
Parametric Types for Typed Attribute-Value Logic

Gerald P e n n
Universit~t Tfibingen
K1. Wilhelmstr . 113

72074 Tuebingen
Germany

gpenn@sfs.nphil .uni-tuebingen.de

A b s t r a c t

Parametric polymorphism has been combined
with inclusional polymorphism to provide nat-
ural type systems for Prolog (DH88), HiLog
(YFS92), and coristraint resolution languages
(Smo89), and, in linguistics, by HPSG-like
grammars to classify lists and sets of linguistic
objects (PS94), and by phonologists in represen-
tations of hierarchical structure (Kle91). This
paper summarizes the incorporation of para-
metric types into the typed attribute-value logic
of (Car92), thus providing a natural extension
to the type system for ALE (CP96). Following
(Car92), the concern here is not with models of
feature terms themselves, but with how to com-
pute with parametric types, and what different
kinds of information one can represent relative
to a signature with parametric types, than rel-
ative to a signature without them. This en-
quiry has yielded a more flexible interpretation
of parametric types with several specific proper-
ties necessary to conform to their current usage
by linguists and implementors who work with
feature-based formalisms.

1 M o t i v a t i o n

Linguists who avail themselves of attribute-
value logic normally choose whether to encode
information with subtypes or features on the
aesthetic basis of what seems intuitively to
capture their generalizations better. Linguists
working in LFG typically use one implicit type
for objects that bear features, and other types
(atoms) for only featureless objects. In HPSG,
the situation is less clear, both historically (se-
mantic relations, for example, used to be val-
ues of a RELN attribute, and are now sub-
types of a more general semantic type), and
synchronically (verbs, for example, are identi-
fied as (un)inverted and (non-)auxiliaries by two

boolean-valued features, AUX and INV, whereas
their form, e.g., finite, infinitive, gerund, is iden-
tified by a subtype of a single vform type). That
it makes, or at least should make, no difference
from a formal or implementational point of view
which encoding is used has been argued else-
where (Mos96; Pen-f).

HPSG's type system also includes parametric
types, e.g., Figure 1, from (PS94). In contrast

word ~hrase ¢list ~nelist(_X~.
\ 7 I / HE.~D:'2t
V. ,..~[f~ TAIL:list(X)

. . .

J_

Figure 1: A fragment of the HPSG type signa-
ture.

to the relative expressive potential of normal
typing and features, the expressive potential of
parametric types is not at all understood. In
fact, parametric types have never been formal-
ized in a feature logic or in a manner general
enough to capture their use in HPSG parsing so
that a comparison could even be drawn. This
paper summarizes such a formalization, 1 based
on the typed attribute-value logic of (Car92).
This logic is distinguished by its strong inter-
pretation of appropriateness, a set of condi-
tions that tell us which features an object of
a given type can have, and which types a fea-
ture's value can have. Its interpretation, total
well-typedness, says that every feature structure
must have an appropriate value for all and only
the appropriate features of its type. Previous
approaches have required that every parameter
of a subtype should be a parameter of all of its
supertypes, and vice versa; thus, it would not be

1 The full version of this paper presents a denotational
semantics of the logic described here.

1027

possible to encode Figure 1 because _1_ E list(X),
and if ± were parametric, then all other types
would be. 2 The present one eliminates this re-
striction (Section 2) by requiring the existence
of a simple most general type (which (Car92)'s
logic requires anyway), which is then used dur-
ing type-checking and inferencing to interpret
new parameters. All previous approaches deal
only with fixed-arity terms; and none but one
uses a feature logic, with the one, CUF (Dot92),
being an implementation that permits paramet-
ric lists only as a special case. The present ap-
proach (Section 4) provides a generalization of
appropriateness that permits both unrestricted
parametricity and incremental feature introduc-
tion.

