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A b s t r a c t  

Since the early Sixties and Seventies it has been 
known that the regular and context-free lan- 
guages are characterized by definability in the 
monadic second-order theory of certain struc- 
tures. More recently, these descriptive charac- 
terizations have been used to obtain complex- 
ity results for constraint- and principle-based 
theories of syntax and to provide a uniform 
model-theoretic framework for exploring the re- 
lationship between theories expressed in dis- 
parate formal terms. These results have been 
limited, to an extent, by the lack of descrip- 
tive characterizations of language classes be- 
yond the context-free. Recently, we have shown 
that tree-adjoining languages (in a mildly gener- 
alized form) can be characterized by recognition 
by automata operating on three-dimensional 
tree manifolds, a three-dimensional analog of 
trees. In this paper, we exploit these automata- 
theoretic results to obtain a characterization 
of the tree-adjoining languages by definability 
in the monadic second-order theory of these 
three-dimensional tree manifolds. This not only 
opens the way to extending the tools of model- 
theoretic syntax to the level of TALs, but pro- 
vides a highly flexible mechanism for defining 
TAGs in terms of logical constraints. 

1 I n t r o d u c t i o n  

In the early Sixties Biichi (1960) and El- 
got (1961) established that a set of strings was 
regular iff it was definable in the weak monadic 
second-order theory of the natural numbers 
with successor (wS1S). In the early Seventies 
an extension to the context-free languages was 
obtained by Thatcher and Wright (1968) and 
Doner (1970) who established that the CFLs 
were all and only the sets of strings forming the 
yield of sets of finite trees definable in the weak 

monadic second-order theory of multiple succes- 
sors (wSnS). These descriptive characterizations 
have natural application to constraint- and 
principle-based theories of syntax. We have em- 
ployed them in exploring the language-theoretic 
complexity of theories in GB (Rogers, 1994; 
Rogers, 1997b) and GPSG (Rogers, 1997a) and 
have used these model-theoretic interpretations 
as a uniform framework in which to compare 
these formalisms (Rogers, 1996). They have 
also provided a foundation for an approach 
to principle-based parsing via compilation into 
tree-automata (Morawietz and Cornell, 1997). 
Outside the realm of Computational Linguis- 
tics, these results have been employed in the- 
orem proving with applications to program and 
hardware verification (Henriksen et al., 1995; 
Biehl et al., 1996; Kelb et al., 1997). The 
scope of each of these applications is limited, 
to some extent, by the fact that there are no 
such descriptive characterizations of classes of 
languages beyond the context-free. As a result, 
there has been considerable interest in extend- 
ing the basic results (MSnnich, 1997; Volger, 
1997) but, prior to the work reported here, the 
proposed extensions have not preserved the sim- 
plicity of the original results. 

Recently, in (Rogers, 1997c), we introduced 
a class of labeled three-dimensional tree-like 
structures (three-dimensional tree manifolds-- 
3-TM) which serve simultaneously as the 
derived and derivation structures of Tree 
Adjoining-Grammars (TAGs) in exactly the 
same way that labeled trees can serve as both 
derived and derivation structures for CFGs. We 
defined a class of automata over these struc- 
tures that are a generalization of tree-automata 
(which are, in turn, an analogous generalization 
of ordinary finite-state automata over strings) 
and showed that the class of tree manifolds rec- 
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ognized by these automata are exactly the class 
of tree manifolds generated by TAGs if one re- 
laxes the usual requirement that the labels of 
the root and foot of an auxiliary tree and the 
label of the node at which it adjoins all be iden- 
tical. 

Thus there are analogous classes of automata 
at the level of labeled three-dimensional tree 
manifolds, the level of labeled trees and at the 
level of strings (which can be understood as 
two- and one-dimensional tree manifolds) which 
recognize sets of structures that yield, respec- 
tively, the TALs, the CFLs, and the regular 
languages. Furthermore, the nature of the gen- 
eralization between each level and the next is 
simple enough that many results lift directly 
from one level to the next. In particular, we 
get that the recognizable sets at each level are 
closed under union, intersection, relative com- 
plement, projection, cylindrification, and de- 
terminization and that emptiness of the rec- 
ognizable sets is decidable. These are exactly 
the properties one needs to establish that rec- 
ognizability by the automata over a class of 
structures characterizes satisfiability of monadic 
second-order formulae in the language appropri- 
ate for that class. Thus, just as the proofs of clo- 
sure properties lift directly from one level to the 
next, Doner's and Thatcher and Wright's proofs 
that the recognizable sets of trees are char- 
acterized by definability in wSnS lift directly 
to a proof that the recognizable sets of three- 
dimensional tree manifolds are characterized by 
definability in their weak monadic second-order 
theory (which we will refer to as wSnT3). 

