
Experiments with Learning Parsing Heuristics

Sylvain DELISLE
Drpartement de mathrmatiques et d'informatique

Universit6 du Qurbec ~ Trois-Rivi~res
Trois-Rivi~res, Qurbec, Canada, GgA 5H7

Sylvain_Delisle @uqtr.uquebec.ca

Sylvain LI~TOURNEAU, Stan MATWlN
School of Information Technology and

Engineering, University of Ottawa
Ottawa, Ontario, Canada, KIN 6N5

sletour@ ai.iit.nrc.ca, stan @site.uottawa.ca

Abstract

Any large language processing software
relies in its operation on heuristic decisions
concerning the strategy of processing.
These decisions are usually "hard-wired"
into the software in the form of hand-
crafted heuristic rules, independent of the
nature of the processed texts. We propose
an alternative, adaptive approach in which
machine learning techniques learn the rules
from examples of sentences in each class.
We have experimented with a variety of
learning techniques on a representative in-
stance of this problem within the realm of
parsing. Our approach lead to the discovery
of new heuristics that perform significantly
better than the current hand-crafted heuris-
tic. We discuss the entire cycle of applica-
tion of machine learning and suggest a
methodology for the use of machine learn-
ing as a technique for the adaptive optimi-
sation of language-processing software.

1 Introduction

Any language processing program---in our case, a
top-down parser which outputs only the first tree
it could find--must make decisions as to what
processing strategy, or rule ordering, is most ap-
propriate for the problem (i.e. string) at hand.
Given the size and the intricacy of the rule-base
and the goal (to optimise a parser's precision, or
recall, or even its speed), this becomes a complex
decision problem. Without precise knowledge of
the kinds of texts that will be processed, these de-
cisions can at best be educated guesses. In the
parser we used, they were performed with the

help of hand-crafted heuristic rules, which are
briefly presented in section 2.

Even when the texts are available to fine-tune
the parser, it is not obvious how these decisions are
to be made from texts alone. Indeed, the decisions
may often be expressed as rules whose
representation is in terms which are not directly or
easily available from the text (e.g. non-terminals of
the grammar of the language in which the texts are
written). Hence, any technique that may
automatically or semi-automatically adapt such
rules to the corpus at hand will be valuable. As it is
often the case, there may be a linguistic shift in the
kinds of texts that are processed, especially if the
linguistic task is as general as parsing. It is then
interesting to adapt the "version" of the parser to
the corpus at hand.

We report on an experiment that targets this
kind of adaptability. We use machine learning as
an artificial intelligence technique that achieves
adaptability. We cast the task described above as a
classification task: which, among the parser's top-
level rules, is most appropriate to launch the
parsing of the current input string? Although we
restricted ourselves to a subset of a parser, our
objective is broader than just applying an existing
learning system on this problem. What is interes-
ting is: a) definition of the attributes in which
examples are given, so that the attributes are both
obtainable automatically from the text and lead to
good rules--this is called "feature engineering"; b)
selection of the most interesting learned rules; c)
incorporation of the learned rules in the parser; d)
evaluation of the performance of the learned rules
after they have been incorporated in the parser. It is
the lessons from the whole cycle that we followed
in the work that we report here, and we suggest it
as a methodology for an adaptive optimisation of
language processing programs.

307

2 The existing hand-crafted heuristics

The rule-based parser we used was DIPETT
[Delisle 1994]: it is a top-down, depth-first
parser, augmented with a few look-ahead mecha-
nisms, which returns the first analysis (parse
tree). The fact that our parser produces only a
single analysis, the "best" one according to its
hand-crafted heuristics, is part of the motivation
for this work. When DIPETT is given an input
string, it first selects the top-level rules it is to at-
tempt, as well as their ordering in this process.
Ideally, the parser would find an optimal order
that minimises parsing time and maximises par-
sing accuracy by first selecting the most promi-
sing rules. For example, there is no need to treat a
sentence as multiply coordinated or compound
when the data contains only one verb. DIPETT
has three top-level rules for declarative state-
ments: i) MULT_COOR for multiple (normally,
three or more) coordinated sentences; ii)
COMPOUND for compound sentences, that is, cor-
relative and simple coordination (of, normally,
two sentences); iii) NONCOMPOUND for simple
and complex sentences, that is, a single main
clause with zero or more subordinate clauses
([Quirk et e l . 1985]). To illustrate the data that
we worked with and the classes for which we
needed the rules, here are two sentences (from the
Brown corpus) used in our experiments: "And know,
while all this went on, that there was no real reason to suppo-
se that the murderer had been a guest in either hotel." is a