In contrast to the other encoding trade-
off, the use of parametric types in HPSG lin-
guistics exhibits almost no variation. They
are used almost exclusively for encoding lists
(and, unconvincingly, sets), either with type
arguments as they are posited in (PS94), or
with general description-level arguments, e.g.,
list(LOCAL:CAT:HEAD:verb), the latter possibly
arising out of the erroneous belief that para-
metric types are just "macro" descriptions for
lists. Even in the former case, however, para-
metric types have as wide of a range of poten-
tial application to HPSG as simple types and
features do; and there is no reason why they
cannot be used as prolifically once they are un-
derstood. To use an earlier example, auxiliary,
inverted, and verb_form could all be parameters
of a parametric type, verb. In fact, parametri-
cally typed encodings yield more compact spec-
ifications than simply typed encodings because
they can encode products of information in their
parameters, like features. Unlike features, how-
ever, they can lend their parameters to appro-
priateness restrictions, thus refining the feature
structures generated by the signature to a closer
approximation of what is actually required in
the grammar theory itself.

It is possible, however, to regard paramet-
ric type signatures 3 as a shorthand for non-
parametric signatures. The interpretation of

2In this paper, the most general type will be called
.l_.

3By "signature," I refer to a part ia l order of types plus
feature appropriateness declarations. The part ial order
itself, I shall refer to as a "type (inheritance) hierarchy."

parametric type hierarchies is introduced in Sec-
tion 3 by way of establishing equivalent, infinite
non-parametric counterparts. Section 5 consid-
ers whether there are any finite counterparts,
i.e., whether in actual practice parametric sig-
natures are only as expressive as non-parametric
ones, and gives a qualified "yes."

In spite of this qualification, there is an easy
way to compute with parametric types directly
in an implementation, as described in Section 6.
The two most common previous approaches
have been to use the most general instance of a
parametric type, e.g. nelist(J_) without its ap-
propriateness, or manually to "unfold" a para-
metric type into a non-parametric sub-hierarchy
that suffices for a fixed grammar (e.g. Figure 2).
The former does not suffice even for fixed gram-

e l ~ t _ p h o n

l i s t _ s y n ~ ~ ~ e l i s t

list

Figure 2: A manually unfolded sub-hierarchy.

mars because it simply disables type checking
on feature values. The latter is error-prone, a
nuisance, and subject to change with the gram-
mar. As it happens, there is an automatic way
to perform this unfolding.

2 P a r a m e t r i c T y p e H i e r a r c h i e s

Parametric types are not types. They are func-
tions that provide access or a means of reference
to a set of types (their image) by means of ar-
gument types, or "parameters" (their domain).
Figure 1 has only unary functions; but in gen-
eral, parametric types can be n-ary functions
over n-tuples of types. 4 This means that hier-

4In this paper, "parametric type" will refer to such a
function, wri t ten as the name of the function, followed
by the appropriate number of "type variables," variables
that range over some set of types, in parentheses, e.g.
list(X). "Type" will refer to both "simple types," such as
1 or elist; and "ground instances" of parametr ic types,
i.e. types in the image of a parametr ic type function,
wri t ten as the name of the function followed by the ap-
propriate number of actual type parameters in paren-
theses, such as list(l-), set(psoa) or list(set(l-)). I will
use letters t, u, and v to indicate types; capital letters
to indicate type variables; capitalized words to indicate
feature names; p, q, and r for names of parametr ic types;
and g to indicate ground instances of parametr ic types,

1028

archies that use parametric types are not "type"
hierarchies, since they express a relationship be-
tween functions (we can regard simple types as
nullary parametric types):
Def in i t i on 1: A parametric (type) hierarchy is
a finite meet semilattice, (P, EP), plus a partial
argument assignment function, ap : P × P ×
Nat -~ Nat U {0}, in which:

• P consists of (simple and) parametric
types, (i.e. no ground instances of para-
metric types), including the simple most
general type, _1_,

• For p,q E P, ap(p,q , i) , written aq(i), is
defined iff p EP q and 1 <_ i <_ arity(p),
and

• 0 < aq(i) <_ rn, when it exists.

