
Accumulation of Lexical Sets: Acquisition of Dictionary Resources
and Production of New Lexical Sets

DOAN-NGUYEN Hai
GETA - CLIPS - IMAG

BP 53, 38041 Grenoble, France
Fax: (33) 4 76 51 44 05 - Tel: (33) 4 76 63 59 76 - E-mail: Hai.Doan-Nguyen@imag.fr

Abstract

This paper presents our work on accumulation o f
lexical sets which includes acquisition o f
dictionary resources and production o f new
lexical sets from this. The method for the
acquisition, using a context-free syntax-directed
translator and text modification techniques,
proves easy-to-use, flexible, and efficient.
Categories of production are analyzed, and
basic operations are proposed which make up a
formalism for specifying and doing production.
About 1.7 million lexical units were acquired
and produced from dictionaries o f various ~pes
and complexities. The paper also proposes a
combinatorial and dynamic organization for
lexical systems, which is based on the notion o f
virtual accumulation and the abstraction levels
o f lexical sets.

Keywords: dictionary resources, lexical
acquisition, lexical production, lexical
accumulation, computational lexicography.

Introduction

Acquisition and exploitation of dictionary
resources (DRs) (machine-readable, on-line
dictionaries, computational lexicons, etc) have
long been recognized as important and difficult
problems. Although there was a lot of work on
DR acquisition, such as Byrd & al (1987), Neff
& Boguraev (1989), Bl~isi & Koch (1992), etc, it
is still desirable to develop general, powerful, and
easy-to-use methods and tools for this.
Production of new dictionaries, even only crude
drafts, from available ones, has been much less
treated, and it seems that no general
computational framework has been proposed
(see eg, Byrd & al (1987), Tanaka & Umemura
(1994), Don" & al (1995)).

This paper deals with two problems: acquiring
textual DRs by converting them into structured
forms, and producing new lexical sets from those
acquired. These two can be considered as two
main activities of a more general notion: the
accumulation of lexical sets. The term "lexical
set" (LS) is used here to be a generic term for
more specific ones such as "lexicon",
"dictionary", and "lexical database".

Lexical data accumulated will be represented as
objects of the Common Lisp Object System
(CLOS) (Steel 1990). This object-oriented high-
level programming environment facilitates any
further manipulations on them, such as
presentation (eg in formatted text), exchange (eg
in SGML), database access, and production o f
new lexical structures, etc; the CLOS object fo rm
is thus a convenient pivot form for storing lexical
units. This environment also helps us develop
our methods and tools easily and efficiently.

In this paper, we will also discuss some other
relevant issues: complexity measures for
dictionaries, heuristic decisions in acquisition, the
idea of virtual accumulation, abstraction levels on
LSs, and a design for organization and
exploitation of large lexical systems based on the
notions of accumulation.

1 Acquis i t ion

Our method combines the use of a context-free
syntax-directed translator and text modification
techniques.

1.1 A syntax-directed translator for
acquisit ion

Transforming a DR into a structured form
comprises parsing the source text and building
the output structures. Our approach is different
from those of other tools specialized for DR
acquisition, eg Neff & Boguraev (1989) and
Bl~.si & Koch (1992), in that it does not impose
beforehand a default output construction
mechanism, but rather lets the user build the
output as he wants. This means the output
structures are not to be bound tightly to the
parsing grammar. Particularly, they can be
different from the logic structure of the source,
as it is sometimes needed in acquisition. The user
can also keep any presentation information (eg
typographic codes) as needed; our approach is
thus between the two extremes in acquisition
approaches: one is keeping all presentation
information, and one is transferring it all into
structural representation.

Our tool consists of a syntax-directed
translation (SDT) formalism called h-grammar,
and its running engine. For a given dictionary,
one writes an h-grammar describing the text o f

330

its entry and the construction of the output. An
h-grammar is a context-free grammar
augmented with variables and actions. Its rules
are of the form:

A(ail ai2 ...; aol ao2 ...)->
B(bil bi2 ...; bol bo2 ...)
C(cil ci2 ...; col co2 ...)

