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Abstract 
This paper describes a domain independent, automat- 
ically trained call router which directs customer calls 
based on their response to an open-ended "How may I di- 
rect your call?" query. Routing behavior is trained from 
a corpus of transcribed and hand-routed calls and then 
carried out using vector-based information retrieval tech- 
niques. Based on the statistical discriminating power of 
the n-gram terms extracted from the caller's request, the 
caller is 1) routed to the appropriate destination, 2) trans- 
ferred to a human operator, or 3) asked a disambigua- 
tion question. In the last case, the system dynamically 
generates queries tailored to the caller's request and the 
destinations with which it is consistent. Our approach 
is domain independent and the training process is fully 
automatic. Evaluations over a financial services call cen- 
ter handling hundreds of activities with dozens of desti- 
nations demonstrate a substantial improvement on exist- 
ing systems by correctly routing 93.8% of the calls after 
punting 10.2% of the calls to a human operator. 

1 Introduction 
The call routing task involves directing a user's call to 
the appropriate destination within a call center or pro- 
viding some simple information, such as loan rates. In 
current systems, the user's goals are typically gleaned 
via a touch-tone system employing a rigid hierarchical 
menu. The primary disadvantages of navigating menus 
for users are the time it takes to listen to all the options 
and the difficulty of matching their goals to the options; 
these problems are compounded by the necessity of de- 
scending a nested hierarchy of choices to zero in on a 
particular activity. Even simple requests such as "I 'd  like 
my savings account balance" may require users to nav- 
igate as many as four or five nested menus with four or 
five options each. We have developed an alternative to 
touch-tone menus that allows users to interact with a call 
router in natural spoken English dialogues just as they 
would with a human operator. 

Human operators respond to a caller request by 1) 
routing the call to an appropriate destination, or 2) query- 
ing the caller for further information to determine where 
to route the call. Our automatic call router has these two 
options as well as a third option of sending the call to a 

human operator. The rest of this paper provides both a 
description and an evaluation of an automatic call router 
driven by vector-based information retrieval techniques. 
After introducing our fundamental routing technique, we 
focus on the disambiguation query generation module. 
Our disambiguation module is based on the same sta- 
tistical training as routing, and dynamically generates 
queries tailored to the caller's request and the destina- 
tions with which it is consistent. The main advantages 
of our system are that 1) it is domain independent, 2) it 
is trained fully automatically to both route and disam- 
biguate requests, and 3) its performance is sufficient for 
use in the field, substantially improving on that of previ- 
ous systems. 

2 Related Work 
Call routing is similar to topic identification (Mc- 
Donough et al., 1994) and document routing (Harman, 
1995) in identifying which one of n topics (destinations) 
most closely matches a caller's request. Call routing is 
distinguished from these activities by requiring a single 
destination, but allowing a request to be refined in an in- 
teractive dialogue. We are further interested in carrying 
out the routing using natural, conversational language. 

The only work on call routing to date that we are 
aware of is that by Gorin et al. (to appear). They se- 
lect salient phrase fragments from caller requests, such as 
made a long distance and the area code for. These phrase 
fragments are used to determine the most likely destina- 
tion(s), which they refer to as call type(s), for the request 
either by computing the a posteriori probability for each 
call type or by passing the fragments through a neural 
network classifier. Abella and Gorin (1997) utilized the 
Boolean formula minimization algorithm for combining 
the resulting set of call types based on a hand-coded hi- 
erarchy of call types. Their intention is to utilize the out- 
come of this algorithm to select from a set of  dialogue 
strategies for response generation. 

3 C o r p u s  A n a l y s i s  

To examine human-human dialogue behavior in call 
routing, we analyzed a set of 4497 transcribed telephone 
calls involving customers interacting with human opera- 
tors, looking at both the semantics of  caller requests and 
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Name Activity Indirect 
# of calls 949 3271 277 
% of all calls 21.1% 72.7% 6.2% 

Table 1: Semantic Types of  Caller Requests 

dialogue actions for  response generation. The call cen- 
ter provides financial services in hundreds of  categories 
in the general areas of  banking, credit cards, loans, insur- 
ance and investments; we concentrated on the 23 desti- 
nations for which we had at least 10 calls in the corpus. 