Meet semilatticehood, a requirement of
(Car92)'s logic as well, allows us to talk about
unification, because we have a unique most-
general unifier for every unifiable pair of types.
The argument assignment function encodes the
identification of parameters between a paramet-
ric type and its parametric subtype. The num-
ber, n, refers to the n th parameter of a paramet-
ric type, with 0 referring to a parameter that
has been dropped. In practice, this is normally
expressed by the names given to type variables.
In the parametric type hierarchy of Figure 1,
list and nelist share the same variable, X, be-

,~nelist[l~ is 1. If _ n e l i s t t l ~ = 0, then nelist c a u s e t~list k x l Ulist k l)
would use a different variable name. As a more
complicated example, in Figure 3, ad(1) = 1,

b (X , ~ e

.1_

Figure 3: A subtype that inherits type variables
from more than one supertype.

ad(2) = 3, aed(2) = 2, ad(1) = 0, and a± and ae
are undefined (1") for any pair in P × Nat.

3 I n d u c e d T y p e H i e r a r c h i e s

The relationship expressed between two func-
tions by EP, informally, is one between their im-
age sets under their domains, 5 while each image

where the arguments do not need to be expressed.
5One can restrict these domains with "parametric re-

strictions," a parallel to appropriateness restrictions on

set internally preserves the subsumption order-
ing of its domain. It is, thus, possible to think
of a parametric type hierarchy as "inducing" a
non-parametric type hierarchy, populated with
the ground instances of its parametric types,
that obeys both of these relationships.
Def in i t ion 2: Given parametric type hier-
archy, (P, E p , a) , the induced (type) hierarchy,
(I (P) , El) , is defined such that:

• I (P) is the smallest set, I, such that, for
every parametric type, p (X t , . . . , X n) E
P, and for every tuple, (t t . . . t n) E I n,
p (t l , . . . , tn)e I .

• p (t l , . . . , t n) EI q (u t , . . . ,urn) iff p EP q,
and, for all l < i < n , either at(i) = 0 or ti E t
u~(i).

It can easily be shown that (I (P) , EI) is a par-
tial order with a least element, namely .L, the
least element of P. Note that I (P) also contains
all of the simple types of P. In the case where
9rand92 are simple, gl EI g2 iff gl EP 92.

Figure 4 shows a fragment of the type hierar-
chy induced by Figure 1. If list and nclist had

nelist(,wo d~. .~el i~t(phrase)
' n "" "(si n " nelist(list(.l_)) ens (, g / . . " "

list (~ (phrase) l / l i s t ~ist (_k)). . .

t~sr(s z g r v ' - - - ~ l i s t ~)

Figure 4: Fragment induced by Figure 1.

not shared the same type variable ?,,nelistfl~
0), then it would have induced the type hier-
archy in Figure 5. In the hierarchy induced

n e l i s t (w o r ~ j n e l i s t (p h r a s e } i
nelist (s i g r~ .~ne l i s t (list (_l_))

l ist(word phrase) : cl),,flist(phrese) .
list (sig ..Llist (list (-L))

list(Z)

Figure 5: Another possible induced hierarchy.

feature values. This abstract assumes that these domains
are always the set of all types in the signature. This is
the most expressive case of parametric types, and the
worst case, computationally.

1029

by Figure 3, b(e,e) subsumes types d(e,Y,e),
for any type Y, for example d(e,c(e,e),e),
or d(e,b(_L,e),e), but not d(c(_L,e),e,e), since
eElc(_l_, e). Also, for any types, W, X, and Z,
c(W,e) subsumes d(X,e,Z).

The present approach permits parametric
types in the type signature, but only ground
instances in a grammar relative to that signa-
ture. If one must refer to "some list" or "every
list" within a grammar, for instance, one may
use l i s t (I) , while still retaining groundedness.
An alternative to this approach would be to at-
t empt to cope with type variable parameters
directly within descriptions. From a process-
ing perspective, this is problematic when clos-
ing such descriptions under total well-typing,
as observed in (Car92). The most general sat-
isfier of the description, list(X)A(HEAD:HEAD
"-" TAIL:HEAD), for example, is an infinite fea-
ture s tructure of the infinitely parametric type,
nelist(nelist(.., because X must be bound to
nelist(X).

