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Abstract 
In this study, a learning device based on the PAT- 
tree data structures was developed. The original 
PAT-trees were enhanced with the deletion 
function to emulate human learning competence. 
The learning process worked as follows. The 
linguistic patterns from the text corpus are 
inserted into the PAT-tree one by one. Since the 
memory was limited, hopefully, the important and 
new patterns would be retained in the PAT-tree 
and the old and unimportant patterns would be 
released from the tree automatically. The 
proposed PAT-trees with the deletion function 
have the following advantages. 1) They are easy 
to construct and maintain. 2) Any prefix sub- 
string and its frequency count through PAT-tree 
can be searched very quickly. 3) The space 
requirement for a PAT-tree is linear with respect 
to the size of the input text. 4) The insertion of a 
new element can be carried out at any time 
without being blocked by the memory constraints 
because the free space is released through the 
deletion of unimportant elements. 

Experiments on learning high frequency bi- 
grams were carried out under different memory 
size constraints. High recall rates were achieved. 
The results show that the proposed PAT-trees can 
be used as on-line learning devices. 

1. Introduction 
Human beings remember useful and important 
information and gradually forget old and 
unimportant information in order to accommodate 
new information. Under the constraint of memory 

capacity, it is important to have a learning 
mechanism that utilizes memory to store and to 
retrieve information efficiently and flexibly 
without loss of important information. We don't 
know how human memory functions exactly, but 
the issue of creating computers with similar 
competence is one of the most important problems 
being studied. We are especially interested in 
computer learning of linguistic patterns without 
the problem of running out of memory. 

To implement such a learning device, a data 
structure, equipped with the following functions, 
is needed: a) accept and store the on-line input of 
character/word patterns, b) efficiently access and 
retrieve stored patterns, c) accept unlimited 
amounts of data and at the same time retain the 
most important as well as the most recent input 
patterns. To meet the above needs, the PAT-tree 
data structure was originally considered a possible 
candidate to start with. The original design of the 
PAT-tree can be traced back to 1968. Morrison 
[Morrison, 68] proposed a data structure called the 
"Practical Algorithm to Retrieve Information 
Coded in Alphanumeric"(PATRICIA). It is a 
variation of the binary search tree with binary 
representation of keys. In 1987, Gonnet [Gonnet, 
87] introduced semi-infinite strings and stored 
them into PATRICIA trees. A PATRICIA tree 
constructed over all the possible semi-infinite 
strings of a text is then called a PAT-tree. Many 
kinds of searching functions can be easily 
performed on a PAT-tree, such as prefix searching, 
range searching, longest repetition searching and 
so on. A modification of the PAT-tree was done to 
fit the needs of Chinese processing in 1996 by 
Hung [Hung, 96], in which the finite strings were 
used instead of semi-infinite strings. Since finite 
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strings are not unique in a text as semi-infinite 
strings are, frequency counts are stored in tree 
nodes. In addition to its searching functions, the 
frequencies of any prefix sub-strings can be 
accessed very easily in the modified PAT-tree. 
Hence, statistical evaluations between sub-strings, 
such as probabilities, conditional probabilities, 
and mutual information, can be computed. 

It is easy to insert new elements into PAT- 
trees, but memory constrains have made them 
unable to accept unlimited amounts of information, 
hence limiting their potential use as learning 
devices. In reality, only important or 
representative data should be retained. Old and 
unimportant data can be replaced by new data. 
Thus, aside from the original PAT-tree, the 
deletion mechanism was implemented, which 
allowed memory to be released for the purpose of 
storing the most recent inputs when the original 
memory was exhausted. With this mechanism, the 
PAT-tree is now enhanced and has the ability to 
accept unlimited amounts of information. Once 
evaluation functions for data importance are 
obtained, the PAT-tree will have the potential to 
be an on-line learning device. We review the 
original PAT-tree and its properties in section 2. 
In section 3,we describe the PAT-tree with 
deletion in detail. In section 4, we give the results 
obtained after different deletion criteria were 
tested to see how it performed on learning word 
bi-gram collocations under different sizes of 
memory. Some other possible applications and a 
simple conclusion are given in the last section. 

