
PAT-Trees with the Deletion Function as the Learning Device

for Linguistic Patterns

Keh-Jiann Chen, Wen Tsuei, and Lee-Feng Chien

CKIP, Institute of Information Science,

Academia Sinica, Nankang, Taipei 1 15, Taiwan

Abstract
In this study, a learning device based on the PAT-
tree data structures was developed. The original
PAT-trees were enhanced with the deletion
function to emulate human learning competence.
The learning process worked as follows. The
linguistic patterns from the text corpus are
inserted into the PAT-tree one by one. Since the
memory was limited, hopefully, the important and
new patterns would be retained in the PAT-tree
and the old and unimportant patterns would be
released from the tree automatically. The
proposed PAT-trees with the deletion function
have the following advantages. 1) They are easy
to construct and maintain. 2) Any prefix sub-
string and its frequency count through PAT-tree
can be searched very quickly. 3) The space
requirement for a PAT-tree is linear with respect
to the size of the input text. 4) The insertion of a
new element can be carried out at any time
without being blocked by the memory constraints
because the free space is released through the
deletion of unimportant elements.

Experiments on learning high frequency bi-
grams were carried out under different memory
size constraints. High recall rates were achieved.
The results show that the proposed PAT-trees can
be used as on-line learning devices.

1. Introduction
Human beings remember useful and important
information and gradually forget old and
unimportant information in order to accommodate
new information. Under the constraint of memory

capacity, it is important to have a learning
mechanism that utilizes memory to store and to
retrieve information efficiently and flexibly
without loss of important information. We don't
know how human memory functions exactly, but
the issue of creating computers with similar
competence is one of the most important problems
being studied. We are especially interested in
computer learning of linguistic patterns without
the problem of running out of memory.

To implement such a learning device, a data
structure, equipped with the following functions,
is needed: a) accept and store the on-line input of
character/word patterns, b) efficiently access and
retrieve stored patterns, c) accept unlimited
amounts of data and at the same time retain the
most important as well as the most recent input
patterns. To meet the above needs, the PAT-tree
data structure was originally considered a possible
candidate to start with. The original design of the
PAT-tree can be traced back to 1968. Morrison
[Morrison, 68] proposed a data structure called the
"Practical Algorithm to Retrieve Information
Coded in Alphanumeric"(PATRICIA). It is a
variation of the binary search tree with binary
representation of keys. In 1987, Gonnet [Gonnet,
87] introduced semi-infinite strings and stored
them into PATRICIA trees. A PATRICIA tree
constructed over all the possible semi-infinite
strings of a text is then called a PAT-tree. Many
kinds of searching functions can be easily
performed on a PAT-tree, such as prefix searching,
range searching, longest repetition searching and
so on. A modification of the PAT-tree was done to
fit the needs of Chinese processing in 1996 by
Hung [Hung, 96], in which the finite strings were
used instead of semi-infinite strings. Since finite

244

strings are not unique in a text as semi-infinite
strings are, frequency counts are stored in tree
nodes. In addition to its searching functions, the
frequencies of any prefix sub-strings can be
accessed very easily in the modified PAT-tree.
Hence, statistical evaluations between sub-strings,
such as probabilities, conditional probabilities,
and mutual information, can be computed.

It is easy to insert new elements into PAT-
trees, but memory constrains have made them
unable to accept unlimited amounts of information,
hence limiting their potential use as learning
devices. In reality, only important or
representative data should be retained. Old and
unimportant data can be replaced by new data.
Thus, aside from the original PAT-tree, the
deletion mechanism was implemented, which
allowed memory to be released for the purpose of
storing the most recent inputs when the original
memory was exhausted. With this mechanism, the
PAT-tree is now enhanced and has the ability to
accept unlimited amounts of information. Once
evaluation functions for data importance are
obtained, the PAT-tree will have the potential to
be an on-line learning device. We review the
original PAT-tree and its properties in section 2.
In section 3,we describe the PAT-tree with
deletion in detail. In section 4, we give the results
obtained after different deletion criteria were
tested to see how it performed on learning word
bi-gram collocations under different sizes of
memory. Some other possible applications and a
simple conclusion are given in the last section.