For which P does it make sense to talk about
unification in I (P) , that is, when is I (P) a meet
semilattice? We can generalize the usual notion
of coherence from programming languages, so
that a subtype can add, and in certain cases
drop, parameters with respect to a supertype:

D e f i n i t i o n 3: (P, EP, ap) is semi-coherent if,
for a l lp , q E P such t h a t p Ep q, a l l1 _< i _<
arity(p), 1 <_ j <_ arity(q):

• a g (i) = i ,

• either aq(i) = 0 or for every chain, p =
Pl EP p2 E P . . . EP Pn = q, aq(i) =

,up._, t . . .aP~(i) . . .)) , and

• Ifpllpq$, then for all i and j for which there
is a k >_ 1 such that appUpq(i) = apqUpa(j) =
k, the set, {rip Up q EP r and (@(i) = 0 or
arq(j) = 0)} is empty or has a least element
(with respect to EP).

T h e o r e m 1: If (P, Ep, ap) is semi-coherent,
then (I (P) , E I) is a meet semilattice. In
particular, p (t i , . . . , t n) Ut q(u i , . . . ,Um) =
r (v i , . . . , v s) , where p tap q = r, and, for all

l < k < s ,

ti Ut u#

Vk = ti
Uj
_L

if there exist i and j such that
@(i) = k and arq(j) = k

if such an i, but no such j
if such a j , but no such i
if no such i or j .

So p (t i , . . . , tn) UI q (u i , . . . , Um)~ if p Up q]', or
there exist i, j , and k > 1 such that @(i) =
arq(j) = k, but ti UI ujl". 6

In the induced hierarchy of Figure 3, for ex-
ample, b(e, 2) Ut 5(2, e) = b(e,e); b(e,e) U1
c(_L) = die , 2, e); and b(e, e) and b(c(_L), e) are
not unifiable, as e and c(_l_) are not unifiable.
The first two conditions of semi-coherence en-
sure that ap, taken as a relation between pairs
of pairs of types and natural numbers, is an or-
der induced by the order, EP, where it is not,
taken as a function, zero. The third ensures that
joins are preserved even when a parameter is
d r o p p e d (ap = 0). Note that joins in an induced
hierarchy do not always correspond to joins in
a parametric hierarchy. In those places where
ap ---- 0, types can unify without a correspond-
ing unification in their parameters. Such is the
case in Figure 5, where every instance of l is t (X)
ultimately subsumes nelist(_k). One may also
note that induced hierarchies can have not only
deep infinity, where there exist infinitely long
subsumption chains, but broad infinity, where
certain types can have infinite supertype (but
never subtype) branching factors, as in the case
of nel i s t (I) or, in Figure 1, elist.

4 A p p r o p r i a t e n e s s

So far, we have formally considered only type
hierarchies, and no appropriateness. Appropri-
ateness constitutes an integral par t of a para-
metric type signature's expressive power, be-
cause the scope of its type variables extends to
include it.
D e f i n i t i o n 4: A parametric (type) signature is
a parametric hierarchy, (P, EP, ap>, along with
finite set of features, Featp, and a partial (para-
metric) appropriateness function, Appropp :
Featp x P --~ Q, where Q = UneNat Qn, and
each Qn is the smallest set satisfying the equa-
tion, Qn = { 1 , . . . , n } u {P(qi , . . . ,qk) lP E P a r -
ity k, qi E Qn}, such that:

6The proofs of these theorems can be found in the full
version of this paper.