n o n - c o m p o u n d sentence, and =Even I can remember
nothing but ruined cellars and tumbled pillars, and nobody has

lived there in the memory of any living man." is a com-

pound sentence.

The current hand-crafted heuristic ([Delisle
1994]) is based on three parameters, obtained af-
ter (non-disambiguating) lexical analysis and be-
fore parsing: 1) the number of potential verbs' in
the data, 2) the presence of potential coordinators
in the data, and 3) verb density (roughly spea-
king, it indicates how potential verbs are distri-
buted). For instance, low density means that
verbs are scattered throughout the input string;
high density means that the verbs appear close to
each other in the input string, as in a conjunction

i A "potential" verb may actually turn out to be, say, a
noun, but only parsing can tell us how such a lexical
ambiguity has been resolved. If the input were pre-
processed by a tagger, the ambiguity might disappear.

of verbs such as "Verbl and Verb2 and Verb3".
Given the input string's features we have just dis-
cussed, DIPETT's algorithm for top-level rule
selection returns an ordered list of up to 3 of the
rules COMPOUND, NONCOMPOUND, and
MULT_COOR tO be attempted when parsing this
string. For the purposes of our experiment, we sim-
plified the situation by neglecting the MULT_COOR
rule since it was rarely needed when parsing real-
life text. Thus, the original problem went from a 3-
class to a 2-class classification problem:
COMPOUND or NON_COMPOUND.

3 Learning rules from sentences

As any heuristic, the top-level rule selection
mechanism just described is not perfect. Among
the principal difficulties, the most important are: i)
the accuracy of the heuristic is limited and ii) the
internal choices are relatively complex and
somewhat obscure from a linguist's viewpoint. The
aim of this research was to use classification
systems as a tool to help developing n e w know-
ledge for improving the parsing process. To pre-
serve the broad applicability of DIPETT, we have
emphasised the generality of the results and did not
use any kind of domain knowledge. The sentences
used to build the classifiers and evaluate the
performance have been randomly selected from
five unrelated real corpora.

Typical classification systems (e.g. decision
trees, neural networks, instance based learning)
require the data to be represented by feature vec-
tors. Developing such a representation for the task
considered here is difficult. Since the top-level rule
selection heuristic is one of the first steps in the
parsing process, very little information for making
this decision is available at the early stage of
parsing. All the information available at this phase
is provided by the (non-disambiguating) lexical
analysis that is performed before parsing. This
preliminary analysis provides four features: 1)
number of potential verbs in the sentence, 2)
presence of potential coordinators, 3) verb density,
and 4) number of potential auxiliaries. As
mentioned above, only the first three features are
actually used by the current hand-crafted heuristic.
However, preliminary experiments have shown
that no interesting knowledge can be inferred by
using only these four features. We then decided to
improve our representation by the use of DIPETT's

308

fragmentary parser: an optional parsing mode in
which DIPETT does not attempt to produce a
single structure for the current input string but,
rather, analyses a string as a sequence of major
constituents (i.e. noun, verb, prepositional and
adverbial phrases). The new features obtained
from fragmentary parsing are: the number of
fragments, the number of "verbal" fragments
(fragments that contain at least one verb), number
of tokens skipped, and the total percentage of the
input recognised by the fragmentary parser. The
fragmentary parser is a cost-effective solution to
obtain a better representation of sentences
because it is very fast---on average, less than one
second of CPU time for any sentence--in
comparison to full parsing.

