
Prefix Probabil it ies from Stochastic Tree Adjoining Grammars*

M a r k - J a n N e d e r h o f
DFKI

Stuhlsatzenhausweg 3,
D-66123 Saarbriicken,

Germany
nederhof@dfki, de

A n o o p S a r k a r
Dept. of Computer and Info. Sc.

Univ of Pennsylvania
200 South 33rd Street,

Philadelphia, PA 19104 USA
anoop©l inc , c i s . upenn, edu

G i o r g i o S a t t a
Dip. di Elettr . e Inf.

Univ. di Padova
via Gradenigo 6/A,
35131 Padova, I taly
satta@dei, unipd, it

A b s t r a c t

Language models for speech recognition typ-
ically use a probability model of the form
Pr(an[al,a2,... ,an-i). Stochastic grammars,
on the other hand, are typically used to as-
sign structure to utterances, A language model
of the above form is constructed from such
grammars by computing the prefix probabil-
ity ~we~* Pr(a l . - .ar tw) , where w represents
all possible terminations of the prefix al . . .an.
The main result in this paper is an algorithm
to compute such prefix probabilities given a
stochastic Tree Adjoining Grammar (TAG).
The algorithm achieves the required computa-
tion in O(n 6) time. The probability of sub-
derivations that do not derive any words in the
prefix, but contribute structurally to its deriva-
tion, are precomputed to achieve termination.
This algorithm enables existing corpus-based es-
timation techniques for stochastic TAGs to be
used for language modelling.

1 I n t r o d u c t i o n

Given some word sequence al ' . 'an-1, speech
recognition language models are used to hy-
pothesize the next word an, which could be
any word from the vocabulary F~. This
is typically done using a probability model
Pr(an[al,...,an-1). Based on the assumption
that modelling the hidden structure of nat-

* Par t of this research was done while the first and the
third authors were visiting the Insti tute for Research
in Cognitive Science, University of Pennsylvania. The
first author was supported by the German Federal Min-
istry of Education, Science, Research and Technology
(BMBF) in the framework of the VERBMOBIL Project un-
der Grant 01 IV 701 V0, and by the Priority Programme
Language and Speech Technology, which is sponsored by
NWO (Dutch Organization for Scientific Research). The
second and third authors were partially supported by
NSF grant SBR8920230 and ARO grant DAAH0404-94-
G-0426. The authors wish to thank Aravind Joshi for
his support in this research.

ural language would improve performance of
such language models, some researchers tried to
use stochastic context-free grammars (CFGs) to
produce language models (Wright and Wrigley,
1989; Jelinek and Lafferty, 1991; Stolcke, 1995).
The probability model used for a stochas-
tic grammar was ~we~* P r (a l . . - anw) . How-
ever, language models that are based on tri-
gram probability models out-perform stochastic
CFGs. The common wisdom about this failure
of CFGs is that trigram models are lexicalized
models while CFGs are not.

Tree Adjoining Grammars (TAGs) are impor-
tant in this respect since they are easily lexical-
ized while capturing the constituent structure
of language. More importantly, TAGs allow
greater linguistic expressiveness. The trees as-
sociated with words can be used to encode argu-
ment and adjunct relations in various syntactic
environments. This paper assumes some famil-
iarity with the TAG formalism. (Joshi, 1988)
and (Joshi and Schabes, 1992) are good intro-
ductions to the formalism and its linguistic rele-
vance. TAGs have been shown to have relations
with both phrase-structure grammars and de-
pendency grammars (Rambow and Joshi, 1995),
which is relevant because recent work on struc-
tured language models (Chelba et al., 1997) have
used dependency grammars to exploit their lex-
icalization. We use stochastic TAGs as such a
structured language model in contrast with ear-
lier work where TAGs have been exploited in
a class-based n-gram language model (Srinivas,
1996).

This paper derives an algorithm to compute
prefix probabilities ~we~* P r (a l . . . anw). The
algorithm assumes as input a stochastic TAG G
and a string which is a prefix of some string in
L(G), the language generated by G. This algo-
rithm enables existing corpus-based estimation
techniques (Schabes, 1992) in stochastic TAGs
to be used for language modelling.