In this paper we carry out this program. In 
the next section we introduce 3-TMs, our uni- 
form notion of automaton over tree manifolds 
of arbitrary (finite) dimension and indicate the 
nature of the dimension-independent proofs of 
closure properties. In Section 3 we introduce 
wSnT3, the weak monadic second-order theory 
of n-branching 3-TM, and sketch the proof that 
the sets definable in wSnT3 are exactly those 
recognizable by 3-TM automata. This, when 
coupled with the characterization of TALs in 
Rogers (1997c), gives us our descriptive char- 
acterization of TALs: a set of strings is gener- 
ated by a TAG (modulo the generalization of 
Rogers (1997c)) iff it is the (string) yield of a 
set of 3-TM definable in wSnT3. Finally, in Sec- 

tion 4 we look at how working in wSnT3 allows a 
potentially more transparent means of defining 
TALs and, in particular, a simplified treatment 
of constraints on modifiers in TAGs. Due to the 
limited length of this note, many of the details 
are omitted. The reader is directed to (Rogers, 
1998) for a more complete treatment. 

2 T r e e  M a n i f o l d s  a n d  A u t o m a t a  

Tree manifolds are a generalization to arbi- 
trary dimensions of Gorn's tree domains (Gorn, 
1967). A tree domain is a set of node address 
drawn from N* (that is, a set of strings of nat- 
ural numbers) in which c is the address of the 
root and the children of a node at address w oc- 
cur at addresses w0, w l , . . . ,  in left-to-right or- 
der. To be well formed, a tree domain must 
be downward closed wrt to domination, which 
corresponds to being prefix closed, and left sib- 
ling closed in the sense that if wi occurs then 
so does wj for all j < i. In generalizing these, 
we can define a one-dimensional analog as string 
domains: downward closed sets of natural num- 
bers interpreted as string addresses. From this 
point of view, the address of a node in a tree 
domain can be understood as the sequence of 
string addresses one follows in tracing the path 
from the root to that node. If we represent N 
in unary (with n represented as 1 n) then the 
downward closure property of string domains 
becomes a form of prefix closure analogous to 
downward closure wrt domination in tree do- 
mains, tree domains become sequences of se- 
quences of ' l 's,  and the left-closure property of 
tree domains becomes a prefix closure property 
for the embedded sequences. 

Raising this to higher dimensions, we obtain, 
next, a class of structures in which each node 
expands into a (possibly empty) tree. A, three- 
dimensional tree manifold (3-TM), then, is set 
of sequences of tree addresses (that is, addresses 
of nodes in tree domains) tracing the paths from 
the root of one of these structures to each of 
the nodes in it. Again this must be downward 
closed wrt domination in the third dimension, 
equivalently wrt prefix, the sets of tree addresses 
labeling the children of any node must be down- 
ward closed wrt domination in the second di- 
mension (again wrt to prefix), and the sets of 
string addresses labeling the children of any 
node in any of these trees must be downward 
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closed wrt dominat ion in the first dimension 
(left-of, and, yet again, prefix).Thus 3-TM, tree 
domains (2-TM), and string domains (1-TM) 
can be defined uniformly as dth-order sequences 
of ' l ' s  which are hereditarily prefix closed. We 
will denote the set of all 3-TM as T d. For any 
alphabet E, a E-labeled d-dimensional tree man- 
ifold is a pair (T, r) where T is a d-TM and 
r : T ~ E is an assignment of labels in E to 
the nodes in T. We will denote the set of all 
E-labeled d-TM as T d. 

Mimicking the development of tree manifolds, 
we can define automata  over labeled 3-TM as a 
generalization of au tomata  over labeled tree do- 
mains which, in turn, can be understood as an 
analogous generalization of ordinary finite-state 
automata  over strings (labeled string domains). 
A d-TM automaton with state set Q and alpha- 
bet E is a finite set: 

J:[d _C ][] × Q x ~Q-1. 