Moreover, the information obtained from the
fragmentary parser is adequate for the task at
hand because it represents well the complexity of
the sentence to be parsed. In addition to the featu-
res obtained from the lexical analysis and those
obtained from the fragmentary parser, we use the
string length (number of tokens in the sentence)
to describe each sentence. The attribute used to
classify the sentences, provided by a human ex-
pert, is called rule-to-attempt and it can take two
values: compound or non-compound, according
to the type of the sentence. To summarise, we
used the ten following features to represent each
sentence: l) string-length: number of tokens
(integer); 2) num-potential-verbs: number of
potential verbs (integer); 3) num-potential-auxiliary:
number of potential auxiliaries (integer); 4) verb-
density: a flag that indicates if all potential verbs are
separated by coordinators (boolean); 5) nbr-potential,
coordinators: number of potential coordinators
(integer); 6) num-fragments: number of fragments
used by the fragmentary parser (integer); 7) num-
verbal-fragments: number of fragments that contain
at least one potential verb (integer); 8) num-tokens-
skip: number of tokens not considered by the
fragmentary parser (integer); 9) %.input.recognized:
percentage of the sentence recognized, i.e. not skipped
(real); 10) rule-to-attempt: type of the sentence
(COMPOUND or NON-COMPOUND).

We built the first data set by randomly
selecting 300 sentences from four real texts: a
software user manual, a tax guide, a junior
science textbook on weather phenomena, and the
Brown corpus. Each sentence was described in
terms of the above features, which are of course

acquired automatically by the lexical analyser and
the fragmentary parser, except for rule-to-attempt
as mentioned above. After a preliminary analysis
of these 300 sentences, we realised that we had un-
balanced numbers of examples of compound and
non-compound sentences: non-compounds are
approximately five times more frequent than
compounds. However, it is a well-known fact in
machine learning that such unbalanced training sets
are not suitable for inductive learning. For this
reason, we have re-sampled our texts to obtain
roughly an equal number of non-compound and
compound sentences (55 compounds and 56 non-
compounds).

Our experiment consisted in running a variety
of attribute classification systems: IMAFO ([Famili
& Tumey 1991]), C4.5 ([Quinlan 1993]), and
different learning algorithms from MLC++
([Kohavi et al. 1994]). IMAFO includes an en-
hanced version of ID3 and an interface to C4.5 (we
used both engines in our experimentation). MLC++
is a machine learning library developed in C++.
We experimented with many algorithms included
in MLC++.

We concentrated mainly on learning algorithms
that generate results in the form of rules. For this
project, rules are more interesting than other form
of results because they are relatively easy to
integrate in a rule-based parser and because they
can be evaluated by experts in the domain.
However, for accuracy comparison, we have also
used learning systems that do not generate rules in
terms of the initial representation: neural networks
and instance-based systems. We randomly divided
our data set into the training set (2/3 of the
examples, or 74 instances) and the testing set (1/3
of the examples, or 37 instances). Table 1
summarises the results obtained from different
systems in terms of the error rates on the testing
set. All systems gave results with an error rate
below 20%.

SYSTEM Type of system
decision rules

Error rate
ID3 16.2%
C4.5 decision rules 18.9%

IMAFO decision rules 16.5%
decision rule (one)

instance-based
oneR 15.6%

IB 10.8%
aha-ib instance-based 18.9%

belief networks naive-bayes
perceptron

16.2%
neural networks 13.5%

Table 1. Global results from learning.

309

The error rates presented in Table I for the
first four systems (decision rules systems) repre-
sent the average rates for all rules generated by
these systems. However, not all rules were parti-
cularly interesting. We kept only some of them
for further evaluation and integration in the
parser. Our selection criteria were: 1) the esti-
mated error rate, 2) the "reasonability" (only
rules that made sense for a computational linguist
were kept), 3) the readability (simple rules are
preferred), and 4) the novelty (we discarded rules
that are already in the parser). Tables 2 and 3 pre-
sent rules that satisfy all the above the criteria:
Table 2 focuses on rules to identify compound
sentences while Table 3 presents rules to identify
non-compound sentences. The error rate for each
rule is also given. These error rates were obtained
by a 10 fold cross-validation test.