953

2 N o t a t i o n

A stochastic Tree Adjoining Grammar (STAG)
is represented by a tuple (NT, E,:T, .A, ¢) where
N T is a set of nonterminal symbols, E is a set
of terminal symbols, 2: is a set of init ial trees
and .A is a set of a u x i l i a r y trees. Trees in :TU.A
are also called e l e m e n t a r y trees.

We refer to the root of an elementary tree t as
Rt. Each auxiliary tree has exactly one distin-
guished leaf, which is called the foot . We refer
to the foot of an auxiliary tree t as Ft. We let
V denote the set of all nodes in the elementary
trees.

For each leaf N in an elementary tree, except
when it is a foot, we define label(N) to be the
label of the node, which is either a terminal from
E or the empty string e. For each other node
N, label(N) is an element from NT.

At a node N in a tree such that label(N) •
N T an operation called a d j u n c t i o n can be ap-
plied, which excises the tree at N and inserts
an auxiliary tree.

Function ¢ assigns a probability to each ad-
junction. The probability of adjunction of t • A
at node N is denoted by ¢(t, N). The probabil-
ity that at N no adjunction is applied is denoted
by ¢(nil , N). We assume that each STAG G
that we consider is p r o p e r . That is, for each
N such that label(N) • NT,

¢(t, N) = 1.
tE.AU{nil}

For each non-leaAf node N we construct the
string cdn(N) = N1 . . . Nm from the (ordered)
list of children nodes N 1 , . . . , N m by defining,
for each d such that 1 < d < m, Nd = label(Nd)
in case label(Nd) • E U {e}, and N d = Nd oth-
erwise. In other words, children nodes are re-
placed by their labels unless the labels are non-
terminal symbols.

To simplify the exposition, we assume an ad-
ditional node for each auxiliary tree t, which
we denote by 3_. This is the unique child of the
actual foot node Ft. Tha t is, we change the def-
inition of cdn such that cdn(Ft) = 2_ for each
auxiliary tree t. We set

V ± = { N e V I label(N) • N T } U E U {3_}.

We use symbols a , b , c , . . , to range over E,
symbols v , w , x , . . , to range over E*, sym-
bols N, M , . . . to range over V ±, and symbols

~, fl, 7 , . . . to range over (V±) *. We use t, t ' , . . .
to denote trees in 2: U ,4 or subtrees thereof.

We define the predicate dft on elements from
V ± as dft(N) if and only if (i) N E V and N
dominates 3_, or (ii) N = 3_. We extend dft
to strings of the form N 1 . . . N m E (V±) * by
defining dft(N1. . . Nm) if and only if there is a
d (1 < d < m) such that dft(Nd).

For some logical expression p, we define
5(p) = 1 iff p is true, 5(p) = 0 otherwise.

3 O v e r v i e w

The approach we adopt in the next section to
derive a method for the computat ion of prefix
probabilities for TAGs is based on transforma-
tions of equations. Here we informally discuss
the general ideas underlying equation transfor-
mations.

Let w = a la2 . . . an E ~* be a string and let
N E V ±. We use the following representation
which is s tandard in tabular methods for TAG
parsing. An i t e m is a tuple [N, i, j, f l , f2] rep-
resenting the set of all trees t such that (i) t is a
subtree rooted at N of some derived elementary
tree; and (ii) t's root spans from position i to
position j in w, t's foot node spans from posi-
tion f l to position f2 in w. In case N does not
dominate the foot, we set f l = f2 = - . We gen-
eralize in the obvious way to items It, i, j , f l , f2],
where t is an elementary tree, and [a, i, j, f l , f2],
where cdn (N) = al~ for some N and/3.