1030

1. (Feature Introduction) For every feature
f E Featp, there is a most general
parametric type Intro(f) E P such that
Appropp(f , Intro(f)) is defined

2. (Upward Closure / Right Monotonicity)
For any p, q E P, if Appropp(f,p) is de-
fined and p EP q, then Appropp(f,q)
is also defined and Appropp(f,p) EQ
Appropp(f,q), where EQ is defined as
EI(P) with natural numbers interpreted
as universally quantified variables (e.g.
a(1) EQ b(1) iffVx E I(P).a(x) EI(P) b(x))

3. (Parameter Binding) For every p E P of ar-
ity n, for every f E Featp, if Appropp(f ,p)
is defined, then Appropp(f,p) e Qn.

Appropp maps a feature and the parametric
type for which it is appropriate to its value re-
striction on that parametric type. The first two
conditions are the usual conditions on (Car92)'s
appropriateness. The third says that the nat-
ural numbers in its image refer, by position,
to the parametric variables of the appropriate
parametric type - - we can use one of these
parameters wherever we would normally use a
type. Notice that ground instances of para-
metric types are permitted as value restrictions,
as are instances of parametric types whose pa-
rameters are bound to these parametric vari-
ables, as are the parametric variables them-
selves. The first is used in HPSG for fea-
tures such as SUBCAT, whose value must be
list(synsem); whereas the second and third
are used in the appropriateness specification for
nelist(X) in Figure 1. The use of parameters
in appropriateness restrictions is what conveys
the impression that ground instances of lists or
other parametric types are more related to their
parameter types than just in name.

It is also what prevents us from treating in-
stances of parametric types in descriptions as
instantiations of macro descriptions. These pu-
tative "macros" would be, in many cases, equiv-
alent only to infinite descriptions without such
macros, and thus would extend the power of
the description language beyond the limits of
HPSG's own logic and model theory. Lists in
HPSG would be one such case, moreover, as
they place typing requirements on every element
of lists of unbounded length. Ground instances
of parametric types are also routinely used in

appropriate value restrictions, whose extension
to arbitrary descriptions would substantially ex-
tend the power of appropriateness as well. This
alternative is considered further in the full ver-
sion of this paper.

A parametric signature induces a type hier-
archy as defined above, along with the appro-
priateness conditions on its ground instances,
determined by the substitution of actual param-
eters for natural numbers. Thus:
T h e o r e m 2: If Appropp satisfies properties
(1)-(3) in Definition 4, then Appropi(p) satisfies
properties (1) and (2).

5 S i g n a t u r e S u b s u m p t i o n

Now that parametric type signatures have been
formalized, one can ask whether parametric
types really add something to the expressive
power of typed attribute-value logic. There are
at least two ways in which to formalize that
question:
Def in i t ion 5: Two type signatures, P and Q,
are equivalent (P ~s Q) if there exists an order-
isomorphism (w.r.t. subsumption) between the
abstract totally well-typed feature structures of
P and those of Q.

Abstract totally well-typed feature structures
are the "information states" generated by sig-
natures. Formally, as (Car92) shows, they can
either be thought of as equivalence classes of
feature structures modulo alphabetic variants,
or as pairs of a type assignment function on
feature paths and a path equivalence relation.
In either case, they are effectively feature struc-
tures without their "nodes," which only bear in-
formation insofar as they have a type and serve
as the focus of potential instances of structure
sharing among feature path, where the traversal
of two different paths from the same node leads
to the same feature structure.

If, for every parametric signature P, there is
a finite non-parametric N such that P ~ s N,
then parametric signatures add no expressive
power at all - - their feature structures are
just those of some non-parametric signatures
painted a different color. This is still an open
question. There is, however, a weaker but still
relevant reading:
Def in i t ion 6: Type signature, P, subsumes
signature Q (P Es Q) if there exists an injec-
tion, f , from the abstract totally well-typed fea-

1031

ture structures of P to those of Q, such that:

• if FI mAT(P) F2J', then f (F t) UAT(Q) f(F2)J',

• otherwise, both exist and f(F1UAT(p)F2) =
/(F1) Uar(Q)/(F2).