2. The Original PAT-tree
In this section, we review the original version of
the PAT-tree and provide enough background
information for the following discussion.

2.1 Definit ion of Pat-tree

2.1.1 PATRICIA

Before defining the PAT-tree, we first show how
PATRICIA works.

PATRICIA is a special kind of trie[Fredkin
60]. In a trie, there are two different kinds of
nodesqbranch decision nodes and element nodes.
Branch decision nodes are the search decision-
makers, and the element nodes contain real data.
To process strings, if branch decisions are made
on each bit, a complete binary tree is formed

where the depth is equal to the number of bits of
the longest strings. For example, suppose there are
6 strings in the data set, and that each is 4 bits
long. Then, the complete binary search tree is that
shown in Fig. 2.1.

IO011

Fig 2.1 The complete binar,' tree of the 6 data

Apparently, it is very wasteful. Many
element nodes and branch nodes are null. If those
nodes are removed, then a tree called a
"compressed digital search trie" [Flajolet 86], as
shown in Fig. 2.2, is formed. It is more efficient,
but an additional field to denote the comparing bit
for branching decision should be included in each
decision node. In addition, the searched results
may not exactly match the input keys, since only
some of the bits are compared during the search
process. Therefore, a matching between the
searched results and their search keys is required.

Morrison [Morrison, 68] improved the trie
structure further. Instead of classifying nodes into
branch nodes and element nodes, Morrison
combined the above two kinds of nodes into a
uniform representation, called an augmented
branch node. The structure of an augmented
branch node is the same as that of a decision node
of the trie except that an additional field for
storing elements is included. Whenever an
element should be inserted, it is inserted "up" to a
branch node instead of creating a new element
node as a leaf node. For example, the compressed
digital search trie shown in Fig 2.2 has the
equivalent PATRICIA like Fig 2.3. It is noticed
that each element is stored in an upper node or in
itself. How the data elements are inserted will be
discussed in the next section. Another difference
here is the additional root node. This is because in
a binary tree, the number of leaf nodes is always
greater than that of internal nodes by one.
Whether a leaf node is reached is determined by
the upward links.

245

0010 0011 1000 1011

Fig. 2.2 Compressed digital search trie.

OtHO IIMNI

Fig 2.3 P A T R I C I A

2.1.2 PAT-tree

Gonnet [Gonnet, 87] extended PATRICIA to
handle semi-infinite strings. The data structure is
called a PAT-tree. It is exactly like PATRICIA
except that storage for the finite strings is replaced
by the starting position of the semi-infinite strings
in the text.

Suppose there is a text T with n basic units.

T = U l t l 2 . . . t t , , . Consider the prefix sub-strings of

T's which start from certain positions and go on as
necessary to the right, such as u ,u2 . . . u , ,

U2U 3. . . t t , , U3U4. . .U n and s o o n . Since each

of these strings has got an end to the left but none
to the right, they are so-called semi-infinite strings.
Note here that whenever a semi-infinite string
extends beyond the end of the text, null characters
are appended. These null characters are different
from any basic units in the text. Then, all the
semi-infinite strings starting from different
positions are different. Owing to the additional
field for comparing bits in each decision node of
PATRICIA, PATRICIA can handle branch
decisions for the semi-infinite strings (since after
all, there is only a finite number of sensible
decisions to separate all the elements of semi-
infinite strings in each input set). A PAT-tree is
constructed by storing all the starting positions of
semi-infinite strings in a text using PATRICIA.

There are many useful functions which can
easily be implemented on PAT-trees, such as
prefix searching, range searching, longest

repetition searching and so on.

Insert(to-end substring Sub, PAT tree rooted at R)
{
/ / Search Sub in the PAT tree

@4--~,
n <-- Left(p);
while (CompareBit (n) > CompareBit (p)) {

p <- - -n ;
if the same bit as CompareBit (p) at Sub is 0

n <--- L e f t (p) ;
else

n <---- Right (p);
}
if (Data (n) = Sub) {

/ / Sub is already in the PAT tree, just
// increase the count. No need to insert.