To introduce our approach, let us start with
some considerations concerning the TAG pars-
ing problem. When parsing w with a TAG G,
one usually composes items in order to con-
struct new items spanning a larger portion of
the input string. Assume there are instances of
auxiliary trees t and t' in G, where the yield of
t', apart from its foot, is the empty string. If
¢(t, N) > 0 for some node N on the spine of t',
and we have recognized an item [Rt, i , j , f l , f2],
then we may adjoin t at N and hence deduce
the existence of an item [Rt,,i,j, f l , f2] (see
Fig. l(a)). Similarly, if t can be adjoined at
a node N to the left of the spine of t' and
f l = f2, we may deduce the existence of an item
[Rt, , i, j, j, j] (see Fig. l(b)). Importantly, one
or more other auxiliary trees with empty yield
could wrap the tree t' before t adjoins. Adjunc-
tions in this situation are potentially nontermi-
hating.

One may argue that situations where auxil-
iary trees have empty yield do not occur in prac-
tice, and are even by definition excluded in the

954

(a) R t,

t t ~

(b) R,,

Figure 1: Wrapping in auxiliary trees with
empty yield

case of lexicalized TAGs. However, in the com-
putation of the prefix probability we must take
into account trees with non-empty yield which
behave like trees with empty yield because their
lexical nodes fall to the right of the right bound-
ary of the prefix string. For example, the two
cases previously considered in Fig. 1 now gen-
eralize to those in Fig. 2.

Rt* Rtl

e ~ s p i n e

i f ~ f 2 n i flff/~2 n
E

C

Figure 2: Wrapping of auxiliary trees when
computing the prefix probability

To derive a method for the computation of
prefix probabilities, we give some simple recur-
sive equations. Each equation decomposes an
item into other items in all possible ways, in
the sense that it expresses the probability of
that item as a function of the probabilities of
items associated with equal or smaller portions
of the input.

In specifying the equations, we exploit tech-
niques used in the parsing of incomplete in-
put (Lang, 1988). This allows us to compute
the prefix probability as a by-product of com-
puting the inside probability.

In order to avoid the problem of nontermi-
nation outlined above, we transform our equa-
tions to remove infinite recursion, while preserv-
ing the correctness of the probability computa-
tion. The transformation of the equations is
explained as follows. For an item I, the span
of I, written a(I) , is the 4-tuple representing
the 4 input positions in I. We will define an
equivalence relation on spans that relates to the
portion of the input that is covered. The trans-
formations that we apply to our equations pro-
duce two new sets of equations. The first set
of equations are concerned with all possible de-
compositions of a given item I into set of items
of which one has a span equivalent to that of I
and the others have an empty span. Equations
in this set represent endless recursion. The sys-
tem of all such equations can be solved indepen-
dently of the actual input w. This is done once
for a given grammar.

The second set of equations have the property
that, when evaluated, recursion always termi-
nates. The evaluation of these equations com-
putes the probability of the input string modulo
the computation of some parts of the derivation
that do not contribute to the input itself. Com-
bination of the second set of equations with the
solutions obtained from the first set allows the
effective computation of the prefix probability.

4 C o m p u t i n g P r e f i x P r o b a b i l i t i e s

This section develops an algorithm for the com-
putation of prefix probabilities for stochastic
TAGs.

4.1 Genera l e q u a t i o n s
The prefix probability is given by:

P r (a l . . . a n w) = ~ P([t ,O,n,-,-]) ,
wEE* fEZ

where P is a function over items recursively de-
fined as follows:

P([t , i , j , f l , f2]) = P([Rt, i , j , f l , f2]); (1)
P ([t ~ N , i , j , - , -]) = (2)

P ([a , i , k , - , -]) . P ([N , k , j , - , -]) ,
k(i < k < j)

if a ¢ e A -~dft(aN);

P([t~N, i, j, f l , f2]) = (3)

Z P ([a , i , k , - , -]) - P ([N , k , j , f l , f2]) ,
k(i < k < fl)

if ~ ¢ ¢ A dft(g);

955

P([aN, i, j, f l , f2]) = (4)