Rules to identify COMPOUND sen-
tences

num-potential-verbs <= 3 AND
num-potential-coordinators > 0 AND
num-verbal-fra£ments > 1
num-fragments > 7
num-fragments > 5 AND
num-verbal-fragments <= 2
string-length <= 17 AND
num-potential-coordinators > 0 AND
num-verbal-fra£ments > 1
num-potential-verbs > 1 AND
num-potential-verbs <= 3 AND
num-potential-coordinators > 0 AND
num-fra~ments > 4

Error
rate (%)

10.5

9.4
23.9

5.4

4.2

num-potential-coordinators > 0 AND 4.3
num-fragrnents >= 7
num-potential-coordinators > 0 AND 16.8
num-verbal-fragments > 1
num-potential-coordinators > 0 AND
num-fragments < 7 AND 4.7
string-length < 18
Table 2. Rules to identify COMPOUND sentences

The error rates that we have obtained are quite
respectable for a two-class learning problem
given the volume of available examples. More-
over, the rules are justified and make sense. They
are also very compact in comparison with the
original hand-crafted heuristics. We will see in
section 4 how these rules behave on unseen data
from a totally different text.

Rules to identify NON-
COMPOUND sentences

num-potential-verbs <= 3 AND
num-verbal-fragments <= 1
string-length > 10 AND
num-potential-verbs <= 3 AND
num-fra~ments <= 4
string-length <= 21 AND
num-potential-coordinators = 0

Error
rate (%)

8.3

6.7

5.6
num-potential-coordinators = 0 AND 9.7
num-fragments <= 7
Table 3. Rules to identify NON-COMPOUND sen-

tences

Attribute classification systems such as those used
during the experiment reported here are highly
sensitive to the adequacy of the features used to
represent the instances. For our task (parsing),
these features were difficult to find and we had
only a rough idea about their appropriateness. For
this reason, we felt that better results could be
obtained by transforming the original instance
space into a more adequate space by creating new
attributes. In machine learning research, this
process is referred as constructive learning, or
constructive induction ([Wnek & Michalski 1994]).
We even attempted to use principal component
analysis (PCA) ([Johnson & Wichern 1992]) as a
technique of choice for simple constructive
learning but we did not get very impressive results.
We see two reasons for this. The primary reason is
that the ratio between the number of examples and
the number of attributes is not high enough for
PCA to derive high-quality new attributes. The se-
cond reason is that the original attributes are al-
ready highly non-redundant. It is important to note
that these rules do not satisfy the reasonability
criteria applied to the original representation. In
fact, losing the understandability of the attributes is
the usual consequence of almost all approaches that
change the representation of instances.

4 E v a l u a t i o n o f t h e n e w r u l e s

We explained in section 3 how we derived new
parsing heuristics with the help of machine
learning techniques. The next step was to evaluate
how well would the new rules perform if we
replaced the parser's current hand-crafted heuris-
tics with the new ones. In particular, we wanted to
evaluate the accuracy of the heuristics in correctly
identifying the appropriate rule, COMPOUND or
NON COMPOUND, that should first be attempted by

310

the parser. This goal was prompted by an earlier
evaluation of DIPETT in which it was noted that
a good proportion of questionable parses (i.e.
either bad parses or correct but too time-
consuming parses) were caused by a bad first
attempt, such as attempting COMPOUND instead of
NON_COMPOUND.

4.1 F r o m n e w rules to n e w parsers

Our machine learning experiments lead us to two
classes of rules obtained from a variety of classi-
fiers and concerned only with the notion of com-
poundness: 1) those predicting a COMPOUND
sentence, and 2) those predicting a
NON_COMPOUND. The problem was then to de-
cide what should be done with the set of new
rules. More precisely, before actually imple-
menting the new rules and including them in the
parser, we first had to decide on an appropriate
strategy for exploiting the set of new rules. We
now describe the three implementations that we
realised and evaluated.