Occurrence n) (----- Occurrence (n) + 1 ;
return;

}
// Find the appropriate position to insert SUb //
into the PAT tree (SUb will be inserted
// between p and n)

b <--- the first bit where Data (n) and Sub differ;
p <-- -R;
n (--- L e f t (p) ;
while ((CompareBit (n) > CompareBit (p)) and

(CompareBit (p) < b)) {
p <- - -n ;
if the same bit as CompareBit (p) at Sub is 0

n <--- L e f t (p) ;
else

n 4-- Right (p) ;
}

//Insert SUb into the PAT tree, between p and n
// Initiate a new node

NN ~--" new node;
CompareBit (NN) <--- b;
Data (N N) ~ ' - Sub;
Occurrence (NN) <--- 1 ;
/ / Insert the new node
If the bth bit of Sub is 0 {

}
else {

}
if n is

else

Left (NN) 4-- NN;
Right (NN) ~--- n;

Left (N N) ~.- n;
Right (N N) ~ NN;

the Left of p
L e f t (p) ~-- NN;

Right (p) 4-- NN;

Algorithm 2.1 PAT tree Insertion

Hung [Hung, 96] took advantage of prefix
searching in Chinese processing and revised the
PAT-tree. All the different basic unit positions
were exhaustively visited as in a PAT-tree, but the
strings did not go right to the end of the text. They
only stopped at the ends of the sentences. We call
these finite strings "to-end sub-strings". In this

246

way, the saved strings will not necessarily be
unique. Thus, the frequency counts of the strings
must be added. A field denoting the frequency of
a prefix was also added to the tree node. With
these changes, the PAT-tree is more than a tool
for searching prefixes; it also provides their
frequencies.

The data structure of a complete node of a
PAT-tree is as follows.

Node: a record of

Decision hit: an integer to denote the decision bit.
Frequency: the frequency count of the prefix sub-

string. .
Data element: a data string or a pointer of a semi-

infinite string.
Data count: the frequency count of the data string.
Left: the left pointer points downward to the left

sub-tree or points upward to a data node.
Right: the right pointer points downward to the

right sub-tree or points upward to a data node.

End of the record.

The construction process for a PAT-tree is nothing
more than a consecutive insertion process for
input strings. The detailed insertion procedure is
given in Algorithm 2.1 and the searching
procedure in Algorithm 2.2.

SearchforFrequencyof (Pattern)

(
p ~ R/*the root of PAT-tree*/;
n (--- L e f t (p) ;
while ((CompareBit (n) > CompareBit (p)) and

(CompareBit (n) _< total bits of Pattern))
{

p (--- n;
if the "CompareBit (p)"th bit of Pattern is 0

n (--- L e f t (p) ;
else

n (--- Right (p);
l
if (Data (n) :~ Pat tern)

return O;
if (CompareBit (n) > total bits of Pat tern)

return TerminalCounts (n);
else

return Occurrence (n);

Algorithm 2.2 Search for frequency of a pattern in PAT-tree

The advantages of PAT-trees are as follows:
(1) They are easy to construct and maintain. (2)
Any prefix sub-string and its frequency count can
be found very quickly using a PAT-tree. (3) The

space requirement for a PAT-tree is linear to the
size of the input text.

3. Pat-tree with the deletion funct ion

The block diagram of the PAT-tree with the
deletion function is shown in figure 3.1.

Pat tree
construction or

extention
Deletion

The main part

I Evaluation

Fig. 3.1 The Block Diagram of PAT-tree Construction.

Implementing the deletion function requires two
functions. One is the evaluation function that
evaluates the data elements to find the least
important element. The second function is release
of the least important element from the PAT-tree
and return of the freed node.