2. The Original PAT-tree 
In this section, we review the original version of 
the PAT-tree and provide enough background 
information for the following discussion. 

2.1 Definit ion of  Pat-tree 

2.1.1 PATRICIA 

Before defining the PAT-tree, we first show how 
PATRICIA works. 

PATRICIA is a special kind of trie[Fredkin 
60]. In a trie, there are two different kinds of 
nodesqbranch decision nodes and element nodes. 
Branch decision nodes are the search decision- 
makers, and the element nodes contain real data. 
To process strings, if branch decisions are made 
on each bit, a complete binary tree is formed 

where the depth is equal to the number of bits of 
the longest strings. For example, suppose there are 
6 strings in the data set, and that each is 4 bits 
long. Then, the complete binary search tree is that 
shown in Fig. 2.1. 

IO011 

Fig 2.1 The complete binar,' tree of the 6 data 

Apparently, it is very wasteful. Many 
element nodes and branch nodes are null. If those 
nodes are removed, then a tree called a 
"compressed digital search trie" [Flajolet 86], as 
shown in Fig. 2.2, is formed. It is more efficient, 
but an additional field to denote the comparing bit 
for branching decision should be included in each 
decision node. In addition, the searched results 
may not exactly match the input keys, since only 
some of the bits are compared during the search 
process. Therefore, a matching between the 
searched results and their search keys is required. 

Morrison [Morrison, 68] improved the trie 
structure further. Instead of classifying nodes into 
branch nodes and element nodes, Morrison 
combined the above two kinds of nodes into a 
uniform representation, called an augmented 
branch node. The structure of an augmented 
branch node is the same as that of a decision node 
of the trie except that an additional field for 
storing elements is included. Whenever an 
element should be inserted, it is inserted "up" to a 
branch node instead of creating a new element 
node as a leaf node. For example, the compressed 
digital search trie shown in Fig 2.2 has the 
equivalent PATRICIA like Fig 2.3. It is noticed 
that each element is stored in an upper node or in 
itself. How the data elements are inserted will be 
discussed in the next section. Another difference 
here is the additional root node. This is because in 
a binary tree, the number of leaf nodes is always 
greater than that of internal nodes by one. 
Whether a leaf node is reached is determined by 
the upward links. 
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0010 0011 1000 1011 

Fig. 2.2 Compressed digital search trie. 

OtHO IIMNI 

Fig 2.3 P A T R I C I A  

2.1.2 PAT-tree 

Gonnet [Gonnet, 87] extended PATRICIA to 
handle semi-infinite strings. The data structure is 
called a PAT-tree. It is exactly like PATRICIA 
except that storage for the finite strings is replaced 
by the starting position of the semi-infinite strings 
in the text. 

Suppose there is a text T with n basic units. 

T = U l t l 2 . . . t t , , .  Consider the prefix sub-strings of 

T's which start from certain positions and go on as 
necessary to the right, such as u ,u2 . . . u , ,  . . . . .  

U2U 3. . . t t , ,  . . . . .  U3U4. . .U  n . . . .  and s o  o n .  Since each 

of these strings has got an end to the left but none 
to the right, they are so-called semi-infinite strings. 
Note here that whenever a semi-infinite string 
extends beyond the end of the text, null characters 
are appended. These null characters are different 
from any basic units in the text. Then, all the 
semi-infinite strings starting from different 
positions are different. Owing to the additional 
field for comparing bits in each decision node of 
PATRICIA, PATRICIA can handle branch 
decisions for the semi-infinite strings (since after 
all, there is only a finite number of sensible 
decisions to separate all the elements of semi- 
infinite strings in each input set). A PAT-tree is 
constructed by storing all the starting positions of 
semi-infinite strings in a text using PATRICIA. 