The interpretation of a tuple (a, q, 7) E A d is 
that  if a node of a d-TM is labeled a and T 
encodes the assignment of states to its children, 
then that  node may be assigned state q. A run 
of an d-TM automaton A on a E-labeled d-TM 
7 = (T, r) is an assignment r : T -+ Q of states 
in Q to nodes in T in which each assignment 
is licensed by A. If we let Q0 c Q be any set 
of accepting states, then the set of (finite) E- 
labeled d-TM recognized by A, relative to Q0, 
is that  set for which there is a run of A that  
assigns the root a state in Q0. A set of d-TM 
is recognizable iff it is A(Qo) for some d-TM 
automaton ,4 and set of accepting states Q0. 

The strength of the uniform definition of d- 
TM automata  is that  many, even most, proper- 
ties of the sets they recognize can be proved 
uniformly-- independent ly  of their dimension. 
It is easy to see that  in the typical "cross- 
product" construction of the proof of closure 
under intersection, for instance, the dimension- 
ality of the TMs is a parameter  that  determines 
the type of the objects being manipulated but  
does not affect the manner  of their manipula- 
tion. Uniform proofs can be obtained for clo- 
sure of recognizable sets under determinization 
(in a bot tom-up sense), projection, cylindrifica- 
tion, Boolean operations and for decidability of 
emptiness. 

3 w S n T 3  

We are now in a position to build relational 
structures on d-dimensional tree manifolds. Let 
T d be the complete n-branching d-TM--that  in 
which every point has a child structure that  has 
depth n in all its ( d -  1) dimensions. Let 

-]-3 def 3 
= (Tn, '~I, '~2, '~3> 

where, for all x,y 6 T 3, x "~i y iff x is the im- 
mediate predecessor of y in the ith -dimension. 

The weak monadic second-order language of 
T 3 includes constants for each of the relations 
(we let them stand for themselves), the usual 
logical connectives, quantifiers and grouping 
symbols, and two countably infinite sets of vari- 
ables, one ranging over individuals (for which 
we employ lowercase) and one ranging over fi- 
nite subsets (for which we employ uppercase). 
If ~o(xl , . . . ,  xn, X 1 , . . . ,  Am) is a formula of this 
language with free variables among the xi and 
Xj, then we will assert that  it is satisfied in T 3 
by an assignment s (mapping the 'xi's to in- 
dividuals and 'Xj 's  to finite subsets) with the 
notat ion T 3 ~ ~ Is]. The set of all sentences 
of this language that  are satisfied by T~ is the 
weak monadic second-order theory of T 3, de- 
noted wSnT3. 

A set T of E-labeled 3-TM is definable in 
wSnT3 iff there is a formula ~r(XT, Xa)aez, 
with free variables among XT (interpreted as 
the domain of a tree) and Xa for each a E E 
(interpreted as the set of a-labeled points in T), 
such that  

(T,~) E T -~ '.- 
T[ b T,X  {p I = a}]. 

It should be reasonably easy to see that  any 
recognizable set can be defined by encoding the 
local TM of an accepting automaton in formu- 
lae in which the labels and states occur as free 
variables and then requiring every node to sat- 
isfy one of those formulae. One then requires 
the root to be labeled with an accepting state 
and "hides" the states by existentially binding 
them. 

The proof that  every set of trees definable in 
wSnT3 is recognizable, while a little more in- 
volved, is just a lift of the proofs of Doner and 
Thatcher  and Wright.The initial step is to show 
that  every formula in the language of wSnT3 
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can be reduced to equivalent formulae in which 
only set variables occur and which employ only 
the predicates X C_ Y (with the obvious inter- 
pretation) and X '~i Y (satisfied iff X and Y 
are both singleton and the sole element of X 
stands in the appropriate relation to the sole 
element of Y). It is easy to construct 3-TM au- 
tomata (over the alphabet 9~({X, Y}), where [P 
denotes power set) which accept trees encoding 
satisfying assignments for these atomic formu- 
lae. The extension to arbitrary formulae (over 
these atomic formulae) can then be carried out 
by induction on the structure of the formulae 
using the closure properties of the recognizable 
sets. 