If for every parametric P , there is a finite
non-parametric N such that P ___s N, then it
is possible to embed problems (specifically, uni-
fications) that we wish to solve from P into N,
solve them, and then map the answers back to
P . In this reading, linguist users who want to
think about their grammars with P must accept
no non-parametric imitations because N may
not have exactly the same structure of informa-
tion states; but an implementor of a feature-
based NLP system, for example, could secretly
perform all of the work for those grammars in
N, and no one would ever notice.

Under this reading, many parametrically
typed encodings add no extra expressive power:
D e f i n i t i o n 7: Parametric type hierarchy,
(P, EP, ap) is persistent if ap never attains zero.
T h e o r e m 3: For any persistent parametric
signature, P , there is a finite non-parametric
signature, N, such that P Es N.
If elist in Figure 1 retained list(X)'s parame-
ter, then HPSG's type hierarchy (without sets)
would be persistent. This is not an unreason-
able change to make. The encoding, however,
requires the use of junk slots, attr ibutes with
no empirical significance whose values serve as
workspace to store intermediate results.

There are at least some non-persistent P , in-
cluding the port ion of HPSG's type hierarchy
explicitly introduced in (PS94) (without sets),
that subsume a finite non-parametric N; but
the encodings are far worse. It can be proven,
for example, that for any such P, some of its
acyclic feature structures must be encoded by
cyclic feature structures in N; and the encoding
cannot be injective on the equivalence classes
induced by the types of P , i.e. some type in
N must encode the feature structures of more
than one type from P . While parametric types
may not be necessary for the grammar pre-
sented in (PS94) in the strict sense, their use in
that grammar does roughly correspond to cases
for which the alternative would be quite unap-
pealing. Of course, parametric types are not
the only extension that would ameliorate these
encodings. The addit ion of relational expres-

sions, functional uncertainty, or more power-
ful appropriateness restrictions can completely
change the picture.

6 F i n i t e n e s s

It would be ideal if, for the purposes of feature-
based NLP, one could simply forget the encod-
ings, unfold any parametric type signature into
its induced signature at compile-time and then
proceed as usual. This is not possible for sys-
tems that pre-compute all of their type opera-
tions, as the induced signature of any paramet-
ric signature with at least one non-simple type
contains infinitely many types. 7 On the other
hand, at least some pre-compilation of type in-
formation has proven to be an empirical neces-
sity for efficient processing. 8 Given that one will
only see finitely many ground instances of para-
metric types in any fixed theory, however, it is
sufficient to perform some pre-compilation spe-
cific to those instances, which will involve some
amount of unfolding. What is needed is a way
of determining, given a signature and a gram-
mar, what part of the induced hierarchy could
be needed at run-time, so that type operations
can be compiled only on that part.

One way to identify this part is to identify
some set of ground instances (a generator set)
that are necessary for computat ion, and close
that set under Ui(p):
T h e o r e m 4: If G C I(P), is finite, then the
sub-algebra of I(P) generated by G, I(G), is
finite.
[I(G)[is exponential in [G[in the worst case;
but if the maximum parametric depth of G can
be bounded (thus bounding [GD, then it is poly-
nomial in [P[, al though still exponential in the
maximum arity of P:
D e f i n i t i o n 8: Given a parametr ic hierar-
chy, P , the parametric depth of a type, t --
p(t l , . . . , tn) e I(P), ~(t), is 0 if n = 0, and
1 + maxl<i<n ~(ti) if n > O.
So, for example, 6(list(list(list(.l_))))= 3.
In practice, the maximum parametr ic depth
should be quite low, 9 as should the max imum

7With parametric restrictions (fn. 5), this is not nec-
essarily the case.

SEven in LFG, a sensible implementation will use de
facto feature co-occurrence constraints to achieve much
of the same effect.

