TAG derivation. We call Ad the stochastic ex-
pectation matrix associated with a probabilistic
TAG.

To get A4 for a grammar we first write a ma-
trix P which has IVI rows and I I U A[columns.
An element Pij corresponds to the probability
of adjoining tree tj at node Xi, i.e. ¢(Xi ~'+ t j) 3.

t l t2

A1 0 0.8
A2 0 0.2

P= BI 0 0
A3 0 0.4
B2 0 0

t3

0
0

0.2
0

0.1

We then write a matrix N which has [I U A[
rows and IV[columns. An element Nij is 1.0 if
node Xj is a node in tree ti.

N =

A1 A2 B1 A3 B2

t 1 [1.0 0 0 0 0]
t2 [0 1.0 1.0 1.0 0] t3 0 0 0 0 1.0

Then the stochastic expectation matrix A4 is
simply the product of these two matrices.

3Note that P is not a row stochastic matrix. This
is an important difference in the construction of .h4 for
TAGs when compared to CFGs. We will return to this
point in §5.

. M = P . N =

A1
A2
B1
A3
B2

A1 A2 B1 A3 B2
0 0.8 0.8 0.8 0
0 0.2 0.2 0.2 0
0 0 0 0 0.2
0 0.4 0.4 0.4 0
0 0 0 0 0.1

By inspecting the values of A4 in terms of the
grammar probabilities indicates that .h4ij con-
tains the values we wanted, i.e. expectation of
obtaining node Aj when node Ai is rewritten by
adjunction at each level of the TAG derivation
process.

By construction we have ensured that the
following theorem from (Booth and Thomp-
son, 1973) applies to probabilistic TAGs. A
formal justification for this claim is given in
the next section by showing a reduction of the
TAG derivation process to a multitype Galton-
Watson branching process (Harris, 1963).

T h e o r e m 4.1 A probabilistic grammar is con-
sistent if the spectral radius p(A4) < 1, where
,h,4 is the stochastic expectation matrix com-
puted from the grammar. (Booth and Thomp-
son, 1973; Soule, 1974)

This theorem provides a way to determine
whether a grammar is consistent. All we need to
do is compute the spectral radius of the square
matrix A4 which is equal to the modulus of the
largest eigenvalue of • . If this value is less than
one then the grammar is consistent 4. Comput-
ing consistency can bypass the computation of
the eigenvalues for A4 by using the following
theorem by Ger~gorin (see (Horn and Johnson,
1985; Wetherell, 1980)).

T h e o r e m 4.2 For any square matrix .h4,
p(.M) < 1 if and only if there is an n > 1
such that the sum of the absolute values of
the elements of each row of .M n is less than
one. Moreover, any n' > n also has this prop-
erty. (GerSgorin, see (Horn and Johnson, 1985;
Wetherell, 1980))

4The grammar may be consistent when the spectral
radius is exactly one, but this case involves many special
considerations and is not considered in this paper. In
practice, these complicated tests are probably not worth
the effort. See (Harris, 1963) for details on how this
special case can be solved.

1167

This makes for a very simple algorithm to
check consistency of a grammar. We sum the
values of the elements of each row of the stochas-
tic expectation matrix A4 computed from the
grammar. If any of the row sums are greater
than one then we compute A42, repeat the test
and compute :~422 if the test fails, and so on un-
til the test succeeds 5. The algorithm does not
halt ifp(A4) _> 1. In practice, such an algorithm
works bet ter in the average case since compu-
tation of eigenvalues is more expensive for very
large matrices. An upper bound can be set on
the number of iterations in this algorithm. Once
the bound is passed, the exact eigenvalues can
be computed.

For the grammar in (5) we computed the fol-
lowing stochastic expectation matrix:

0 0.8 0.8
0 0.2 0.2

A 4 = 0 0 0
0 0.4 0.4
0 0 0

The first row sum is 2.4.

0.8 0
0.2 0

0 0.2
0.4 0

0 0.1

Since the sum of
each row must be less than one, we compute the
power matrix ,~v/2. However, the sum of one of
the rows is still greater than 1. Continuing we
compute A422 .

j ~ 22

0 0.1728 0.1728 0.1728 0.0688
0 0.0432 0.0432 0.0432 0.0172
0 0 0 0 0.0002
0 0.0864 0.0864 0.0864 0.0344
0 0 0 0 0.0001

This time all the row sums are less than one,
hence p(,~4) < 1. So we can say that the gram-
mar defined in (5) is consistent. We can confirm
this by computing the eigenvalues for A4 which
are 0, 0, 0.6, 0 and 0.1, all less than 1.

Now consider the grammar (3) we had con-
sidered in Section 3. The value of .£4 for that
grammar is computed to be:

$1 s2 s3 slI0 10 10]
.A~(3) : $2 0 0.99 0.99

$3 0 0.98 0.98

SWe compute A422 and subsequently only successive
powers of 2 because Theorem 4.2 holds for any n' > n.
This permits us to use a single matr ix at each step in
the algorithm.