4 D e f i n i n g  T A L s  in  w S n T 3  

The signature of wSnT3 is inconvenient for ex- 
pressing linguistic constraints. In particular, 
one of the strengths of the model-theoretic ap- 
proach is the ability to define long-distance re- 
lationships without having to explicitly encode 
them in the labels of the intervening nodes. 
We can extend the immediate predecessor re- 
lations to relations corresponding to (proper) 
above (within the 3-TM), domination (within a 
tree), and precedence (within a set of siblings) 
using: 

d e f  
X T~ i y *. .. x ~ y A ( 3 X ) [ X ( x )  A X ( y ) A  

( V z ) [ X ( z )  ~ ( z  ~ y V ( 3 ! z ' ) [ X ( z ' )  A z "~i z ' ] ) ] ] .  

Which simply asserts that there is a sequence 
of (at least two) points linearly ordered by '~i in 
which x precedes y. 

To extend these through the entire structure 
we have to address the fact that the two dimen- 
sional yield of a 3-TM is not well defined--there 
is nothing that determines which leaf of the tree 
expanding a node dominates the subtree rooted 
at that node. To resolve this, we extend our 
structures to include a set H picking out exactly 
one head in each set of siblings, with the "foot" 
of a tree being that leaf reached from the root 
by a path of all heads. Given H, it is possible to 

+ + 
define '~2 and '~1, variations of dominance and 
precedence 1 that are inherited by substructures 
in the appropriate way. At the same time, it is 
convenient to include the labels explicitly in the 
structures. A headed E-labeled 3-TM, then, is 

1Of course <3 + is jus t  ~3. 

a structure: 

(T, <i, ~i, <~+, H, Pa) l<_i<a, a~g, 

where T is a rooted, connected subset of T 3 for 
some n. 

With this signature it is easy to define the 
set of 3-TM that captures a TAG in the sense 
that their 2-dimensional yields--the set of max- 
imal points wrt ,~+, ordered by 4 + and ,~+--form 
the set of trees derived by the TAG. Note that 
obligatory (OA) and null (NA) adjoining con- 
straints translate to a requirement that a node 
be (non-)maximal wrt ,~+. In our automata- 
theoretic interpretation of TAGs selective ad- 
joining (SA) constraints are encoded in the 
states. Here we can express them directly: a 
constraint specifying the modifier trees which 
may adjoin to an N node, for instance, can be 
stated as a condition on the label of the root 
node of trees immediately below N nodes. 

In general, of course, SA constraints depend 
not only on the attributes (the label) of a node, 
but also on the elementary tree in which it oc- 
curs and its position in that tree. Both of these 
conditions are actually expressions of the local 
context of the node. Here, again, we can ex- 
press such conditions directly--in terms of the 
relevant elements of the node's neighborhood. 
At least in some cases this seems likely to allow 
for a more general expression of the constraints, 
abstracting away from the irrelevant details of 
the context. 

Finally, there are circumstances in which the 
primitive locality of SA constraints in TAGs 
is inconvenient. Schabes and Shieber (1994), 
for instance, suggest allowing multiple adjunc- 
tions of modifier trees to the same node on 
the grounds that selectional constraints hold be- 
tween the modified node and each of its modi- 
fiers but, if only a single adjunction may occur 
at the modified node, only the first tree that 
is adjoined will actually be local to that node. 
They point out that, while it is possible to pass 
these constraints through the tree by encoding 
them in the labels of the intervening nodes, such 
a solution can have wide ranging effects on the 
overall grammar. As we noted above, the ex- 
pression of such non-local constraints is one of 
the strengths of the model-theoretic approach. 
We can state them in a purely natural way--as 
a simple restriction on the types of the modifier 
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trees which can occur below (in the ,~+ sense) 
the modified node. 

5 C o n c l u s i o n  

We have obtained a descriptive characterization 
of the TALs via a generalization of existing char- 
acterizations of the CFLs and regular languages. 
These results extend the scope of the model- 
theoretic tools for obtaining language-theoretic 
complexity results for constraint- and principle- 
based theories of syntax to the TALs and, carry- 
ing the generalization to arbitrary dimensions, 
should extend it to cover a wide range of mildly 
context-sensitive language classes. Moreover, 
the generalization is natural enough that the 
results it provides should easily integrate with 
existing results employing the model-theoretic 
framework to illuminate relationships between 
theories. Finally, we believe that this character- 
ization provides an approach to defining TALs 
in a highly flexible and theoretically natural 
way. 
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