The first implements only the rules for the
COMPOUND class---one big rule which is a dis-
junct of all the learned rules for that class. And
since there are only two alternatives, either
COMPOUND or NON_COMPOUND, if none of the
COMPOUND rules applies, the NON_COMPOUND
class is predicted. This first implementation is re-
ferred to as C-Imp. The second implementation,
referred to as NC-Imp, does exactly the opposite:
i.e. it implements only the rules predicting the
NON_COMPOUND class.

The third implementation, referred to as
NC_C-Imp, benefits from the first two imple-
mentations. The class of a new sentence is deter-
mined by combining the output from C-Imp and
NC-Imp. The combination of the output is done
according to the following decision table in Table
4.

C-Imp NC-Imp .] Output of

I NC_C-Imp

C C C
NC NC NC
NC C NC
C NC NC

Table 4. Decision table used in the NC_C imple-
mentation.

The first two lines of this decision table are ob-
vious since the outputs from both implementations
are consistent. When the two implementations
disagree, the NC_C-Imp implementation predicts
the non-compound. This prediction is justified by a
bayesian argumentation. In the absence of any
additional knowledge, we are forced to assign an
equal probability of success to each of the two sets
of rules and the most probable class becomes the
one with the highest frequency. Thus, in general,
non-compound sentences are more frequent then
compound ones. One obvious way to improve this
third implementation would be to precisely
evaluate the accuracies of the two sets of rules and
then incorporate these accuracies in the decision
process.

4.2 The results

To perform the evaluation, we randomly sampled
200 sentences from a new corpus on mechanics
([Atkinson 1990]): note that this text had not been
used to sample the sentences used for learning. Out
of these 200 sentences, 10 were discarded since
they were not representative (e.g. one-word
"sentences"). We ran the original implementation
of DIPETT plus the three new implementations
described in the previous section on the remaining
190 test sentences. Table 5 presents the results. The
error-rate, the standard deviation of the error-rate
and the p-value are listed for each implementation.
The p-value gives the probability that DIPETT's
original hand-crafted heuristics are better than the
new heuristics. In other words, a small p-value
means an increase in performance with a high
probability.

Implementation

Original heur.
C-Imp

NC-Imp
NC_C-Imp

Err- Std. p-value
rate dev.
(%)

25.268 ±3.2

20.526 ±2.9 0.126
22.105 ±3.0 0.229
16.316 ±2.7 0.009

Table 5. Performances of the new implementations
versus DIPETT's original heuristics.

We observe that all new automatically-derived
heuristics did beat DIPETT's hand-crafted heu-
ristics and quite clearly. The results from the third
implementation (i.e. NC_C-Imp) are especially
remarkable: with a confidence of over 99%, we can

311

affirm that the NC_C-lmplementation will
outperform DIPETT's original heuristic. We also
note that the error rate drops by 35% of its value
for the original heuristic. Similarly, with a confi-
dence of 87.4%, we can affirm that the imple-
mentation that uses only the C-rules (i.e. C-Imp)
will perform better then DIPETT's current heu-
ristics.

These very good results are also amplified by
the fact that the testing described in this evalua-
tion was done on sentences totally independent
from the ones used for training. Usually, in ma-
chine learning research, the training and the tes-
ting sets are sampled from the same original data
set, and the kind of "out-of-sample" testing that
we perform here has only recently come to the
attention of the learning community ([Ezawa et
al. 1996]). Our experiments have shown that it is
possible to infer rules that perform very well and
are highly meaningful in the eyes of an expert
even if the training set is relatively small. This
indicates that the representation of sentences that
we chose for the problem was adequate. Finally,
an other important output of our research is the
identification of the most significant attributes to
distinguish non-compound sentences from com-
pound ones. This alone is valuable information to
a computational linguist. Only five out of ten
original attributes are used by the learned rules,
and all of them are cheap to compute: two attri-
butes are derived by fragmentary parsing (num-
ber of verbal fragments and number of frag-
ments), and three are lexical (number of potential
verbs, length of the input string, and presence of
potential coordinators).

