
Compact ing the Penn Treebank Grammar

A l e x a n d e r K r o t o v and M a r k H e p p l e and Robert Gaizauskas and Y o r i c k W i l k s
D e p a r t m e n t of C o m p u t e r Science, Sheffield Univers i ty

211 Por tobe l lo Street , Sheffield S1 4DP, UK
{alexk, hepple, robertg, yorick}@dcs.shef.ac.uk

Abstract
Treebanks, such as the Penn Treebank (PTB),
offer a simple approach to obtaining a broad
coverage grammar: one can simply read the
grammar off the parse trees in the treebank.
While such a grammar is easy to obtain, a
square-root rate of growth of the rule set with
corpus size suggests that the derived grammar
is far from complete and that much more tree-
banked text would be required to obtain a com-
plete grammar, if one exists at some limit.
However, we offer an alternative explanation
in terms of the underspecification of structures
within the treebank. This hypothesis is ex-
plored by applying an algorithm to compact
the derived grammar by eliminating redund-
ant rules - rules whose right hand sides can be
parsed by other rules. The size of the result-
ing compacted grammar, which is significantly
less than that of the full treebank grammar, is
shown to approach a limit. However, such a
compacted grammar does not yield very good
performance figures. A version of the compac-
tion algorithm taking rule probabilities into ac-
count is proposed, which is argued to be more
linguistically motivated. Combined with simple
thresholding, this method can be used to give
a 58% reduction in grammar size without signi-
ficant change in parsing performance, and can
produce a 69% reduction with some gain in re-
call, but a loss in precision.

1 I n t r o d u c t i o n

The Penn Treebank (PTB) (Marcus et al., 1994)
has been used for a rather simple approach
to deriving large grammars automatically: one
where the grammar rules are simply 'read off'
the parse trees in the corpus, with each local
subtree providing the left and right hand sides
of a rule. Charniak (Charniak, 1996) reports

precision and recall figures of around 80% for
a parser employing such a grammar. In this
paper we show that the huge size of such a tree-
bank grammar (see below) can be reduced in
size without appreciable loss in performance,
and, in fact, an improvement in recall can be
achieved.

Our approach can be generalised in terms
of Data-Oriented Parsing (DOP) methods (see
(Bonnema et al., 1997)) with the tree depth of
1. However, the number of trees produced with
a general DOP method is so large that Bonnema
(Bonnema et al., 1997) has to resort to restrict-
ing the tree depth, using a very domain-specific
corpus such as ATIS or OVIS, and parsing very
short sentences of average length 4.74 words.
Our compaction algorithm can be easily exten-
ded for the use within the DOP framework but,
because of the huge size of the derived grammar
(see below), we chose to use the simplest PCFG
framework for our experiments.

We are concerned with the nature of the rule
set extracted, and how it can be improved, with
regard both to linguistic criteria and processing
efficiency. I n w h a t follows, we report the worry-
ing observation that the growth of the rule set
continues at a square root rate throughout pro-
cessing of the entire treebank (suggesting, per-
haps that the rule set is far from complete). Our
results are similar to those reported in (Krotov
et al., 1994). 1 We discuss an alternative pos-
sible source of this rule growth phenomenon,
partial bracketting, and suggest that it can be
alleviated by compaction, where rules that are
redundant (in a sense to be defined) are elimin-
ated from the grammar.

Our experiments on compacting a PTB tree-

1 For the complete investigation of the grammar ex-
tracted from the Penn Treebank II see (Gaizauskas,
1995)

699

20000

15000

i0000

5000

0
0 20 40 60 80 i00
Percentage of the corpus

Figure 1: Rule Set Growth for Penn Treebank
II

bank grammar resulted in two major findings:
one, that the grammar can be compacted to
about 7% of its original size, and the rule num-
ber growth of the compacted grammar stops at
some point. The other is that a 58% reduction
can be achieved with no loss in parsing perform-
ance, whereas a 69% reduction yields a gain in
recall, but a loss in precision.

This, we believe, gives further support to
the utility of treebank grammars and to the
compaction method. For example, compaction
methods can be applied within the DOP frame-
work to reduce the number of trees. Also, by
partially lexicalising the rule extraction process
(i.e., by using some more frequent words as well
as the part-of-speech tags), we may be able to
achieve parsing performance similar to the best
results in the field obtained in (Collins, 1996).