P([a, i, k, f l , f2]). P([N, k, j, - , -]) ,
k(f2 <_ k <_ j)

i f # c ^

P([N, i, j, f l , /2]) = (5)
¢(nil , N). P([cdn(N), i,j, fl, f2]) +

P([cdn(N), f~, f~, f~, f2]) .
f~,f~(i S f~ S fl A f2 ~_ flo S J)

¢(t, N) . P([t, i , j , f[, f~]),
tEA

if N • V A dft(N);

P ([g , i , j , - , -]) = (6)
¢(ni l , N) . P([cdn(N), i , j , - , -]) +

P([cdn(N), f~, f~, - , -]) .

y ~ ¢(t, N) . P([t , i , j , f[, f~]) ,
tEA

if N • V A -,dfl(N);
P ([a , i , j , - , -]) = (7)

+ 1 = j ^ aj = a) + = j = n);

P([-l-,i,j, f l , f2]) = (f(i = f l A j = f2); (8)
P([e, i , j , - , -]) = (f(i = j) . (9)

Term P([t, i, j, f l , f2]) gives the inside probabil-
ity of all possible trees derived from elementary
tree t, having the indicated span over the input.
This is decomposed into the contr ibut ion of each
single node of t in equations (1) th rough (6).
In equat ions (5) and (6) the contr ibut ion of a
node N is de te rmined by the combinat ion of
the inside probabilit ies of N ' s children and by
all possible adjunet ions at N. In (7) we rec-
ognize some terminal symbol if it occurs in the
prefix, or ignore its contr ibut ion to the span if it
occurs after the last symbol of the prefix. Cru-
cially, this step allows us to reduce the compu-
ta t ion of prefix probabilit ies to the computa t ion
of inside probabilities.

4.2 T e r m i n a t i n g e q u a t i o n s
In general, the recursive equations (1) to (9)
are not directly computable . This is because
the value of P([A, i, j, f , if]) might indirectly de-
pend on itself, giving rise to nonterminat ion.
We therefore rewrite the equations.

We define an equivalence relation over spans,
tha t expresses when two items are associated
with equivalent port ions of the input:

(i',j ' , f~, f~) .~ (i,j, f l , f2) if and only if

((i ' , j ') = (i , j))A

= (fl , f2)v
((f~ = f~ = iV f{ = f~ = j V f{ = f~ = --)A

(f l = :2 = i v f l = f2 = jvf = :2 = -)))

We introduce two new functions P~ow and
P, pm. When evaluated on some i tem I, Plow re-
cursively calls itself as long as some other i tem
I' with a given elementary tree as its first com-
ponent can be reached, such tha t a (I) ~. a(I').
Pto~ returns 0 if the actual branch of recursion
cannot eventually reach such an i tem I ' , thus
removing the contr ibut ion to the prefix proba-
bility of that branch. If i tem I ' is reached, then
P~ow switches to Psptit. Complementa ry to Plow,
function P, pm tries to decompose an a rgument
i tem I into i tems I ~ such tha t a(I) ~ a(I'). If
this is not possible th rough the actual branch
of recursion, P, pm returns 0. If decomposi t ion
is indeed possible, then we start again wi th Pto,o
at i tems produced by the decomposit ion. The
effect of this intermixing of funct ion calls is the
simulation of the original funct ion P , with Pzo~
being called only on potent ial ly nonte rmina t ing
parts of the computa t ion , and P, pm being called
on parts that are guaranteed to terminate .

Consider some derivation tree spanning some
port ion of the input string, and the associated
derivation tree 7-. There must be a unique ele-
mentary tree which is represented by a node in
7- that is the "lowest" one tha t entirely spans
the port ion of the input of interest. (This node
might be the root of T itself.) Then, for each
t E .A and for each i , j , f l , f 2 such tha t i < j
and i < f l < f2 __< j , we must have:

P([t , i, j, f l , f2]) = (10)

l l • . I l t' E .A, fl,f~((z,3, fl,f~) ,~ (i,j, f1,f2))

Similarly, for each t E 27 and for each i, j such
tha t i < j , we must have:

P([t, i , j , - , -1) = (11)

[t', L /]) .
t' e {t} u .4 , /~ {-,i,j}

The reason why P~o~, keeps a record of indices
f{ and f~, i.e., the spanning of the foot node
of the lowest tree (in the above sense) on which
Plow is called, will become clear later, when we
introduce equations (29) and (30).