3.1 Semantics of  Caller Requests 

The operator provides an open-ended prompt of  "How 
may I direct your call?" We classified user responses 
into three categories. First, callers may explicitly pro- 
vide a destination name, either by itself or embedded 
in a complete sentence, such as "may I have consumer 
lending?" Second, callers may describe the activity they 
would like to perform. Such requests may be unambigu- 
ous, such as "l 'd like my checking account balance", or 
ambiguous, such as "car loans please", which in our call 
center can be resolved to either consumer lending, which 
handles new car loans, or to loan services, which handles 
existing car loans. Third, a caller can provide an indirect 
request, in which they describe their goal in a round- 
about way, often including irrelevant information. This 
often occurs when the caller either is unfamiliar with the 
call center hierarchy or does not have a concrete idea of 
how to achieve the goal, as in "ah I 'm calling 'cuz ah a 
friend gave me this number and ah she told me ah with 
this number I can buy some cars or whatever but she 
didn't know how to explain it to me so l just called you 
you know to get that information." 

Table 1 shows the distribution of  caller requests in our 
corpus with respect to these semantic types. Our analysis 
shows that in the vast majority of  calls, the request was 
based on destination name or activity. Since there is a 
fairly small number (dozens to hundreds) of activities be- 
ing handled by each destination, requests based on name 
and activity are expected to be more predictable and thus 
more suitable for handling by an automatic call router. 
Thus, our goal is to automatically route those calls based 
on name and activity, while leaving the indirect or inap- 
propriate requests to human call operators. 

3.2 Dialogue Actions for Response Generation 

We also analyzed the operator's responses to caller re- 
quests to determine the dialogue actions needed for re- 
sponse generation in our automatic call router. We found 
that in the call routing task, the call operator either no- 
tifies the customer of  the routing destination or asks a 
disambiguating query.l 

lln cases where the operator generates an acknowledgment, such 
as uh-huh, midway through the caller's request, we analyzed the next 
operator utterance. 

Notification 

# of calls 3608 
% of all calls 80.2% 

Query 

NP I Others 
657 232 

14.6% 5.2% 

Table 2: Call Operator Dialogue Actions 

Caller 
Reslxmse 

Caller Request 

-I I 
andidale Destinations 

R,,,a,z t_!..~+o.,~,L.o.,~ 0 
N o t i f i c a t h m ~  

~ ential Query 

DisambiRuating Yes f Query ~ Human 
Query ~ - Operator 

Figure 1: Call Router Architecture 

Table 2 shows the frequency that each dialogue ac- 
tion should be employed based strictly on the presence 
of  ambiguity in the caller requests in our corpus. We fur- 
ther analyzed those calls considered ambiguous within 
our call center and noted that 75% of such ambiguous re- 
quests involve underspecified noun phrases, such as re- 
questing car loans without specifying whether it is an 
existing or new car loan. The remaining 25% of the 
ambiguous requests involve underspecified verb phrases, 
such as asking to transfer funds without specifying the 
types of accounts to and from which the transfer will oc- 
cur, or missing verb phrases, such as asking for direct 
deposit without specifying whether the caller wants to 
set up or change an existing direct deposit. 

4 Dialogue Management in Call Routing 
Our call router consists of  two components: the rout- 
ing module and the disambiguation module. The rout- 
ing module takes a caller request and determines a set of  
destinations to which the call can reasonably be routed. 
If  there is exactly one such destination, the call is routed 
there and the customer notified; if there are multiple des- 
tinations, the disambiguation module is invoked in an at- 
tempt to formulate a query; and if there is no appropriate 
destination or if a reasonable disambiguation query can- 
not be generated, the call is routed to an operator. Fig- 
ure I shows a diagram outlining this process. 