A is a nonterminal; B, C may be a

nonterminal, a terminal, the null symbol §, or an
action, ail, ai2 are input variables, which will
be initialized when the rule is called, aol, ao2
bol , bo2 col , co2 are output variables.
bil, bi2 cil , ci2 are input expressions (in
LISP syntax), which may contain variables. When
an item in the right-hand side of the rule is
expanded, its input expressions are first
computed. If the item is a nonterminal, a rule
having it as the left-hand side is chosen to
expand. If it is a terminal, a corresponding token
is looked for in the parsed buffer and returned as
the value of its (unique) output variable. If it is
an action which is in fact a LISP function, the
function is applied to the values of its input
expressions, and the result values are assigned to
its output variables (here we use the multiple-
value function model of CLOS). Finally, the
values of the output variables of the left-hand
side nonterminal (aol, ao2) are collected and
returned as the result of its expanding.

With some predefined action functions, output
structures can be constructed freely, easily, and
flexibly. We usually choose to make them CLOS
objects and store them in LISPO form. This is
our text representation for CLOS objects, which
helps to read, verify, correct, store and transfer
the result easily. Finally, the running engine has
several operational modes, which facilitate
debugging the h-grammars and treating errors
met in parsing.

1 . 2 T e x t m o d i f i c a t i o n in a c q u i s i t i o n

In general, an analyzer, such as the h-grammar
tool above, is sufficient for acquisition. However,
in practice, some precedent modification on the
source text may often simplify much the
analyzing phase. In contrast with many other
approaches, we recognize the usefulness of text
modification, and apply it systematically in our
work. Its use can be listed as follows:

(1) Facilitating parsing. By inserting some
specific marks before and/or after some elements
of the source, human work in grammar writing
and machine work in parsing can be reduced
significantly.

(2) Obtaining the result immediately without
parsing. In some simple cases, using several
replacement operations in a text editor, we could

obtain easily the LISPO form of a DR. The
LISPification well-known in a lot of acquisition
work is another example.

(3) Retaining necessary information and
stripping unnecessary one. In many cases, much
of the typographic information in the source text
is not needed for the parsing phase, and can be
purged straightforwardly in an adequate text
editor.

(4) Pre-editing the source and post-editing the
result, eg to correct some simple but common
type of errors in them.

It is preferable that text modification be carried
out as automatically as possible. The main type
of modification needed is replacement using a
strong string pattern-matching (or precisely,
regular expression) mechanism. The
modification of a source may consist of many
operations and they need to be tested several
times; it is therefore advantageous to have some
way to register the operations and to run them in
batch on the source. An advanced word
processor such as Microsoft Word TM, version 6,
seems capable of satisfying those demands.

For sources produced with formatting from a
specific editing environment (eg Microsoft Word,
HTML editors), making modification in the same
or an equivalent environment may be very
profitable, because we can exploit format-based
operations (eg search/replace based on format)
provided by the environment.

1 . 3 S o m e r e l a t e d i s sues

1.3.1 Complexity measures for dictionaries
Intuitively, the more information types a
dictionary has, the more complex it is, and the
harder to acquire it becomes. We propose here a
measure for this. Briefly, the structure complexity
(SC) of a dictionary is equal to the sum of the
number of elementary information types and the
number of set components in its entry structure.
For example, an English-French dictionary
whose entries consist of an English headword, a
part-of-speech, and a set of French translations,
will have a SC of (1 + 1 + 1)+ 1-4.

Based on this measure, some others can be
defined, eg the average SC, which gives the
average number of information types present in
an entry of a dictionary (because not all entries
have all components filled).

1.3.2 Heuristics in acquisition
Contrary to what one may often suppose,
decisions made in analyzing a DR are not always
totally sure, but sometimes only heuristic ones.
For large texts which often contain many errors
and ambiguities like DRs, precise analysis design
may become too complicated, even impossible.