2 G r o w t h o f t h e R u l e S e t

One could investigate whether there is a fi-
nite grammar that should account for any text
within a class of related texts (i.e. a domain
oriented sub-grammar of English). If there is,
the number of extracted rules will approach a
limit as more sentences are processed, i.e. as
the rule number approaches the size of such an
underlying and finite grammar.

We had hoped that some approach to a limit
would be seen using PTB II (Marcus et al.,
1994), which larger and more consistent for
bracketting than PTB I. As shown in Figure 1,
however, the rule number growth continues un-
abated even after more than 1 million part-of-
speech tokens have been processed.

3 R u l e G r o w t h a n d P a r t i a l
Bracketting

Why should the set of rules continue to grow in
this way? Put t ing aside the possibility that nat-
ural languages do not have finite rule sets, we
can think of two possible answers. First, it may
be that the full "underlying grammar" is much
larger than the rule set that has so far been
produced, requiring a much larger tree-banked
corpus than is now available for its extrac-
tion. If this were true, then the outlook would
be bleak for achieving near-complete grammars
from treebanks, given the resource demands of
producing hand-parsed text. However, the rad-
ical incompleteness of grammar that this al-
ternative implies seems incompatible with the
promising parsing results that Charniak reports
(Charniak, 1996).

A second answer is suggested by the presence
in the extracted grammar of rules such as (1). 2
This rule is suspicious from a linguistic point of
view, and we would expect that the text from
which it has been extracted should more prop-
erly have been analysed using rules (2,3), i.e. as
a coordination of two simpler NPs.

NP --~ D T N N CC D T N N (1)

NP --~ NP CC NP (2)

g P --+ D T N N (3)

Our suspicion is that this example reflects a
widespread phenomenon of partial bracketting
within the PTB. Such partial bracketting will
arise during the hand-parsing of texts, with (hu-
man) parsers adding brackets where they are
confident that some string forms a given con-
stituent, but leaving out many brackets where
they are less confident of the constituent struc-
ture of the text. This will mean that many
rules extracted from the corpus will be 'flat-
ter' than they should be, corresponding prop-
erly to what should be the result of using sev-
eral grammar rules, showing only the top node
and leaf nodes of some unspecified tree structure
(where the 'leaf nodes' here are category sym-
bols, which may be nonterminal). For the ex-
ample above, a tree structure that should prop-
erly have been given as (4), has instead received

2PTB POS tags are used here, i.e. DT for determiner,
CC for coordinating conjunction (e.g 'and'), NN for noun

700

only the partial analysis (5), from the flatter
'partial-structure' rule (1).

i. NP

NP CC NP

DT NN DT NN

(4)

ii. NP (5)

DT NN CC DT NN

4 G r a m m a r C o m p a c t i o n

The idea of partiality of structure in treebanks
and their grammars suggests a route by which
treebank grammars may be reduced in size, or
compacted as we shall call it, by the elimination
of partial-structure rules. A rule that may be
eliminable as a partial-structure rule is one that
can be 'parsed' (in the familiar sense of context-
free parsing) using other rules of the grammar.
For example, the rule (1) can be parsed us-
ing the rules (2,3), as the structure (4) demon-
strates. Note that, although a partial-structure
rule should be parsable using other rules, it does
not follow that every rule which is so parsable
is a partial-structure rule that should be elimin-
ated. There may be defensible rules which can
be parsed. This is a topic to which we will re-
turn at the end of the paper (Sec. 6). For most
of what follows, however, we take the simpler
path of assuming that the parsability of a rule
is not only necessary, but also sufficient, for its
elimination.

Rules which can be parsed using other rules
in the grammar are redundant in the sense that
eliminating such a rule will never have the ef-
fect of making a sentence unparsable that could
previously be parsed. 3

The algorithm we use for compacting a gram-
mar is straightforward. A loop is followed
whereby each rule R in the grammar is ad-
dressed in turn. If R can be parsed using other
rules (which have not already been eliminated)
then R is deleted (and the grammar without R
is used for parsing further rules). Otherwise R

3Thus, wherever a sentence has a parse P tha t em-
ploys the parsable rule R, it also has a further parse that
is just like P except that any use of R is replaced by a
more complex substructure, i.e. a parse of R.

is kept in the grammar. The rules that remain
when all rules have been checked constitute the
compacted grammar.