4.1 The Routing Module 

Our approach is novel in its application of  information 
retrieval techniques to select candidate destinations for 
a call. We treat call routing as an instance of  document 
routing, where a collection of  judged documents is used 
for training and the task is to judge the relevance of  a set 
of test documents (Schiitze et al., 1995). More specifi- 
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cally, each destination in our call center is represented as 
a collection of  documents (transcriptions of calls routed 
to that destination), and given a caller request, we judge 
the relevance of  the request to each destination. 

4.1.1 The Training Process 
Document Construction Our training corpus consists 
of  3753 calls each of  which is hand-routed to one of  
23 destinations. 2 Our first step is to create one (virtual) 
document per destination, which contains the text of  the 
callers '  contributions to all calls routed to that destina- 
tion. 

Morpho log ica l  F i l t e r ing  We filter each (virtual) doc- 
ument through the morphological  processor of the Bell 
Labs '  Text-to-Speech synthesizer (Sproat, 1997) to ex- 
tract the root form of  each word in the corpus. Next, 
the root forms of  caller utterances are filtered through 
two lists, the ignore list and the stop list, in order to 
build a better n-gram model. The ignore list consists 
of  noise words, such as uh and um, which sometimes 
get in the way of  proper n-gram extraction, as in "I'd 
like to speak to someone about a car uh loan". With 
noise word filtering, we can properly extract the bigram 
"car, loan". The stop list enumerates words that do not 
discriminate between destinations, such as the, be, and 
afternoon. We modified the standard stop list distributed 
with the SMART information retrieval system (Salton, 
1971) to include domain specific terms and proper names 
that occurred in the training corpus. Note that when a 
stop word is filtered out of  the caller utterance, a place- 
holder is inserted to prevent the words preceding and fol- 
lowing the stop word to form n-grams. For instance, af- 
ter filtering the stop words out of  "I want to check on an 
account", the utterance becomes "<sw> <sw> <sw> 
check <sw> <sw> account". Without the placeholders, 
we would extract the bigram "check, account", just as if 
the caller had used the term checking account. 

Term Ext rac t ion  We extract the n-gram terms that oc- 
cur more frequently than a pre-determined threshold and 
do not contain any stop words. Our current system uses 
unigrams that occurred at least twice and bigrams and 
trigrams that occurred at least three times in the corpus. 
No 4-grams occurred three times. 

Term-Document M a t r i x  Once the set of  relevant 
terms is determined, we construct an m x n term- 
document frequency matrix A whose rows represent the 
m terms, whose columns represent the n destinations, 
and where an entry At,a is the frequency with which term 
t occurs in calls to destination d. 

It is often advantageous to weight the raw counts 
to fine tune the contribution of  each term to routing. 
We begin by normalizing the row vectors representing 
terms by making them each of  unit length. Thus we di- 
vide each row At in the original matrix by its length, 

2These 3753 calls are a subset of the corpus of 4497 calls used in 
o u r  corpus analysis. We excluded those ambiguous calls that were not 
resolved by the operator. 

A 2 1/2 ( E l < e < n  t,e) . Our second weighting is based on 
the n-oti-on that a term that only occurs in a few docu- 
ments is more important in discriminating among docu- 
ments than a term that occurs in nearly every document. 
We use the inverse document frequency (IDF) weighting 
scheme (Sparck Jones, 1972) whereby a term is weighted 
inversely to the number of  documents in which it occurs, 
by means oflDF(t)  = log 2 n/d( t )  where t is a term, n is 
the total number of  documents in the corpus, and d(t) is 
the number of documents containing the term t. Thus we 
obtain a weighted matrix B,  whose elements are given 
by Bt,a = At,a x IDF(t)/(~-~x<e< n A2,e)x/2. 