3.1 The Evaluation function

Due to the limited memory capacity of a PAT-tree,
old and unimportant elements have to be
identified and then deleted from the tree in order
to accommodate new elements. Evaluation is
based on the following two criteria: a) the oldness
of the elements, and b) the importance of the
elements. Evaluation of an element has to be
balanced between these criteria. The oldness of an
element is judged by how long the element has
resided in the PAT-tree. It seems that a new field
in each node of a PAT-tree is needed to store the
time when the element was inserted. When the n-
th element was inserted, the time was n. The
resident element will become old when new
elements are gradually inserted into the tree.
However, old elements might become more and
more important if they reoccur in the input text.
The frequency count of an element is a simple
criterion for measuring the importance of an

247

element. Of course, different importance measures
can be employed, such as mutual information or
conditional probability between a prefix and
suffix. Nonetheless, the frequency count is a very
simple and useful measurement.

To simplify the matter, a unified criterion is
adopted. Under this criterion no additional storage
is needed to register time. A time lapse will be
delayed in order to revisit and evaluate a node,
and hopefully, the frequency counts of important
elements will be increased during the time lapse.
It is implemented by way of a circular-like array
of tree nodes. A PAT-tree will be constructed by
inserting new elements. The insertion process
takes a free node for each element from the array
in the increasing order of their indexes until the
array is exhausted. The deletion process will then
be triggered. The evaluation process will scan the
elements according to the array index sequence,
which is different from the tree order, to find the
least important element in the first k elements to
delete. The freed node will be used to store the
newly arriving element. The next position of the
current deleted node will be the starting index of
the next k nodes for evaluation. In this way, it is
guaranteed that the minimal time lapse to visit the
same node will be at least the size of the PAT-tree
divided by k.

In section 4, we describe experiments carried
out on the learning of high frequency word bi-
grams. The above mentioned time lapse and the
frequency measurement for importance were used
as the evaluation criteria to determine the learning
performance under different memory constraints.

3.2 The Deletion function

Deleting a node from a PAT-tree is a bit
complicated since the proper structure of the PAT-
tree has to be maintained after the deletion process.
The pointers and the last decision node have to be
modified. The deletion procedure is illustrated
step by step by the example in Fig. 3.2. Suppose
that the element in the node x has to be deleted, i.e.
the node x has to be returned free. Hence, the last
decision node y is no longer necessary since it is
the last decision bit which makes the branch
decision between DATA(x) and the strings in the
left subtree of y. Therefore, DATA(x) and
DECISION(y) can be removed, and the pointers
have to be reset properly. In step 1, a) DATA(x) is
replaced by DATA(y), b) the backward pointer in

z pointing to y is replaced by x, and c) the pointer
of the parent node of y which points to y is
replaced by the left pointer of y. After step 1, the
PAT-tree structure is properly reset. However the
node y is deleted instead of x. This will not affect
the searching of the PAT-tree, but it will damage
the algorithm of the evaluation function to keep
the time lapse properly. Therefore, the whole
record of the data in x is copied to y, and is reset
to the left pointer of the parent node of x be y in
the step 2. Of course, it is not necessary to divide
the deletion process into the above two steps. This
is just for the sake of clear illustration. In the
actual implementation, management of those
pointers has to be handled carefully. Since there is
no backward pointer which points to a parent
decision node, the relevant nodes and their
ancestor relations have to be accessed and retained
after searching DATA(x) and DATA(y).

..°" .°o"

Dclctc this
Term

C~py the data .o

l

.o o,"*
,°o°,"

x
x

, , . ~ F r

E

Fig. 3.2 The deletion process

4. Learning word collocations by
Pat-trees
The following simple experiments were carried
out in order to determine the learning performance
of the PAT-tree under different memory
constraints. We wanted to find out how the high
frequency word bi-grams were retained when the
total number of different word bi-grams much
greater than the size of the PAT-tree.