The eigenvalues for the expectation matrix
M computed for the grammar (3) are 0, 1.97
and 0. The largest eigenvalue is greater than
1 and this confirms (3) to be an inconsistent
grammar.

5 T A G D e r i v a t i o n s a n d B r a n c h i n g
P r o c e s s e s

To show that Theorem 4.1 in Section 4 holds
for any probabilistic TAG, it is sufficient to show
that the derivation process in TAGs is a Galton-
Watson branching process.

A Galton-Watson branching process (Harris,
1963) is simply a model of processes that have
objects that can produce additional objects of
the same kind, i.e. recursive processes, with cer-
tain properties. There is an initial set of ob-
jects in the 0-th generation which produces with
some probabili ty a first generation which in turn
with some probabili ty generates a second, and
so on. We will denote by vectors Z0, Z1, Z2 , . . .
the 0-th, first, second, . . . generations. There
are two assumptions made about Z0, Z1, Z2, . . . :

. The size of the n-th generation does not
influence the probabili ty with which any of
the objects in the (n + 1)-th generation is
produced. In other words, Z0, Z1 ,Z2 , . . .
form a Markov chain.

. The number of objects born to a parent
object does not depend on how many other
objects are present at the same level.

We can associate a generating function for
each level Zi. The value for the vector Zn is the
value assigned by the n-th iterate of this gen-
erating function. The expectat ion matrix A4 is
defined using this generating function.

The theorem at t r ibuted to Galton and Wat-
son specifies the conditions for the probabil i ty
of extinction of a family starting from its 0-th
generation, assuming the branching process rep-
resents a family tree (i.e, respecting the condi-
tions outlined above). The theorem states that
p(.~4) < 1 when the probabili ty of extinction is

1168

1.0.

t l

t2 (0)

t2 (0) t3 (1) t2 (1.1)

I I
t2 (1.1)t3 (o)

BI A

A 2 B 2 A

B 1 A B a3 al

A3 a2 B a3

I I
as AS

BI A

I I
, ~ as

I

level 0

level 1

level 2

level 3

level 4 (6)

. s (~)

The assumptions made about the generating
process intuitively holds for probabilistic TAGs.
(6), for example, depicts a derivation of the
string a2a2a2a2a3a3al by a sequence of adjunc-
tions in the grammar given in (5) 6. The parse
tree derived from such a sequence is shown in
Fig. 7. In the derivation tree (6), nodes in the
trees at each level i axe rewritten by adjunction
to produce a level i + 1. There is a final level 4
in (6) since we also consider the probability that
a node is not rewrit ten further, i.e. Pr(A ~-~ nil)
for each node A.

We give a precise statement of a TAG deriva-
tion process by defining a generating function
for the levels in a derivation tree. Each level
i in the TAG derivation tree then corresponds
to Zi in the Maxkov chain of branching pro-

6The numbers in parentheses next to the tree names
are node addresses where each tree has adjoined into
its parent. Recall the definition of node addresses in
Section 2.

cesses. This is sufficient to justify the use of
Theorem 4.1 in Section 4. The conditions on
the probability of extinction then relates to the
probability that TAG derivations for a proba-
bilistic TAG will not recurse infinitely. Hence
the probability of extinction is the same as the
probability that a probabilistic TAG is consis-
tent.

For each Xj E V, where V is the set of nodes
in the grammar where adjunction can occur,
we define the k-argument adjunction generating
]unction over variables s i , . . . , Sk corresponding
to the k nodes in V.

g j (s l , . . . , 8k) =

E
teAdj(Xj)u{niQ

¢(xj t). k¢*)

where, rj (t) = 1 iff node Xj is in tree t, r j (t) = 0
otherwise.

For example, for the grammar in (5) we get
the following adjunction generating functions
taking the variable sl, s2, 83, 84, 85 to represent
the nodes A1, A2, B1, A3, B2 respectively.

g 1 (8 1 , . . . , 8 5) =

¢(A1 ~"~t2)" 82"83" s 4 + ¢ (A 1 ~--~nil)

g2(81, . . . ,8~)=
¢(A2~-~t2) • 82"83" s4+¢(A2~--~nil)

g~(81, . . . ,85)=
¢(B1 ~-~t3)" 85+¢(B 1 ~ n i l)

g 4 (8 1 , . . . , 8 5) =

¢ (A 3 ~ - + t 2) " 8 2 " 8 3 " 8 4 4 . ¢ (A 3 ~ - + n i l)

g5(81,...,s~) =
¢(B2~-~t3)" ss+¢(B2~-~nil)

The n- th level generating function
Gn(sl , . . . ,sk) is defined recursively as fol-
lows.

G 0 (8 1 , . . . , S k) = 81

Gl(sl , . . . , sk) = gl(sl , . . . ,Sk)
G,(s l , . . . , s k) = G , - l [g l (s l , . . . , s k) , . . . ,

gk(sl, . . . ,Sk)]

For the grammar in (5) we get the following
level generating functions.