Vector Representation To reduce the dimensional- 
ity of our vector representations for terms and doc- 
uments, we applied the singular value decomposit ion 
(Deerwester et al., 1990) to the m x n matrix B of  
weighted term-document frequencies. Specifically, we 
take B = U S V  T, where U is an m x r orthonormal ma- 
trix (where r is the rank of  B),  V is an n x r orthonor- 
mal matrix, and S is an r x r diagonal matrix such that 
Sl,1 ~_~ 82,2 ~> " ' "  ~> Sr,r ~ O. 

We can think of  each row in U as an r-dimensional  
vector that represents a term, whereas each row in V is 
an r-dimensional vector representing a document. With 
appropriate scaling of the axes by the singular values 
on the diagonal of  S,  we can compare documents to 
documents and terms to terms using their corresponding 
points in this new r-dimensional  space (Deerwester et 
al., 1990). For instance, to employ the dot product of  
two vectors as a measure of their similarity as is com- 
mon in information retrieval (Salton, 1971), we have the 
matrix B T B  whose elements contain the dot product of  
document vectors. Because S is diagonal and U is or- 
thonormal, B T B  = V S Z V  T = V S ( V S )  T. Thus, ele- 
ment i,  j in B T B ,  representing the dot product between 
document vectors i and j ,  can be computed by taking 
the dot product between the i and j rows of  the matrix 
VS.  In other words, we can consider rows in the matrix 
V S  as vectors representing documents for the purpose 
of  document/document comparison. An element of  the 
original matrix Bi,j, representing the degree of  associa- 
tion between the ith term and the j t h  document, can be 
recovered by multiplying the ith term vector by the j t h  
scaled document vector, namely B i j  = Ui( (VS) j )  T. 

4.1.2 Call Routing 
Given the vector representations of  terms and documents 
(destinations) in r-dimensional  space, how do we deter- 
mine to which destination a new call should be routed? 
Our process for vector-based call routing consists of  the 
following four steps: 

Term Extraction Given a transcription of  the caller 's  
utterance (either from a keyboard interface or from the 
output of  a speech recognizer), the first step is to extract 
the relevant n-gram terms from the utterance. For in- 
stance, term extraction on the request "I want to check 
the balance in my savings account" would result in 
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one bigram term, "saving, account", and two unigrams, 
"check" and "balance". 

Pseudo-Document Generation Given the extracted 
terms from a caller request, we can represent the request 
as an m-dimensional vector Q where each component Qi 
represents the number of times that the ith term occurred 
in the caller's request. We then create an r-dimensional 
pseudo-document vector D = QU, following the stan- 
dard methodology of vector-based information retrieval 
(see (Deerwester et al., 1990)). Note that D is simply 
the sum of the term vectors Ui for all terms occurring in 
the caller's request, weighted by their frequency of oc- 
currence in the request, and is scaled properly for docu- 
ment/document comparison. 

Scoring Once the vector D for the pseudo-document is 
determined, we compare it with the document vectors by 
computing the cosine between D and each scaled docu- 
ment vectors in VS. Next, we transform the cosine score 
for each destination using a sigmoid function specifically 
fitted for that destination to obtain a confidence score that 
represents the router's confidence that the call should be 
routed to that destination. 

The reason for the mapping from cosine scores to con- 
fidence scores is because the absolute degree of similar- 
ity between a request and a destination, as given by the 
cosine value between their vector representations, does 
not translate directly into the likelihood for correct rout- 
ing. Instead, some destinations may require a higher co- 
sine value, i.e., a closer degree of similarity, than others 
in order for a request to be correctly associated with those 
destinations. Thus we collected, for each destination, 
a set of cosine value/routing value pairs over all calls 
in the training data, where the routing value is 1 if the 
call should be routed to that destination and 0 otherwise. 
Then for each destination, we used the least squared error 
method in fitting a sigmoid function, 1/(1 + e-(a~+b)), 
to the set of cosine/routing pairs. 