331

Imagine, eg, some pure text dictionary where the
sense numbers of the entries are made from a
number and a point, eg '1.', '2.'; and, moreover,
such forms are believed not to occur in content
strings without verification (eg, because the
dictionary is so large). An assumption that such
forms delimit the senses in an entry is very
convenient in practice, but is just a heuristics.

1.4 Result and example

Our method and tool have helped us acquire
about 30 dictionaries with a total of more than
1.5 million entries. The DRs are of various
languages, types, domains, formats, quantity,
clarit.y, and complexity. Some typical examples
are gwen in the following table.

Dictionary Resource 1

DEC, vol. II (Mel'cuk & al 1988)
French Official Terms (Drlrgation
grnrrale ~ la langue franqaise)
Free On-line Dictionary of Computing (D.
Howe, http://wombat.doc.ic.ac.uk)
English-Esperanto (D. Richardson,
Esperanto League for North America)
English-UNL (Universal Networking
Language. The United Nations University)
I. Kind's BABEL - Glossary of Computer
Oriented Abbrevations and Acronyms

SC Number
o f entries

79 100
19 3,500

15 10,800

11 6,000

6 220,000

6 3,400

We present briefly here the acquisition of a
highly complex DR, the Microsoft Word source
files of volume 2 of the "Dictionnaire explicatif
et combinatoire du fran~ais contemporain "
(DEC) (Mel 'cuk & al 1988). Despite the
numerous errors in the source, we were able to
achieve a rather fine analysis level with a minimal
manual cleaning of the source. For example, a
lexical function expression such as

Adv(1)(Real 1 !IF6 + Real2IIF6)

was analyzed into:
(COMP
("Adv" NIL (O[¢I'IONAL 1) NIL NIL NIL)
(PAREN (+ (COMP ("Real" NIL (1) 2 NIL NIL) ("F" 6))

(COMP ("Real" NIL (2) 2 NIL NIL) ("F" 6)))))

Compared to the method of direct p rogramming
that we had used before on the same source,
human work was reduced by half (1.5 vs 3
person-months), and the result was better (finer
analysis and lower error rate).

I All these DRs were used only for my personal research on
acquisition, conforming to their authors' permission notes.

2 Production

From available LSs it is interesting and .possible
to produce new ones, eg, one can revert a
bilingual dictionary A-B to obtain a B-A
dictionary, or chain two dictionaries A-B and B-
C to make an A-B-C, or only A-C (A, B, C are
three languages). The produced LSs surely need
more correction but they can serve at least as
somewhat prepared materials, eg, dictionary
drafts. Acquisition and production make the
notion of lexical accumulation complete: the
former is to obtain lexical data of (almost) the
same linguistic structure as the source, the latter
is to create data of totally new linguistic
structures.

Viewed as a computational linguistic problem,
production has two aspects. The linguistic aspect
consists in defining what to produce, ie the
mapping from the source LSs to the target LSs.
The quality of the result depends on the
linguistic decisions. There were several
experiments studying some specific issues, such
as sense mapping or attribute transferring (Byrd
& al (1987), Dorr & al (1995)). This aspect
seems to pose many difficult lexicographic
problems, and is not dealt with here.

The computational aspect, in which we are
interested, is how to do production. To be
general, production needs a Turing machine
computational power. In this perspective, a
framework which can help us specify easily a
production process may be very desirable. To
build such a framework, we will examine several
common categories of production, point out
basic operations often used in them, and finally,
establish and implement a formalism for
specifying and doing production.

2 . 1 C a t e g o r i e s o f production

Production can be done in one of two directions,
or by combining both: "extraction" and
"synthesis". Some common categories of
production are listed below.

(1) Selection of a subset by some criteria, eg
selection of all verbs from a dictionary.

(2) Extraction of a substructure, eg extracting a
bilingual dictionary from a trilingual.

(3) Inversion, eg of an English-French
dictionary to obtain a French-English one.

(4) Regrouping some elements to make a
"bigger" structure, eg regrouping homograph
entries into polysemous ones.

(5) Chaining, eg two bilingual dictionaries A-B
and B-C to obtain a trilingual A-B-C.