5 Related Work

There have been successful attempts at using ma-
chine learning in search of a solution for linguis-
tic tasks, e.g. discriminating between discourse
and sentential senses of cues ([Litman 1996]) or
resolution of coreferences in texts ([McCarthy &
Lehnert 1995]). Like our work, these problems
are cast as classification problems, and then ma-
chine learning (mainly C4.5) techniques are used
to induce classifiers for each class. What makes
"these applications different from ours is that they
have worked on surface linguistic or mixed surfa-
ce linguistic and intonational representation, and
that the classes are relatively balanced, while in

our case the class of compound sentences is much
less numerous than the class of non-composite
sentences. Such unbalanced classes create prob-
lems for the majority of inductive learning systems.

A distinctive feature of our work is the fact that
we used machine learning techniques to improve
an existing rule-based natural language processor
from the inside. This contrasts with approaches
where there are essentially no explicit rules, such
as neural networks (e.g. [Buo 1996]), or
approaches where the machine learning algorithms
attempt to infer--via deduction (e.g. [Samuelsson
1994]), induction (e.g. [Theeramunkong et al.
1997]; [Zelle & Mooney 1994]) under user coope-
ration (e.g. [Simmons & Yu 1992]; [Hermjakob &
Mooney 1997]), transformation-based error-driven
learning (e.g. [Brill 1993]), or even decision trees
(e.g. [Magerman 1995])--a grammar from raw or
preprocessed data. In our work, we do not wish to
acquire a grammar: we have one and want to de-
vise a mechanism to make some of its parts
adaptable to the corpus at hand or, to improve
some aspect of its performance. Other researchers,
such as [Lawrence et al. 1996], have compared
neural networks and machine learning methods at
the task of sentence classification. In this task, the
system must classify a string as either grammatical
or not. We do not content ourselves with results
based on a grammatical/ungrammatical dichotomy.
We are looking for heuristics, using relevant
features, that will do better than the current ones
and improve the overall performance of a natural
language processor: this is a very difficult problem
(see, e.g., [Huyck & Lytinen 1993]). One could
also look at this problem as one of optimisation of
a rule-based system.

Work somewhat related to ours was conducted
by [Samuelsson 1994] who used explanation-based
generalisation to extract a subset of a grammar that
would parse a given corpus faster than the original,
larger grammar [Neumann 1997] also used EBL
but for a generation task. In our case, we are not
looking for a subset of the existing rules but, rather,
we are looking for brand new rules that would
replace and outperform the existing rules. We
should also mention the work of [Soderland 1997]
who also worked on the comparison of
automatically learned and hand-crafted rules for
text analysis.

312

6 Conclusion

We have presented an experiment which demon-
strates that machine learning may be used as a
technique to optimise in an adaptive manner the
high-level decisions that any parser must make in
the presence of incomplete information about the
properties of the text it analyses. The results show
clearly that simple and understandable rules
learned by machine learning techniques can sur-
pass the performance of heuristics supplied by an
experienced computational linguist. Moreover,
these very encouraging results indicate that the
representation that we chose and discuss was an
adequate one for this problem. We feel that a
methodology is at hand to extend and deepen this
approach to language processing programs in
general. The methodology consists of three main
steps: I) feature engineering, 2) learning, using
several different available learners, 3) evaluation,
with the recommendation of using the "out-of-
sample" approach to testing. Future work will fo-
cus on improvements to constructive learning; on
new ways of integrating the rules acquired by dif-
ferent learners in the parser; and on the identifi-
cation of criteria for selecting parser rules that
have the best potential to benefit from the gene-
ralisation of our results.

Acknowledgements

The work described here was supported by the Natural
Sciences and Engineering Research Council of Canada.

References

Atkinson, H.F. (1990) Mechanics of Small Engines. New
York: Gregg Division, McGraw-Hill.

Brill E. (1993) "Automatic Grammar Induction and Parsing
Free Text: A Transformation-Based Approach", Proc. of
the 31st Annual Meeting of the ACL, pp.259-265.