We tested the routing performance using cosine vs. 
confidence values on 307 unseen unambiguous requests. 
In each case, we selected the destination with the high- 
est cosine/confidence score to be the target destination. 
Using strict cosine scores, 92.2% of the calls are routed 
to the correct destination. On the other hand, using sig- 
moid confidence fitting, 93.5% of the calls are correctly 
routed. This yields a relative reduction in error rate of 
16.7%. 

Decision Making The outcome of the routing module 
is a set of destinations whose confidence scores are above 
a pre-determined threshold. These candidate destinations 
represent those to which the caller's request can reason- 
ably be routed. If there is only one such destination, then 
the call is routed and the caller notified; if there are two 
or more possible destinations, the disambiguation mod- 
ule is invoked in an attempt to formulate a query; other- 
wise, the the call is routed to an operator. 

To determine the optimal value for the threshold, we 

I 
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0.2 

0 
0 

Uppcd~nd 
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Thr~h~dd 

Figure 2: Router Performance vs. Threshold 

ran a series of experiments to compute the upperbound 
and lowerbound of the router's performance varying the 
threshold from 0 to 0.9 at 0.1 intervals. The lowerbound 
represents the percentage of calls that are routed cor- 
rectly, while the upperbound indicates the percentage of 
calls that have the potential to be routed correctly after 
disambiguation (see section 5 for details on upperbound 
and lowerbound measures). The results in Figure 2 show 
0.2 to be the threshold that yields optimal performance. 

4.2 The Disambiguation Module 
The disambiguation module attempts to formulate an ap- 
propriate query to solicit further information from the 
caller in order to determine a unique destination to which 
the call should be routed. To generate an appropriate 
query, the caller's request and the candidate destinations 
must both be taken into account. We have developed 
a vector-based method for dynamically generating dis- 
ambiguation queries by first selecting a set of terms and 
then forming a wh or yes-no question from these selected 
te rms.  

The terms selected by the disambiguation mechanism 
are those terms related to the original request that can 
likely be used to disambiguate among the candidate des- 
tinations. These terms are chosen by filtering all terms 
based on the following three criteria: 

I. Closeness: We choose terms that are close (by 
the cosine measure) to the differences between the 
scaled pseudo-document query vector, D, and vec- 
tors representing the candidate destinations in VS. 
The intuition is that adding terms close to the differ- 
ences will disambiguate the original query. 

2. Relevance: From the close terms, we construct a 
set of relevant terms which are terms that further 
specify a term in the original request. A close term 
is considered relevant if it can be combined with a 
term in the request to form a valid n-gram term, and 
the relevant term will be the resulting n-gram tenn. 
For instance, if "car,loan" is in the original request, 
then both "new" and "new, car" would produce the 
relevant term "new, car, loan" 

3. Disambiguating power: Finally, we restrict at- 
tention to relevant terms that can be added to the 
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original request to result in an unambiguous rout- 
ing using the routing mechanism described in Sec- 
tion 4.1.2. If  none of  the relevant terms satisfy this 
criterion, then we include all relevant terms in the 
set of  disambiguating terms. Thus, instead of  giving 
up the disambiguation process when no one term is 
predicted to resolve the ambiguity, the system may 
pose a question which further specifies the request 
and then select a disambiguating term based on this 
refined (although still ambiguous) request. 

The result of  this filtering process is a finite set of  
terms which are relevant to the original ambiguous query 
and, when added to it, are likely to resolve the ambigu- 
ity. If  a significant number of  these terms share a head 
word, such as loan, the system asks the wh-question "for 
what type o f  loan ?'" Otherwise, the term that occurred 
most frequently in the training data is selected, based on 
the heuristic that a more common term is likely to be 
relevant than an obscure term, and a yes-no question is 
formed based on this term. A third alternative would be 
to ask a disjunctive question, but we have not yet ex- 
plored this possibility. Figure 1 shows that after the sys- 
tem poses its query, it attempts to route the refined re- 
quest, which is the original request augmented with the 
caller response to the system's query. In the case of  wh- 
questions, n-gram terms are extracted from the caller's 
response. In the case of  yes-no questions, the system de- 
termines whether ayes  or no answer is given. 3 In the for- 
mer case, the disambiguating term used to form the query 
is considered the caller response, while in the latter case, 
the response is treated as in responses to wh-questions. 