There are many useful functions which can 
easily be implemented on PAT-trees, such as 
prefix searching, range searching, longest 

repetition searching and so on. 

Insert(to-end substring Sub, PAT tree rooted at R) 
{ 
/ /  Search Sub in the PAT tree 

@4--~, 
n <-- Left(p); 
while ( CompareBit ( n ) > CompareBit ( p ) ) { 

p <- - -n ;  
if the same bit as CompareBit ( p ) at Sub is 0 

n <--- L e f t ( p ) ;  
else 

n <---- Right ( p ); 
} 
if ( Data ( n )  = Sub) { 

/ /  Sub is already in the PAT tree, just 
// increase the count. No need to insert. 

Occurrence n ) (----- Occurrence ( n ) + 1 ; 
return; 

} 
// Find the appropriate position to insert SUb // 
into the PAT tree (SUb will be inserted 
// between p and n) 

b <--- the first bit where Data ( n ) and Sub differ; 
p <-- -R;  
n (--- L e f t ( p ) ;  
while ( (CompareBit ( n ) > CompareBit  ( p ) ) and 

(CompareBit ( p ) < b) ) { 
p <- - -n ;  
if the same bit as CompareBit ( p ) at Sub is 0 

n <--- L e f t ( p ) ;  
else 

n 4-- Right ( p ) ;  
} 

//Insert SUb into the PAT tree, between p and n 
// Initiate a new node 

NN ~--" new node; 
CompareBit ( NN ) <--- b; 
Data ( N N )  ~ ' -  Sub; 
Occurrence ( NN ) <--- 1 ; 
/ /  Insert the new node 
If the bth bit of Sub is 0 { 

} 
else { 

} 
if n is 

else 

Left ( NN ) 4-- NN; 
Right ( NN ) ~--- n; 

Left ( N N )  ~.-  n; 
Right ( N N )  ~ NN; 

the Left of p 
L e f t ( p )  ~-- NN; 

Right ( p ) 4--  NN; 

Algorithm 2.1 PAT tree Insertion 

Hung [Hung, 96] took advantage of prefix 
searching in Chinese processing and revised the 
PAT-tree. All the different basic unit positions 
were exhaustively visited as in a PAT-tree, but the 
strings did not go right to the end of the text. They 
only stopped at the ends of the sentences. We call 
these finite strings "to-end sub-strings". In this 

246 



way, the saved strings will not necessarily be 
unique. Thus, the frequency counts of the strings 
must be added. A field denoting the frequency of 
a prefix was also added to the tree node. With 
these changes, the PAT-tree is more than a tool 
for searching prefixes; it also provides their 
frequencies. 

The data structure of a complete node of a 
PAT-tree is as follows. 

Node: a record of 

Decision hit: an integer to denote the decision bit. 
Frequency: the frequency count of the prefix sub- 

string. . 
Data element: a data string or a pointer of a semi- 

infinite string. 
Data count: the frequency count of the data string. 
Left: the left pointer points downward to the left 

sub-tree or points upward to a data node. 
Right: the right pointer points downward to the 

right sub-tree or points upward to a data node. 

End of the record. 

The construction process for a PAT-tree is nothing 
more than a consecutive insertion process for 
input strings. The detailed insertion procedure is 
given in Algorithm 2.1 and the searching 
procedure in Algorithm 2.2. 

SearchforFrequencyof ( Pattern ) 

( 
p ~ R/*the root of PAT-tree*/; 
n (--- L e f t ( p ) ;  
while ( ( CompareBit ( n ) > CompareBit ( p ) ) and 

( CompareBit ( n ) _< total bits of Pattern ) ) 
{ 

p (--- n; 
if the  "CompareBit ( p )"th bit of Pattern is 0 

n (--- L e f t ( p ) ;  
else 

n (--- Right ( p ); 
l 
if ( Data ( n ) :~ Pat tern  ) 

return O; 
if ( CompareBit ( n ) > total bits of Pat tern ) 

return TerminalCounts ( n ); 
else 

return Occurrence ( n ); 

Algorithm 2.2 Search for frequency of a pattern in PAT-tree 

The advantages of PAT-trees are as follows: 
(1) They are easy to construct and maintain. (2) 
Any prefix sub-string and its frequency count can 
be found very quickly using a PAT-tree. (3) The 

space requirement for a PAT-tree is linear to the 
size of the input text. 