Buo F.D. (1996) "FeasPar--A Feature Structure Parser
Learning to Parse Spontaneous Speech", Ph.D. Thesis,
Fakultiit ftir Informatik, Univ. Karlsruhe, Germany.

Delisle S. (1994) "Text Processing without a priori Domain
Knowledge: Semi-Automatic Linguistic for Incremental
Knowledge Acquisition", Ph.D. Thesis, Dept. of Compu-
ter Science, Univ. of Ottawa. Published as technical report
TR-94-02.

Ezawa K., Singh M. & Norton S. (1996) "Learning Goal
Oriented Bayesian Networks for Telecommunications
Risk Management", Proc. of the 13th International Conf.
on Machine Learning, pp. 139-147.

Famili A. & Turney P. (1991) "Intelligently Helping the
Human Planner in Industrial Process Planing", AI EDAM -

AI for Engineering Design Analysis and Manufacturing,
5 (2), pp. 109-124.

Hermjakob U. & Mooney R.J. (1997) "Learning Parse and
Translation Decisions From Examples With Rich Context",
Proc. of ACL-EACL Conf., pp.482-489.

Huyck C.R. & Lytinen S.L. (1993) "Efficient Heuristic
Natural Language Parsing", Proc. of the ll th National
Conf. on AI, pp.386-391.

Johnson R.A. & Wichern D.W. (1992) Applied Multivariate
Statistical Analysis, Prentice Hall.

Kohavi R., John G., Long R., Manley D. & Pleger K. (1994)
"MLC++: A machine learning library in C++", Tools with
AI, IEEE Computer Society Press, pp.740-743.

Lawrence S., Fong S. & Lee Giles C. (1996) "Natural Lan-
guage Grammatical Inference: A Comparison of Recurrent
Neural Networks and Machine Learning Methods", in S.
Wermter, E. Riloff and G. Scheler (eds.), Symbolic,
Connectionnist, and Statistical Approaches to Learning for
Natural Language Processing, Lectures Notes in AI,
Springer-Verlag, pp.33-47.

Litman D. (1996) "Cue Phrase Classification Using Machine
Learning', Journal of Al Research, 5, pp.53-95.

Magerman D. (1995) "Statistical Decision-Tree Models for
Parsing", Proc. of the 33rd Annual Meeting of the ACL,
276-283.

McCarthy J. & Lehnert W.G. (1995) "Using Decision Trees
for Coreference Resolution", Proc. of IJCAI-95, pp.1050-
1055.

Neumann G. (1997) "Applying Explanation-based Learning to
Control and Speeding-up Natural Language Generation",
Proc. of ACL-EACL Conf., pp.214-221.

Quinlan J.R. (1993) C4.5: Programs for Machine Learning,
Morgan Kaufmann.

Quirk R., Greenbaum S., Leech G. & Svartvik J. 0985) A
Comprehensive Grammar of the English Language,
Longman.

Samuelsson C. (1994) "Grammar Specialization Through
Entropy Thresholds", Proc. of the 32nd Annual Meeting of
the ACL, pp.188-195.

Simmons F.S. & Yu Y.H. (1992) "The Acquisition and Use of
Context-dependent Grammars for English", Computational
Linguistics, 18(4), pp.392-418.

Soderland S.G. (1997) "Learning Text Analysis Rules for
Domain-Specific Natural Language Processing", Ph.D.
Thesis, Dept. of Computer Science, Univ. of Massachusetts.

Theeramunkong T., Kawaguchi Y. & Okumura (1997)
"Exploiting Contextual Information in Hypothesis Selection
for Grammar Refinement", Proc. of the CEGDLE Workshop
at ACL-EACL'97, pp.78-83.

Wnek J. & Michalski R.S. (1994) "Hypothesis-driven cons-
tructive induction in AQ17-HCI: a method and experi-
ments", Machine Learning, 14(2), pp. 139-168.

Zelle J.M. & Mooney R.J. (1994) "Inducing Deterministic
Prolog Parsers from Treebanks: A Machine Learning Ap-
proach", Proc. of the 12th National Conf. on AI, pp.748-
753.

313