Note that our disambiguation mechanism, like our ba- 
sic routing technique, is fully domain-indepefident. It 
utilizes a set of  n-gram terms, as well as term and doc- 
ument vectors that were obtained by the training of the 
call router. Thus, porting the call router to a new domain 
requires no change in the disambiguation module. 

4.3 Example  

To illustrate our call router, consider the request "loans 
please." This request is ambiguous because our call 
center handles mortgage loans separately from all other 
types of  loans, and for all other loans, existing loans and 
new loans are again handled by different departments. 

Given this request, the call router first extracts the rel- 
evant n-gram terms, which in this case results in the uni- 
gram "'loan". It then computes a pseudo-document vec- 
tor that represents this request, which is compared in turn 
with the 23 vectors representing all destinations in the 
call center. The cosine values between the request and 
each destination are then mapped into confidence values. 

3 In our current system, a response is considered a yes response only 
if it explicitly contains the word yes. However, as discussed in (Green 
and Carberry, 1994; Hockey et al., 1997), responses to yes-no questions 
may not explicitly contain a yes or no term. We leave incorporating a 
more sophisticated response understanding model, such as (Green and 
Carberry, 1994), into our system for future work. 

Using a confidence threshold of  0.2, we have two can- 
didate destinations, Loan Servicing and Consumer Lend- 
ing; thus the disambiguation module is invoked. 

Our disambiguation module first selects from all n- 
gram terms those whose term vectors are close to the dif- 
ference between the request vector and either of  the two 
candidate destination vectors. This results in a list of  60 
close terms, the vast majority of which are semantically 
close to "loan", such as "auto, loan", "payoff",  and 
"owe". Next, the relevant terms are constructed from 
the set of  close terms. This results in a list of  27 relevant 
terms, including "'auto, loan" and "loan,payoff", but ex- 
cluding owe, since neither "loan, owe"  nor "owe, loan" 
constitutes a valid bigram. The third step is to select 
those relevant terms with disambiguation power, result- 
ing in 18 disambiguating terms. Since 11 of  these disam- 
biguating terms share a head noun loan, a wh-question is 
generated based on this head word, resulting in the query 
"for what type o f  loan ?" 

Suppose in response to the system's query, the user 
answers "car loan". The router then adds the new bi- 
gram "car, loan" to the original request and attempts to 
route the refined request. This refined request is again 
ambiguous between Loan Servicing and Consumer Lend- 
ing since the caller did not specify whether it was an ex- 
isting or new car loan. Again, the disambiguation mod- 
ule selects the close, relevant, and disambiguating terms, 
resulting in a unique term "exist, car, loan". Thus, the 
system generates the yes-no question "is this about an 
existing car loan ? ,4 If  the user responds "yes", then the 
trigram term "exist, car, loan" is added to the refined re- 
quest and the call routed to Loan Servicing; if the user 
says "'no, it's a new car loan", then "new, car, loan" is 
extracted from the response and the call routed to Con- 
sumer Lending. 

5 Evaluat ion 

5.1 The Routing Module 

We performed an evaluation of  the routing module of  our 
call router on a fresh set of  389 calls to a human opera- 
tor. 5 Out of the 389 requests, 307 are unambiguous and 
routed to their correct destinations, and 82 were ambigu- 
ous and annotated with a list of  candidate destinations. 
Unfortunately, in this test set, only the caller's first ut- 
terance was transcribed. Thus we have no information 
about where the ambiguous calls were eventually routed. 

The routing decision made for each call is classified 
into one of  8 groups, as shown in Figure 3. For instance, 

4Our current system uses simple template filling for response gener- 
ation by utilizing a manually constructed mappings from n-gram terms 
to their inflected forms, such as from "exist, car, loan" to "an existing 

car loan ". 
5The calls in the test set were recorded separately from our training 

corpus. In this paper, we focus on evaluation based on transcriptions of 
the calls. A companion paper compares call performance on transcrip- 
tions to the output of a speech recognizer (Carpenter and Chu-Carroll, 
submitted). 
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Is request actually unambiguous? 