We define Pzo~:([t,i,j, f l , f2],[t ' , f[, f~]) and
P~o=([a,i,j, f l , f2],[t ' , f{ , f~]) for / < j and

• . ! !

(i,j, f l , f2) ~ (z,3, f l , f~) , as follows.

956

Pto~o([t, i, j , f l , f2], [tt, f{,f~]) = (12)
Pto~o([Rt, i, j, f l , f2], [tt, f{,f~]) +
6((t , fl, f2) = (it, fl, f2)) "

P,,m([nt, i, j, fl, f2]);

Pzo~([aN, i , j , - , -1, [t, f{, f~]) = (13)
j , - , -] ,

P ([N , j , j , - , -]) +
P([a, i, i, - , -]) •

P~o~.([N,i , j ,- ,-], [t, f~, f~]),
if a # e A ",dfl(aN);

P~o~([ag, i , j , f t , f2], [t,f{,f~]) = (14)
6(fl ----- j)" Pto~([a, i,j,-, -], [t, f{, foil) •

P([N, j , j , fl, f2]) +
P([a, i, i, - , -]) •

Pto~,([g,i,j, f l , f2], [t,f~,f~]),
if a # e A rift(N);

P,o~([aN, i , j , fx,f2], [t,f{,f~]) = (15)
P~o~([a,i,j,f~,f2], [t, f~, f~]) •

P ([N , j , j , - , -]) +

6(i = f2)" P([a , i, i, f l , f2]) "
P~o~([N, i , j , - , -] , [t,f~,f~]),

if a # e A dft(a);

P~o~,([N, i, j, f l , f2], [t, f{, f~]) : (16)
¢ (n i l , N) •

Pzo~ ([cdn (N), i, j, fl, f2], [t, f{, f~]) +
P~o,o([cdn(N), i , j , f l , f2], [t, f l , f~]) •

Et 'eA ¢(t ' , g) . P([t', i , j , i,j]) +
P([cdn(N), f l , f2 , f l , f2]) "

E ¢(t ' , N) . Pto~ ([t', i , j , f l , f21, [t, f{, f~]),
t I E .4

if N E V A dft (N);

Pto~ ([N, i, j , - , -] , [t, f l , f~]) = (17)
¢ (n i l , N) •

Pzo~,([cdn(N), i , j , - , -] , [t,f{,f~]) +
P~o~([cdn(N), i , j , - , -] , [t, f{, f~]) •

E t ' e A ¢(t ' , N) . P([t', i, j, i, j]) +

P([cdn(g) , f{', f~, - , -]) "
fl',f~'(fl' = S~' = ~vy~' = S~' =~)

E ¢(t', N)"P~ow ([t', i, j, ill', f2'], [t, f{, f~]),
t 'EA

if N E V A -~dft(N);

Pto~([a, i , j , - , -] , [t, f{, f~]) = O; (18)

Pto~,([-L,i,j, f l , f2], [t,f{,f¢.]) = 0; (19)
i , j , - , -] , [t, = 0. (20)

The definition of Pto~ parallels the one of P
given in §4.1. In (12), the second te rm in the
r ight-hand side accounts for the case in which
the tree we are visit ing is the "lowest" one on
which Pto,. should be called. Note how in the
above equations Pto~ must be called also on
nodes that do not domina te the footnode of the
e lementary tree they belong to (cf. the definit ion
of ~) . Since no call to P,p,t is possible through
the terms in (18), (19) and (20), we must set
the r ight-hand side of these equat ions to 0.

The specification of P.pm([a, i, j, f l , f2]) is
given below. Again, the definit ion parallels the
one of P given in §4.1.