An interesting question is whether the result
of compaction is independent of the order in
which the rules are addressed. In general, this is
not the case, as is shown by the following rules,
of which (8) and (9) can each be used to parse
the other, so that whichever is addressed first
will be eliminated, whilst the other will remain.

B --+ C (6)

C --+ B (7)

A -+ B B (8)

A -~ C C (9)

Order-independence can be shown to hold for
grammars that contain no unary or epsilon
('empty') rules, i.e. rules whose r ighthand sides
have one or zero elements. The grammar that
we have extracted from PTB II, and which is
used in the compaction experiments reported in
the next section, is one that excludes such rules.
For further discussion, and for the proof of the
order independence see (Krotov, 1998). Unary
and sister rules were collapsed with the sister
nodes, e.g. the structure (S (NP -NULL-) (VP
VB (NP (QP . . .))) .) will produce the fol-
lowing rules: S -> VP., VP -> VB QPand QP
_> . 4

° , .

5 E x p e r i m e n t s

We conducted a number of compaction exper-
iments: 5 first, the complete grammar was
parsed as described in Section 4. Results ex-
ceeded our expectations: the set of 17,529 rules
reduced to only 1,667 rules, a better than 90%
reduction.

To investigate in more detail how the com-
pacted grammar grows, we conducted a third
experiment involving a staged compaction of the
grammar. Firstly, the corpus was split into 10%
chunks (by number of files) and the rule sets
extracted from each. The staged compaction
proceeded as follows: the rule set of the first
10% was compacted, and then the rules for the

4See (Gaizauskas, 1995) for discussion.
SFor these experiments, we used two parsers: Stol-

cke's BOOGIE (Stolcke, 1995) and Sekine's Apple Pie
Parser (Sekine and Grishman, 1995).

701

$
2

2000

1500

I000

500

0
: i

0 20 40 60 80 i00
Percentage of the corpus

Figure 2: Compacted Grammar Size

next 10% added and the resulting set again com-
pacted, and then the rules for the next 10% ad-
ded, and so on. Results of this experiment are
shown in Figure 2.
At 50% of the corpus processed the com-
pacted grammar size actually exceeds the level
it reaches at 100%, and then the overall gram-
mar size starts to go down as well as up. This
reflects the fact that new rules are either re-
dundant, or make "old" rules redundant, so that
the compacted grammar size seems to approach
a limit.

6 Retaining Linguistically Valid
Rules

Even though parsable rules are redundant in
the sense that has been defined above, it does
not follow that they should always be removed.
In particular, there are times where the flatter
structure allowed by some rule may be more lin-
guistically correct, rather than simple a case of
partial bracketting. Consider, for example, the
(linguistically plausible) rules (10,11,12). Rules
(11) and (12) can be used to parse (10), but
it should not be eliminated, as there are cases
where the flatter structure it allows is more lin-
guistically correct.

VP ~ VB N P P P

VP ~ VB N P

N P ~ N P P P

i. VP ii. VP

VB NP VB NP PP

NP PP

(10)

(ii)
(12)

(13)
We believe that a solution to this problem

can be found by exploiting the date provided by

the corpus. Frequency of occurrence data for
rules which have been collected from the cor-
pus and used to assign probabilities to rules,
and hence to the structures they allow, so as
to produce a probabilistic context-free grammar
for the rules. Where a parsable rule is correct
rather than merely partially bracketted, we then
expect this fact to be reflected in rule and parse
probabilities (reflecting the occurrence data of
the corpus), which can be used to decide when
a rule that may be eliminated should be elimin-
ated. In particular, a rule should be eliminated
only when the more complex structure allowed
by other rules is more probable than the simpler
structure that the rule itself allows.

We developed a linguistic compaction al-
gorithm employing the ideas just described.
However, we cannot present it here due to
the space limitations. The preliminary results
of our experiments are presented in Table 1.
Simple thresholding (removing rules that only
occur once) was also to achieve the maximum
compaction ratio. For labelled as well as unla-
belled evaluation of the resulting parse trees we
used the eva lb software by Satoshi Sekine. See
(Krotov, 1998) for the complete presentation of
our methodology and results.