Is call routed by router? Is call routed by router? ye< 
correct? contains correct? one of possible? overlaps with possible? 

la lb  2a 2b 3a 3b 4a 4b 

Figure 3: Classification of  Router Outcome 

Unambiguous Ambiguous All ] 
Requests Requests I Requests I LB la/(i+2) 4a/(3+4) | (1 a+4a)/all 

UB 

Table 3: Calculation of  Upperbounds and Lowerbounds 

group l a  contains those calls which are 1) actually unam- 
biguous, 2) considered unambiguous by the router, and 
3) routed to the correct destination. On the other hand, 
group 3b contains those calls which are 1) actually am- 
biguous, 2) considered by the router to be unambiguous, 
and 3) routed to a destination which is not one of  the 
potential destinations. 

We evaluated the router's performance on three sub- 
sets of  our test data, unambiguous requests alone, am- 
biguous requests alone, and all requests combined. For 
each set of  data, we calculated a lowerbound perfor- 
mance, which measures the percentage of  calls that are 
correctly routed, and an upperbound performance, which 
measures the percentage of calls that are either correctly 
routed or have the potential to be correctly routed. Ta- 
ble 3 shows how the upperbounds and lowerbounds are 
computed based on the classification in Figure 3 for each 
of  the three data sets. For instance, for unambiguous re- 
quests (classes 1 and 2), the lowerbound is the number 
of  calls actually routed to the correct destination (la) 
divided by the number of  total unambiguous requests, 
while the upperbound is the number of  calls actually 
routed to the correct destination (1 a) plus the number of  
calls which the router finds to be ambiguous between the 
correct destination and some other destination(s) (2a), di- 
vided by the number of  unambiguous queries. The calls 
in category 2a are considered to be potentially correct be- 
cause it is likely that the call will be routed to the correct 
destination after disambiguation. 

Table 4 shows the upperbound and lowerbound perfor- 
mance for each of  the three test sets. These results show 

Unambiguous Ambiguous All 
Requests Requests Requests 

LB 80.1% 58.5% 75.6% 
UB 96.7% 98.8% 97.2% 

Table 4: Router Performance with Threshold = 0.2 

that the system's overall performance will fall some- 
where between 75.6% and 97.2%. The actual perfor- 
mance of  the system is determined by two factors: 1) the 
performance of the disambiguation module, which de- 
termines the correct routing rate of  the 16.6% of the un- 
ambiguous calls that were considered ambiguous by the 
router (class 2a), and 2) the percentage of  calls that were 
routed correctly out of  the 40.4% ambiguous calls that 
were considered unambiguous and routed by the router 
(class 3a). Note that the performance figures in Table 4 
are the result of 100% automatic routing, since no re- 
quest in our test set failed to evoke at least one candidate 
destination. In the next sections, we discuss the perfor- 
mance of  the disambiguation module, which determines 
the overall system performance, and show how allowing 
calls to be punted to operators affects the system's per- 
formance. 

5.2 The Disambiguation Module  

To evaluate our disambiguation module, we needed dia- 
logues which satisfy two criteria: 1) the caller's first ut- 
terance is ambiguous, and 2) the operator asked a follow- 
up question to disambiguate the query and subsequently 
routed the call to the appropriate destination. We used 
157 calls that meet these two criteria as our test set. Note 
that this test set is disjoint from the test set used in the 
evaluation of the router (Section 5. I), since none of  the 
transcribed calls in the latter test set satisfied criterion 
(2). 

For each ambiguous call, the first user utterance was 
given to the router as input. The outcome of  the router 
was classified as follows: 

1. Unambiguous: in this case the call was routed to the 
selected destination. This routing was considered 
correct if the selected destination was the same as 
the actual destination and incorrect otherwise. 