P, pm([aN, i, j, - , -]) = (21)

P ([a , i , k , - , -]) . P ([Y , k , j , - , -]) +
k(i < k < j)

P, pm([a , i , j , - , -]) . P ([Y , j , j , - , -]) +
P ([a , i , i , - , -]) . P ,p , , t ([Y , i , j , - , -]) ,
if a # e A -,dft(aN);

P, pm([aY, i, j, f l , f2]) = (22)

E P ([a , i , k , - , -]) . P ([N , k , j , f l , f2]) +
k (i < k < f l A k < 3)

~(fl = J) " P.p,t([a, i , j , - , -]) •
P ([g , j , j , f l , f2]) +

P([a , i, i, - , -]) . P,,m([N, i, j, f l , f2]),
if a # e A dft(N);

Pspt,t ([a N , i, j , f l , f 2]) = (23)

E P([a, i ,k , f l , f2])" P ([N , k , j , - , -]) +
k(i <kA f2 <k <j)

P.pm([a, i , j , f l , f2])" P([N, j , j , - , -]) +
5(i = f2)" P([ot, i, i, f l , f2])"

P , , m ([N , i , j , - , - 1) ,
if a # e A dfl(a);

Pop,,t([N, i, j, f l , f2]) = (24)
¢(ni l , g) . P~pm([cdn(N), i , j , f l , f2]) +

y~ P([cdn(N) , f~ , f~ , f l , f2]) "
fl,f~ (i < fl < f~ ^ f2 < f; < j ^

(fl,f~) • (i,3) ^ (fl, f2) ¢ (fl,f2))

¢(t, N) . P([t, i, j, f~, f~]) +
tEA

P..,i, ([cdn (N), i, j, f l , f2]) •
¢(t, g) . P([t, i, j, i, j]),

t fA

957

if N E V A dft(N);

P , , , , ([N, i, j , - , -]) = (25)

¢(ni l , N) . Psplit ([cdn (N), i, j, - , -]) +

P([cdn(N), f~, f~, - , -]) .
l I ! I *A l I fl'f2 (i<--fl <_f~ <--3 (f~,f~)~(i,j)A

"~(fl -~f2 =ivfl = f2 =J))

¢ (t , N) . P([t , i , j , f~, f~]) +
tEA

Ps,u, ([cdn (N), i, j, - , -])

¢ (t , Y) . P([t , i , j , i , j]) ,
tEA

if N E Y A --rift(N);
P.put([a,i,j,--,--]) ----- (~(i -t- 1 = j A aj = a); (26)

P, pm ([_1_, i, j , f l , f2]) = 0; (27)
P,,,,,([e, i , j , - , -]) = 0. (28)

We can now separate those branches of re-
cursion tha t te rminate on the given input from
the cases of endless recursion. We assume be-
low tha t P,p,,([Rt, i , j , f~,f~]) > 0. Even if this
is not always valid, for the purpose of deriving
the equat ions below, this assumpt ion does not
lead to invalid results. We define a new function
Po,..., which accounts for probabilities of sub-
derivations tha t do not derive any words in the
prefix, but contr ibute s tructural ly to its deriva-
tion:

Po,t~.([t,i,j, f l , f2], [t',f~,f~_]) = (29)

Pto=([t,i,j, fz,f2], [t',f~,f~]).
I " * I I P,,,i, ([Rt , *, 3, fl, f~])

Po~t,,([a,i,j, Yl,:2], [t',:~,:~]) = (30)

P~o= ([a, i , j , f l , f2], [t', f~, f~])
P,,m (iRe, i, j , f{, fgt])

We can now eliminate the infinite recur-
sion tha t arises in (10) and (11) by rewriting
P([t , i, j , f l , f2]) in terms of Po.,,,:

P([t, i , j , fy, /2]) = (31)

Po.,e,([t,i,j, fz,f2], [t',f~,f~]).
l I i " I t t e A , f l , f 2 ((' J ' f l ' f 2) ~" (i , j , f l , f 2))

P,,m([nt, , i , j , f~, f~]);
P([t, i, j, - , -]) = (32)

Po,t ,~([t , i , j , - , -] , [t ' , f , f]) .
t ' e {t} U.A,f E {--, i , j}

P, pzit ([Rt,, i, j , f , f]) .