(6) Paralleling, eg an English-French
dictionary with another English-French, to make
an English-[French(I), French(2)] (for
comparison or enrichment).

332

(7) Starring combination, eg of several
bilingual dictionaries A-B, B-A, A-C, C-A, A-D,
D-A, to make a multiligual one with A being the
pivot language (B, C, D)-A-(B, C, D).

Numeric evaluations can be included in
production, eg in paralleling several English-
French dictionaries, one can introduce a fuzzy
logic number showing how well a French word
translates an English one: the more dictionaries
the French word occurs in, the bigger the
number becomes.

2 . 2 I m p l e m e n t a t i o n o f produc t ion

Studying the algorithms for the categories above
shows they may make use of many common
basic operations. As an example, the operation

regroup set by functionl into function2

partitions set into groups of elements having the
same value of applying function1, and applies
function2 on each group to make a new element.
It can be used to regroup homograph entries (ie
those having the same headword forms) of a
dictionary into polysemous ones, as follows:

regroup dictionary by headword into polysem

(polysem is some function combining the body of the
homograph entries into a polysemous one.)

It can also be used in the inversion of an
English-French dictionary EF-dict whose entries
are of the structure <English-word, French-
translations> (eg <love, {aimer, amour}>):

for-all EF-entry in EF-dict do
split EF-entry into <French, English> pairs, eg
split <love, {aimer, amour}> into {<aimer, love>
<amour, love>}. Call the result FE-pairs.

regroup FE-pairs by French into FE-entry

(FE-entry is a function making French-English entries,
eg making <aimer, {love, like}> from <aimer, like> and
<aimer, love>.)

Our formalism for production was built with
four groups of operations (see Doan-Nguyen
(1996) for more details):

(1) Low-level operations: assignments,
conditionals, and (rarely used) iterations.

(2) Data manipulation functions, eg string
functions.

(3) Set and first-order predicate calculus
operations, eg the for-all above.

(4) Advanced operations, which d o
complicated transformations on objects and sets,
eg regroup, split above.

Finally, LSs were implemented as LISP lists for
"small" sets, and CLOS object databases and
LISPO sequential files for large ones.

2 . 3 Resul t and e x a m p l e

Within the framework presented above, about 1 0
dictionary drafts of about 200,000 entries were
produced. As an example, an English-French-
UNL 2 (EFU) dictionary draft was produced f rom
an English-UNL (EU) dictionary, a French-
English-Malay (FEM), and a French-English
(FE). The FEM is extracted and inverted to give
an English-French dictionary (EF-1), the FIE is
inverted to give another (EF-2). The EFU is
produced then by paralleling the EU, EF-1, and
EF-2. This draft was used as the base for
compiling a French-UNL dictionary at GETA
(Boitet & al 1998). We have not yet had an
evaluation on the draft.

3 Virtual A c c u m u l a t i o n
Abstrac t ion o f Lex ica l Sets

and

3 . 1 Virtual a c c u m u l a t i o n

Accumulation discussed so far is real
accumulation: the LS acquired or produced is
available in its whole and its elements are put in a
"standard" form used by the lexical system.
However, accumulation may also be virtual, ie
LSs which are not entirely available may still be
used and even integrated in a lexical system, and
lexical units may rest in their original format and
will be converted to the standard form only when
necessary. This means, eg, one can include in his
lexical system another 's Web online dictionary
which only supplies an entry to each request.

Particularly, in virtual acquisition, the resource
is untouched, but equipped with an acquisition
operation, which will provide the necessary
lexical units in the standard form when it is
called. In virtual production, not the whole new
LS is to be produced, but only the required
unit(s). One can, eg, supply dynamically German
equivalents of an English word by calling a
function looking up English-French and French-
German entries (in corresponding dictionaries)
and then chaining them. Virtual production may
not be suitable, however, for some production
categories such as inversion.

3 . 2 A b s t r a c t i o n o f L S s

The framework of accumulation, real and virtual,
presented so far allows us to design a very
general and dynamic model for lexical systems.
The model is based on some abstraction levels o f
LSs as follows.