2. Ambiguous: in this case the router attempted to ini- 
tiate disambiguation. The outcome of  the routing of  
these calls were determined as follows: 

(a) Correct, if a disambiguation query was gener- 
ated which, when answered, led to the correct 
destination. 

(b) Incorrect, if a disambiguation query was gen- 
erated which, when answered, could not lead 
to a correct destination. 

(c) Reject, if the router could not form a sensi- 
ble query or was unable to gather sufficient in- 
formation from the user after its queries and 
routed the call to an operator. 

Table 5 shows the number of  calls that fall into each 
of  the 5 categories. Out of the 157 calls, the router au- 
tomatically routed 115 of  them either with or without 
disambiguation (73.2%). Furthermore, 87.0% of these 
routed calls were routed to the correct destination. No- 
tice that out of  the 52 ambiguous calls that the router con- 
sidered unambiguous, 40 were routed correctly (76.9%). 
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Table 5: Performance of Disambiguation Module on 
Ambiguous Calls 

Correct Incorrect Reject 
Class 1 63.2% 1.3% 0% 
Class 2 7.5% 1.7% 5.3% 
Class 3 6.5% 2.2% 0% 
Class 4 7.0% 0.4% 4.9% 
Total 84.2% 5.6% 10.2% 

Table 6: Overall Performance of Call Router 

This is simply because our vector-based router is able to 
distinguish between cases where an ambiguous query is 
equally likely to be routed to more than one destination, 
and situations where the likelihood of one potential desti- 
nation overwhelms that of the other(s). In the latter case, 
the router routes the call to the most likely destination in- 
stead of initiating disambiguation, which has been shown 
to be an effective strategy; not surprisingly, human op- 
erators are also prone to guess the destination based on 
likelihood and route callers without disambiguation. 

5.3 Overall Performance 

Combining results from Section 5.2 for ambiguous calls 
with results from Section 5.1 for unambiguous calls leads 
to the overall performance of the call router in Table 6. 
The table shows the number of calls that will be correctly 
routed, incorrectly routed, and rejected, if we apply the 
performance of the disambiguation module (Table 5) to 
the calls that fall into each class in the evaluation of 
the routing module (Section 5.1). Our results show that 
out of the 389 calls in our test set, 89.8% of the calls 
will be automatically routed by the call router. Of these 
calls, 93.8% (which constitutes 84.2% of all calls) will 
be routed to their correct destinations. This is substan- 
tially better than the results obtained by Gorin et al., who 
report an 84% correct routing rate with a 10% false rejec- 
tion rate (routed to an operator when the call could have 
been automatically routed) on 14 destinations (Gorin et 
al., to appear). 6 

6 Conclusions 
We described and evaluated a domain independent, au- 
tomatically trained call router that takes one of three ac- 
tions in response to a caller's request. It can route the 
call to a destination within the call center, attempt to 

6Gorin et al.'s results are measured without the possibility of system 
queries. To provide a fair comparison, we evaluated our muting module 
on all 389 calls in our test set using the scoring method described in 
(Gorin et al., to appear) (which corresponds roughly to our upperbound 
measure), and achieved a 94. ! % correct routing rate to 23 destinations 
when all calls are automatically routed (no false rejection), a substantial 
improvement over their system. 

formulate a disambiguating query, or route the call to a 
human operator. The routing module of the call router 
selects a set of candidate destinations based on n-gram 
terms extracted from the caller request and a vector- 
based comparison between these n-gram terms and each 
possible destination. If disambiguation is necessary, a 
yes-no question or wh-question is dynamically generated 
from among known n-gram terms in the domain based 
on closeness, relevance, and disambiguating power, thus 
tailoring the disambiguating query to the original request 
and the candidate destinations. Finally, our system per- 
forms substantially better than the best previously exist- 
ing system, achieving an overall 93.8% correct routing 
rate for automatically routed calls when rejecting 10.2% 
of all calls. 
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