Equat ions for Po~,, will be derived in the next
subsection.

In summary, te rminat ing computa t ion of pre-
fix probabilities should be based on equa-
tions (31) and (32), which replace (1), along
with equations (2) to (9) and all the equat ions
for P, pm.

4.3 Off-line Equations
In this section we derive equations for funct ion
Po~t,r in t roduced in §4.2 and deal wi th all re-
maining cases of equations tha t cause infinite
recursion.

In some cases, function P can be computed
independent ly of the actual input . For any
i < n we can consistently define the following
quantities, where t E Z U . 4 and a E V ± or
cdn(N) = aft for some N and fl:

Ht = P([t , i , i , f , f]) ;
Ha = P([c~,i,i,f',f']),

where f = i if t E .A, f = - otherwise, and ff =
i if dft(a), f = - otherwise. Thus, Ht is the
probabili ty of all derived trees obta ined from t,
wi th no lexical node at their yields. Quanti t ies
Ht and Ha can be computed by means of a sys-
tem of equations which can be directly obta ined
from equations (1) to (9). Similar quanti t ies as
above must be in t roduced for the case i = n.
For instance, we can set H~ = P([t, n, n, f , f]) ,
f specified as above, which gives the probabil-
ity of all derived trees obta ined from t (with no
restriction at their yields).

Funct ion Po~e. is also independent of the
actual input. Let us focus here on the case
f l , f 2 ¢; { i , j , - } (this enforces (f l , f2) = (f~, f~)
below). For any i, j, f l , f2 < n, we can consis-
tently define the following quantities.

Lt,t, = Po~te,([t,i,j, f l , f2], [t',f~,f~]);
L~,t, = Po.,°.([a,i , j , f l , f2] , [t',f~,f~]).

In the case at hand, Lt,t, is the probabil i ty of all
derived trees obtained from t such tha t (i) no
lexical node is found at their yields; and (ii) at
some 'unfinished' node domina t ing the foot of
t, the probabili ty of the adjunct ion of t ~ has al-
ready been accounted for, but t t itself has not
been adjoined.

It is s traightforward to establish a system of
equations for the computa t ion of Lt,t, and La,t,,
by rewrit ing equations (12) to (20) according
to (29) and (30). For instance, combining (12)
and (29) gives (using the above assumpt ions on
f l and f2) :

Lt , t ' = LR t , t ' + (~(t = t ') .
Also, if a ~ e and dft(N), combining (14)
and (30) gives (again, using previous assump-

958

tions on f l and f2; note that the Ha's are known
terms here):

L~N,t' = Ha" LN,t'.
For any i, f l , f 2 < n and j = n, we also need to
define:

L~,t, = Po, , , . ([t , i ,n , f l , f 2] , [t ' , f~, f~]) ;
L:. t , = Po~,. . ([a, i ,n, fx , f2] , [t',/~,/.~]).

Here L~, t, is the probability of all derived trees
obtained from t with a node dominating the
foot node of t, that is an adjunction site for t'
and is 'unfinished' in the same sense as above,
and with lexical nodes only in the portion of
the tree to the right of that node. When we
drop our assumption on f l and f2, we must
(pre)compute in addition terms of the form
Po~t~r([t,i,j,i,i], [t',i,i]) and Po~,~([t,i,j,i,i],
[t ' , j , j]) for i < j < n, Po,t~,([t,i,n, f l ,n] ,
[t ' , / i , f~]) for i < 11 < n, Po, , . . ([t , i ,n ,n ,n] ,
[t', f{, f~]) for i < n, and similar. Again, these
are independent of the choice of i, j and f l . Full
t reatment is omitted due to length restrictions.