248

4.1 The testing environment

We used the Sinica corpus as our testing data. The
Sinica corpus is a 3,500,000-word Chinese corpus
in which the words are delimited by blanks and
tagged with their part-of-speeches[Chen 96]. To
simplify the experimental process, the word length
was limited to 4 characters. Those words that had
more than four characters were truncated. A
preprocessor, called reader, read the word bi-
grams from the corpus sequentially and did the
truncation. Then the reader fed the bi-grams to the
construction process for the Pat-tree. There were
2172634 bigrams and 1180399 different bi-grams.
Since the number of nodes in the PAT-trees was
much less than the number of input bi-grams, the
deletion process was carried out and some bi-
grams was removed from the PAT-tree. The recall
rates of each different frequency bi-grams under
the different memory constraints were examined
to determine how the PAT-tree performed with
learning important information.

4.2 Experimental Results

Table 4.1 Finding the minimum of the next 200 nodes.

"~--¢, /~1 e~l :w41 4/641 .~1 6/641 7/641 ~/6¢
>256 15 I(X 100 10C II/ 1(1 10(} ICE
• 16~ 15 10(I(D IOC 1~ 1(}{ 100 I(E

• 75 lff~ lOC 100 10~ 1(~ 10(100 I(E
>66 99.9?, lff lff.3 IOC I(I I(D !(I] 1(£
>56 99.T~ 10(lff3 I(E lOC 1(I) I03 IOC
>46 98..: 99,oA ICO IOC l(I 1()0 1(I] I(IC'
>3J 96., 99.8~ 1(13 1~ 10~ I(I) l(I] I(£
>36 94.6J 99.6] 1(30 10{ 113(1(I) 10(3 1(1(:
>2.5 91.6~ 98.'A 99.93 I0C 1(}(I(D 1(I] 1(1{:
>2~ 85.4~ 97.(12 99.63 99.~ 100 l(ll l(I; I(/
• / 3 76.1! 92.87 98.37 99.61 99.89 t~).94 99.9~ l(I
• It; 62.3.' 83.2 93.19 %.95, 98.5 t ~ .3 99.~ 99.~

>J 39.4~ 60.95 74.~ 83.1~ 88.55 91.86 94.18 %.31
>2 23.52 43.56 57.01 66.4z 73.~ 78.78 83.(~ 86.65
>,~ 14,8: 29.34 43.55 52.22 59.45 65.37 70.55 74.81
• i 6.51 12.97 19.44 25.6[31.85 38.04 44.62 48.7~

Different t ime lapses and PAT-tree sizes were

tested to see how they per formed by

comparing the results with the ideal cases.

The ideal cases were obtained using a

procedure in which the input bi-grams were

pre-sorted according to their f requency counts.

The bi-grams were inserted in descending

order of their frequencies. Each bi-gram was

inserted n times, where n was its frequency.

According to the deletion criterion, under

such an ideal case, the PAT-t ree will retain as

many high f requency bi-grams as it can.

Table 4.2 Input bi-grams in descending order of their
aencies.

1/64 "2/64 .t,/64 4/64 5/64 6/64 7/64 8/64
>250 I ~ ICE ICE ICE ICE ICE l~ ICE
• 100 ICE ICE ICE 1~ ICE, IOC IOC IOC
• 75 I(]0 lifo lif0 1(30 ICE 10C 10G lffd
>60 ICE ICE ICE ICE 10C 1~ 10C I0C
>.Y0 ICE ICE ICE ICE ICE IOC I(E 1~
>40 IO(J ICE ICE lO0 ICE ICE 1~ ICE
>35 ICE lO(l ICE ICE lie lOC IOC lOC
>30 ICE ICE ICE ICE IOC IOC IOC ICE
> ,~ 10C 1013 ICE ICE I(l: 15 10C ICE
>20 10C ICE ICE ICE 10L ICE 10C lCE
• 15 ICE ICE ICE 100 1~; lCE IOC ICE
• 16 lOf IOC 10: 1('£ 10¢ I0(. 1(.(IOC
>5 46.12 92.2~ lff~ ICE 10(lO(IOC IOC
>3 24 48 72 ~ I0(. 10(lff~ IOC
>2 15 3(] 45 6C 7f 9C IOC IOC
>1 6.55 13.1 19.65 26.N 32.74 39.2~ 46.2~ 52.3t~