9With lists, so far as I am aware, the potential de-
mand has only reached 6 -- 2 (MSI98) in the HPSG

1032

arity. A standard closure algorithm can be used,
although it should account for the commutativ-
ity and associativity of unification. One could
also perform the closure lazily during process-
ing to avoid a potentially exponential delay at
compile-time. All of the work, however, can be
performed at compile-time. One can easily con-
struct a generator set: simply collect all ground
instances of types attested in the grammar, or
collect them and add all of the simple types, or
add the simple types along with some extra set
of types distinguished by the user at compile-
time. The partial unfoldings like Figure 2 are
essentially manual computations of I(G).

Some alternatives to this approach are dis-
cussed in the full version of this paper. The
benefit of this one is that, by definition, I(G)
is always closed under Ili(p). In fact, I(G)
is the least set of types that is adequate
for unification-based processing with the given
grammar. Clearly, this method of sub-signature
extraction can be used even in the absence of
parametric types, and is a useful, general tool
for large-scale grammar design and grammar re-
use.

7 C o n c l u s i o n

This paper presents a formal definition of para-
metric type hierarchies and signatures, ex-
tending (Car92)'s logic to the parametric case
through equivalent induced non-parametric sig-
natures. It also extends appropriateness to the
common practice of giving the binding of para-
metric type variables scope over appropriate
value restrictions.

Two formalizations of the notion of expressive
equivalence for typed feature structures are also
provided. While the question of ~s-equivalence
remains to be solved, a weaker notion can be
used to establish a practical result for under-
standing what parametric types actually con-
tribute to the case of HPSG's type signature. A
general method for generating sub-signatures is
outlined, which, in the case of parametric type
signatures, can be used to process with signa-
tures that even have infinite equivalent induced
signatures, avoiding equivalent encoding prob-
lems altogether.

Parametric type compilation is currently be-
ing implemented for ALE using the method

literature to date.

given in Section 6.

References
(Car92) Carpenter, B., 1992. The Logic of

Typed Feature Structures. Cambridge Univer-
sity Press.

(CP96) Carpenter, B., and Penn, G., 1996. Ef-
ficient Parsing of Compiled Typed Attribute
Value Logic Grammars. In H. Bunt and M.
Tomita, eds., Recent Advances in Parsing
Technology, pp. 145-168. Kluwer.

(DH88) Dietrich, R. and Hagl, F., 1988. A Poly-
morphic Type System with Subtypes for Pro-
log. Proceedings of the 2nd European Sympo-
sium on Programming, pp. 79-93. Springer
LNCS 300.

(Dor92) Dorna, M., 1992. Erweiterung der
Constraint-Logiksprache CUF um ein Typsys-
tern. Diplomarbeit, Universit~it Stuttgart.

(Kle91) Klein, E., 1991. Phonological Data
Types. In S. Bird, ed., Declarative Perspec-
tives on Phonology, pp. 127-138. Edinburgh
Working Papers in Cognitive Science, 7.

(MSI98) Manning, C., Sag, I., and Iida,
M., 1998. The Lexical Integrity of Japanese
Causatives. To appear in G. Green and R.
Levine eds., Studies in Contemporary Phrase
Structure Grammar. Cambridge.

(Mos96) Moshier, M. A., 1995. Featureless
HPSG. In P. Blackburn and M. de Rijke, eds.,
Specifying Syntactic Structures. CSLI Publi-
cations.

(Pen-f) Penn, G., forthcoming. Ph.D. Disserta-
tion, Carnegie Mellon University.

(PS94) Pollard, C. and Sag, I., 1994. Head-
Driven Phrase Structure Grammar. Univer-
sity of Chicago Press.

(Smo89) Smolka, G., 1989. Logic Program-
ming over Polymorphically Order-Sorted
Types. Ph.D. Dissertation, Universit~it
Kaiserslautern.

(YFS92) Yardeni, E., Friiwirth, T. and Shapiro,
E., 1992. Polymorphically Typed Logic Pro-
grams. In F. Pfenning, ed., Types in Logic
Programming, pp. 63-90. MIT Press.

1033