O 0 (s l , . . . , 85) = 81

1169

G I (S l , . . . , 85) = gl(Sl , . . . , 85)
= ¢(A1 ~-+ t2)" se . 83" 84 + ¢(A1 ~-+ nil)

= 0 . 8 . s 2 . s 3 . s 4 + 0 . 2

G2(s l , . . . ,85) =

¢(A2 ~-+ t2)[g2(sy , . . . , 85)][g3(81,.. . , 85)]

[g 4 (8 1 , . . . , 85)] -[- ¢(A2 ~ nil)
2 2 2 2 2 2

= 0.0882838485 + 0.03828384 + 0.0482838485 +

0.18828384 -t- 0.04s5 + 0.196

Examining this example, we can express
G i (s 1 , . . . , S k) as a s u m D i (s l , . . . , S k) + Ci,
where Ci is a constant and Di(.) is a polyno-
mial with no constant terms. A probabilistic
TAG will be consistent if these recursive equa-
tions terminate, i.e. iff

l imi+ooDi(s l , . . . , 8k) --+ 0

We can rewrite the level generation functions in
terms of the stochastic expectation matrix Ad,
where each element mi, j of .A4 is computed as
follows (cf. (Booth and Thompson, 1973)).

O g i (8 1 , . . . , 8k)

mi,j = 08j sl,...,sk=l
(8)

The limit condition above translates to the con-
dition that the spectral radius of 34 must be
less than 1 for the grammar to be consistent.

This shows that Theorem 4.1 used in Sec-
tion 4 to give an algorithm to detect inconsis-
tency in a probabilistic holds for any given TAG,
hence demonstrat ing the correctness of the al-
gorithm.

Note that the formulation of the adjunction
generating function means that the values for
¢ (X ~4 nil) for all X E V do not appear in
the expectation matrix. This is a crucial differ-
ence between the test for consistency in TAGs
as compared to CFGs. For CFGs, the expecta-
tion matrix for a grammar G can be interpreted
as the contribution of each non-terminal to the
derivations for a sample set of strings drawn
from L(G) . Using this it was shown in (Chaud-
hari et al., 1983) and (S£nchez and Bened~,
1997) that a single step of the inside-outside
algorithm implies consistency for a probabilis-
tic CFG. However, in the TAG case, the inclu-
sion of values for ¢ (X ~-+ nil) (which is essen-

tim if we are to interpret the expectation ma-
trix in terms of derivations over a sample set of
strings) means that we cannot use the method
used in (8) to compute the expectation matrix
and furthermore the limit condition will not be
convergent.

6 C o n c l u s i o n

We have shown in this paper the conditions
under which a given probabilistic TAG can be
shown to be consistent. We gave a simple al-
gorithm for checking consistency and gave the
formal justification for its correctness. The re-
sult is practically significant for its applications
in checking for deficiency in probabilistic TAGs.

R e f e r e n c e s
T. L. Booth and R. A. Thompson. 1973. Applying prob-

ability measures to abstract languages. IEEE Trans-
actions on Computers, C-22(5):442-450, May.

J. Carroll and D. Weir. 1997. Encoding frequency in-
formation in lexicalized grammars. In Proc. 5th Int'l
Workshop on Parsing Technologies IWPT-97, Cam-
bridge, Mass.

R. Chaudhari, S. Pham, and O. N. Garcia. 1983. Solu-
tion of an open problem on probabilistic grammars.
IEEE Transactions on Computers, C-32(8):748-750,
August.

T. E. Harris. 1963. The Theory of Branching Processes.
Springer-Verlag, Berlin.

R. A. Horn and C. R. Johnson. 1985. Matrix Analysis.
Cambridge University Press, Cambridge.

A. K. Joshi and Y. Schabes. 1992. Tree-adjoining gram-
mar and lexicalized grammars. In M. Nivat and
A. Podelski, editors, Tree automata and languages,
pages 409-431. Elsevier Science.

A. K. Joshi. 1988. An introduction to tree adjoining
grammars. In A. Manaster-Ramer, editor, Mathemat-
ics of Language. John Benjamins, Amsterdam.

O. Rainbow and A. Joshi. 1995. A formal look at de-
pendency grammars and phrase-structure grammars,
with special consideration of word-order phenomena.
In Leo Wanner, editor, Current Issues in Meaning-
Text Theory. Pinter, London.

J.-A. S£nchez and J.-M. Bened[. 1997. Consistency of
stochastic context-free grammars from probabilistic
estimation based on growth transformations. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 19(9):1052-1055, September.

Y. Schabes. 1992. Stochastic lexicalized tree-adjoining
grammars. In Proc. of COLING '92, volume 2, pages
426-432, Nantes, France.

S. Soule. 1974. Entropies of probabilistic grammars. Inf.
Control, 25:55-74.

K. Vijay-Shanker. 1987. A Study of Tree Adjoining
Grammars. Ph.D. thesis, Department of Computer
and Information Science, University of Pennsylvania.

C. S. Wetherell. 1980. Probabilistic languages: A re-
view and some open questions. Computing Surveys,
12(4):361-379.

1170