(1) A physical support is a disk file, database,
Web page, etc. This is the most elementary level.

2 UNL: Universal Networking Language (UNL 1996).

333

(2) A LS support makes up the contents of a
LS. It comprises a set of physical supports (as a
long dictionary may be divided into several
files), and a number of access ways which
determine how to access the data in the physical
supports (as a database may have several index).
The data in its physical supports may not be in
the standard form; in this case it will be equipped
with a standardizing function on accessed data.

(3) A lexical set (LS) comprises a set of LS
supports. Although having the same contents,
they may be different in physical form and data
format; hence this opens the possibility to query
a LS from different supports.

Virtual LSs are "sets" that do not have "real"
supports, their entries are produced from some
available sets when required, and there are no
insert, delete activities for them.

(4) A lexical group comprises a number of LSs
(real or virtual) that a user uses in a work, and a
set of operations which he may need to do on
them. A lexical group is thus a workstation in a
lexical system, and this notion helps to view and
develop the system modularly, combinatorially,
and dynamically.

Based on these abstractions, a design on the
organization for lexical systems can be
proposed. Fundamentally, a lexical system has
real LSs as basic elements. Its performance is
augmented with the use of virtual LSs and lexical
groups. A catalogue is used to register and
manage the LSs and groups. A model of such an
orgamzation is shown in the figure below.

alo~
lex cal

tnd
~ups

LEXICAL SYSTEM

physical
supports

real lexical
sets

virtual
lexical sets

lexical
groups

Conc lus ion and perspect ive

Although we have not yet been able to evaluate
all the lexical data accumulated, our methods and
tools for acquisition and production have shown
themselves useful and efficient. We have also
developed a rather complete notion of lexical
data accumulation, which can be summarized as:

ACCUMULATION = (REAL + VIRTUAL)
(ACQUISITION + PRODUCTION)

For the future, we would like to work on
methods and environments for testing
accumulated lexical data, for combining them
with data derived from corpus-based methods,
etc. Some more time and work will be needed to
verify the usefulness and practicality of our
lexical system design, of which the essential idea
is the combinatorial and dynamic elaboration o f
lexical groups and virtual LSs. An experiment
for this may be, eg, to build a dictionary server
using Intemet online dictionaries as resources.

Acknowledgement

The author is grateful to the French Government for
her scholarship, to Christian Boitet and Gilles Sdrasset
for the suggestion of the theme and their help, and to the
authors of the DRs for their kind permission of use.

References

Bl~isi C. & Koch H. (1992), Dictionary Entry Parsing
Using Standard Methods. COMPLEX '92, Budapest,
pp. 61-70.

Boitet C. & al (1998), Processing of French in the UNL
Project (Year 1). Final Report, The United Nations
University and L'Univeristd J. Fourrier, Grenoble,
216 p.

Byrd R. & al (1987), Tools and Methods for
Computational Lexicology. Computational
Linguistics, Vol 13, N ° 3-4, pp. 219-240.

Doan-Nguyen H. (1996), Transformations in Dictionary
Resources Accumulation Towards a Generic
Approach. COMPLEX '96, Budapest, pp. 29-38.

Dorr B. & al (1995), From Syntactic Encodings to
Thematic Roles: Building Lexical Entries for
Interlhtgual MT. Machine Translation 9, pp. 221-250.

Mercuk I. & al (1988), Dictionnaire explicatif et
combinatoire du fran~ais contemporain. Volume II.
Les Presses de rUniversitd de Montrdal, 332 p.

Neff M. & Boguraev B. (1989), Dictionaries, Dictionary
Grammars and Dictionary Entry Parsing. 27th Annual
Meeting of the ACL, Vancouver, pp. 91-101.

Steele G. (1990). Common Lisp - The Language.
Second Edition. Digital Press, 1030 p.

Tanaka K. & Umemura K. (1994), Construction of a
Bilingual Dictionary Intermediated by a Third
Language. COLING '94, Kyoto, pp. 297-303.

UNL (1996). UNL - Universal Networking Language.
The United Nations University, 74 p.

334