The deletion process worked as follows. A
fixed number of nodes were checked starting from
the last modified node, and the one with the
minimal frequency was chosen for deletion. Since
the pointer was moving forward along the index
of the array, a time lapse was guaranteed to revisit
a node. Hopefully the high frequency bi-grams
would reoccur during the time lapse. Different
forward steps, such as 100, 150, 200, 250, and 300,
were tested, and the results show that deletion of
the least important elements within 200 nodes led
to the best result. However the performance
results of different steps were not very different.
Table 4.1 shows the testing results of step size 200
with different PAT-tree sizes. Table 4.2 shows the
results under the ideal cases. Comparing the
results between Table 4.1 and Table 4.2, it is seen
that the recall rates of the important bi-grams
under the normal learning process were
satisfactory. Each row denotes the recall rates of a
bi-gram greater than the frequency under different
sizes of PAT-tree. For instance, the row 10 in
Table 4.1 shows that the bi-grams which had the
frequency greater than 20, were retained as
follows: 85.46%, 97.02%, 99.63%, 99.95%, 100%,
100%, 100%, and 100%, when the size of the
PAT-tree was 1/64, 2/64 8/64 of the total
number of the different bi-grams, respectively.

5. Conclusion

The most appealing features of the PAT-tree with

249

deletion are the efficient searching for patterns
and its on-line learning property. It has the
potential to be a good on-line training tool. Due to
the fast growing WWW, the supply of electronic
texts is almost unlimited and provides on-line
training data for natural language processing.
Following are a few possible applications of PAT-
trees with deletion.
a) Learning of high frequency patterns by

inputting unlimited amounts of patterns. The
patterns might be character/word n-grams or
collocations. Thus, new words can be extracted.
The language model of variable length n-grams
can be trained.

b) The most recently inserted patterns will be
retained in the PAT-tree for a while as if it has
a short term memory. Therefore, it can on-line
adjust the language model to adapt to the
current input text.

c) Multiple PAT-trees can be applied to learn the
characteristic patterns of different domains or
different style texts. They can be utilized as
signatures for auto-classification of texts.

With the deletion mechanism, the memory
limitation is reduced to some extent. The
performance of the learning process also relies on
the good evaluation criteria. Different applications
require different evaluation criteria. Therefore,
under the current PAT-tree system, the evaluation
function is left open for user design.

Suffix search can be done through
construction of a PAT-tree containing reverse text.
Wiidcard search can be done by traversing sub-
trees. When a wiidcard is encountered, an
indefinite number of decision bits should be
skipped.

To cope with the memory limitation on the
core memory, secondary memory might be
required. In order to speed up memory accessing,
a PAT-tree can be split into a PAT-forest. Each
time, only the top-level sub-tree and a demanded
lower level PAT-tree will resided in the core
memory. The lower level PAT-tree will be
swapped according to demand.

References
de la Briandais, R. 1959. File searching using

variable length keys. AFIPS western JCC, pp.
295-98, San Francisco. Calif,

Chen, Keh-Jiann, Chu-Ren Huang, Li-Ping Chang
and Hui-Li Hsu. 1996. Sinica Corpus: Design

Meghodology for Balanced Copra. 11" Pacific
Asia Conference on Language, Information,
and Computation (PA CLIC I1). pp. 167-176.

Flajolet, P. and R. Sedgewick. 1986. Digital
search trees revisited. SlAM J Computing,
15;748-67.

Frakes, William B. and Ricardo Baeza-Yates.
1992. Information Retrieval, Data Structures
and Algorithms. Prentice-Hall.

Fredkin, E. 1960. Trie memory. CACM. 3, 490-
99.

Gonnet, G. 1987. PAT 3.1: An Efficient Text
Searching System, User's Mannual. UW Centre
for the New OED, University of Waterloo.

Hung, J. C. 1996. Dynamic Language Modeling
for Mandarin Speech Retrieval for Home Page
Information. Master thesis, National Taiwan
University.

Morrison, D. 1968. PATRICIA-Practial
Algorithm to Retrieve Information Coded in
Alphanumeric. JA CM, 15 ;514-34

250