As one can see, the fully compacted grammar
yields poor recall and precision figures. This
can be because collapsing of the rules often pro-
duces too much substructure (hence lower pre-
cision figures) and also because many longer
rules in fact encode valid linguistic information.
However, linguistic compaction combined with
simple thresholding achieves a 58% reduction
without any loss in performance, and 69% re-
duction even yields higher recall.

7 Conclusions
We see the principal results of our work to be
the following:

* the result showing continued square-root
growth in the rule set extracted from the
PTB II;

• the analysis of the source of this continued
growth in terms of partial bracketting and
the justification this provides for compac-
tion via rule-parsing;

• the result that the compacted rule set
does approach a limit at some point dur-

702

Full Simply thresholded Fully compacted Linguistically compacted
Grammar 1 Grammar 2

Recall 70.55%
Precision 77.89%

Recall 73.49%
Precision 81.44%
Grammar size 15,421
reduction (as % of full) 0%

Labelled evaluation
70.78% 30.93% 71.55% 70.76%
77.66% 19.18% 72.19% 77.21%

Unlabelled evaluation
73.71% 43.61%
80.87% 27.04%
7,278 1,122
53% 93%

74.72% 73.67%
75.39% 80.39%
4,820 6,417
69% 58%

Table 1: Preliminary results of evaluating the grammar compaction method

ing staged rule extraction and compaction,
after a sufficient amount of input has been
processed;

• that, though the fully compacted grammar
produces lower parsing performance than
the extracted grammar, a 58% reduction
(without loss) can still be achieved by us-
ing linguistic compaction, and 69% reduc-
tion yields a gain in recall, but a loss in
precision.

The latter result in particular provides further
support for the possible future utility of the
compaction algorithm. Our method is similar
to that used by Shirai (Shirai et al., 1995), but
the principal differences are as follows. First,
their algorithm does not employ full context-
free parsing in determining the redundancy of
rules, considering instead only direct composi-
tion of the rules (so that only parses of depth
2 are addressed). We proved that the result of
compaction is independent of the order in which
the rules in the grammar are parsed in those
cases involving 'mutual parsability' (discussed
in Section 4), but Shirai's algorithm will elimin-
ate both rules so that coverage is lost. Secondly,
it is not clear that compaction will work in the
same way for English as it did for Japanese.

R e f e r e n c e s
Remko Bonnema, Rens Bod, and Remko Scha. 1997.

A DOP model for semantic interpretation. In
Proceedings of European Chapter of the ACL,
pages 159-167.

Eugene Charniak. 1996. Tree-bank grammars. In
Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence (AAAI-96), pages
1031-1036. MIT Press, August.

Michael Collins. 1996. A new statistical parser
based on bigram lexical dependencies. In Proceed-
ings of the 3~th Annual Meeting of the ACL.

Robert Gaizauskas. 1995. Investigations into the
grammar underlying the Penn Treebank II. Re-
search Memorandum CS-95-25, University of
Sheffield.

Alexander Krotov, Robert Gaizauskas, and Yorick
Wilks. 1994. Acquiring a stochastic context-free
grammar from the Penn Treebank. In Proceedings
of Third Conference on the Cognitive Science of
Natural Language Processing, pages 79-86, Dub-
lin.

Alexander Krotov. 1998. Notes on compacting
the Penn Treebank grammar. Technical Memo,
Department of Computer Science, University of
Sheffield.

M. Marcus, G. Kim, M.A. Marcinkiewicz,
R. MacIntyre, A. Bies, M. Ferguson, K. Katz,
and B. Schasberger. 1994. The Penn Tree-
bank: Annotating predicate argument structure.
In Proceedings of ARPA Speech and Natural
language workshop.

Satoshi Sekine and Ralph Grishman. 1995. A
corpus-based probabilistic grammar with only two
non-terminals. In Proceedings of Fourth Interna-
tional Workshop on Parsing Technologies.

Kiyoaki Shirai, Takenobu Tokunaga, and Hozumi
Tanaka. 1995. Automatic extraction of Japanese
grammar from a bracketed corpus. In Proceedings
of Natural Language Processing Pacific Rim Sym-
posium, Korea, December.

Andreas Stolcke. 1995. An efficient probabilistic
context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics,
21(2):165-201.

703