5 C o m p l e x i t y a n d c o n c l u d i n g
r e m a r k s

We have presented a method for the computa-
tion of the prefix probability when the underly-
ing model is a Tree Adjoining Grammar. Func-
tion P,p,t is the core of the method. Its equa-
tions can be directly translated into an effective
algorithm, using standard functional memoiza-
tion or other tabular techniques. It is easy to
see that such an algorithm can be made to run
in t ime O(n6) , where n is the length of the input
prefix.

All the quantities introduced in §4.3 (Ht,
Lt,t,, etc.) are independent of the input and
should be computed off-line, using the system of
equations that can be derived as indicated. For
quantities Ht we have a non-linear system, since
equations (2) to (6) contain quadratic terms.
Solutions can then be approximated to any de-
gree of precision using standard iterative meth-
ods, as for instance those exploited in (Stolcke,
1995). Under the hypothesis that the grammar
is consistent, that is Pr(L(G)) = 1, all quanti-
ties H~ and H~ evaluate to one. For quantities
Lt,t, and the like, §4.3 provides linear systems
whose solutions can easily be obtained using
standard methods. Note also that quantities
La,t, are only used in the off-line computation
of quantities Lt,t,, they do not need to be stored
for the computat ion of prefix probabilities (com-
pare equations for Lt,t, with (31) and (32)).

We can easily develop implementations of our
method that can compute prefix probabilities
incrementally. That is, after we have computed
the prefix probability for a prefix al . . . an, on in-
put an+l we can extend the calculation to prefix
a l""anan+l without having to recompute all
intermediate steps that do not depend on an+l.
This step takes time O(n5).

In this paper we have assumed that the pa-
rameters of the stochastic TAG have been pre-
viously estimated. In practice, smoothing to
avoid sparse data problems plays an important
role. Smoothing can be handled for prefix prob-
ability computation in the following ways. Dis-
counting methods for smoothing simply pro-
duce a modified STAG model which is then
treated as input to the prefix probability com-
putation. Smoothing using methods such as
deleted interpolation which combine class-based
models with word-based models to avoid sparse
data problems have to be handled by a cognate
interpolation of prefix probability models.

R e f e r e n c e s
C. Chelba, D. Engle, F. Jelinek, V. Jimenez, S. Khu-

danpur, L. Mangu, H. Printz, E. Ristad, A. Stolcke,
R. Rosenfeld, and D. Wu. 1997. Structure and per-
formance of a dependency language model. In Proc.
of Eurospeech 97, volume 5, pages 2775-2778.

F. Jelinek and J. Lafferty. 1991. Computation of the
probability of initial substring generation by stochas-
tic context-free grammars. Computational Linguis-
tics, 17(3):315-323.

A. K. Joshi and Y. Schabes. 1992. Tree-adjoining gram-
mars and lexicalized grammars. In M. Nivat and
A. Podelski, editors, Tree automata and languages,
pages 409-431. Elsevier Science.

A. K. Joshi. 1988. An introduction to tree adjoining
grammars. In A. Manaster-Ramer, editor, Mathemat-
ics of Language. John Benjamins, Amsterdam.

B. Lang. 1988. Parsing incomplete sentences. In Proc. of
the 12th International Conference on Computational
Linguistics, volume 1, pages 365-371, Budapest.

O. Rainbow and A. Joshi. 1995. A formal look at de-
pendency grammars and phrase-structure grammars,
with special consideration of word-order phenomena.
In Leo Wanner, editor, Current Issues in Meaning-
Text Theory. Pinter, London.

Y. Schabes. 1992. Stochastic lexicalized tree-adjoining
grammars. In Proc. of COLING '92, volume 2, pages
426--432, Nantes, France.

B. Srinivas. 1996. "Almost Parsing" technique for lan-
guage modeling. In Proc. ICSLP '96, volume 3, pages
1173-1176, Philadelphia, PA, Oct 3-6.

A. Stolcke. 1995. An efficient probabilistic context-free
parsing algorithm that computes prefix probabilities.
Computational Linguistics, 21(2):165-201.

J. H. Wright and E. N. Wrigley. 1989. Probabilistic LR
parsing for speech recognition. In IWPT '89, pages
105-114.

959