3. Pat-tree with the deletion funct ion  

The block diagram of the PAT-tree with the 
deletion function is shown in figure 3.1. 

Pat tree 
construction or 

extention 
Deletion 

The main part 

I Evaluation 

Fig. 3.1 The Block Diagram of PAT-tree Construction. 

Implementing the deletion function requires two 
functions. One is the evaluation function that 
evaluates the data elements to find the least 
important element. The second function is release 
of the least important element from the PAT-tree 
and return of the freed node. 

3.1 The Evaluation function 

Due to the limited memory capacity of a PAT-tree, 
old and unimportant elements have to be 
identified and then deleted from the tree in order 
to accommodate new elements. Evaluation is 
based on the following two criteria: a) the oldness 
of the elements, and b) the importance of the 
elements. Evaluation of an element has to be 
balanced between these criteria. The oldness of an 
element is judged by how long the element has 
resided in the PAT-tree. It seems that a new field 
in each node of a PAT-tree is needed to store the 
time when the element was inserted. When the n- 
th element was inserted, the time was n. The 
resident element will become old when new 
elements are gradually inserted into the tree. 
However, old elements might become more and 
more important if they reoccur in the input text. 
The frequency count of an element is a simple 
criterion for measuring the importance of an 
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element. Of course, different importance measures 
can be employed, such as mutual information or 
conditional probability between a prefix and 
suffix. Nonetheless, the frequency count is a very 
simple and useful measurement. 

To simplify the matter, a unified criterion is 
adopted. Under this criterion no additional storage 
is needed to register time. A time lapse will be 
delayed in order to revisit and evaluate a node, 
and hopefully, the frequency counts of important 
elements will be increased during the time lapse. 
It is implemented by way of a circular-like array 
of tree nodes. A PAT-tree will be constructed by 
inserting new elements. The insertion process 
takes a free node for each element from the array 
in the increasing order of their indexes until the 
array is exhausted. The deletion process will then 
be triggered. The evaluation process will scan the 
elements according to the array index sequence, 
which is different from the tree order, to find the 
least important element in the first k elements to 
delete. The freed node will be used to store the 
newly arriving element. The next position of the 
current deleted node will be the starting index of 
the next k nodes for evaluation. In this way, it is 
guaranteed that the minimal time lapse to visit the 
same node will be at least the size of the PAT-tree 
divided by k. 

In section 4, we describe experiments carried 
out on the learning of high frequency word bi- 
grams. The above mentioned time lapse and the 
frequency measurement for importance were used 
as the evaluation criteria to determine the learning 
performance under different memory constraints. 

3.2 The Deletion function 

Deleting a node from a PAT-tree is a bit 
complicated since the proper structure of the PAT- 
tree has to be maintained after the deletion process. 
The pointers and the last decision node have to be 
modified. The deletion procedure is illustrated 
step by step by the example in Fig. 3.2. Suppose 
that the element in the node x has to be deleted, i.e. 
the node x has to be returned free. Hence, the last 
decision node y is no longer necessary since it is 
the last decision bit which makes the branch 
decision between DATA(x) and the strings in the 
left subtree of y. Therefore, DATA(x) and 
DECISION(y) can be removed, and the pointers 
have to be reset properly. In step 1, a) DATA(x) is 
replaced by DATA(y), b) the backward pointer in 

z pointing to y is replaced by x, and c) the pointer 
of the parent node of y which points to y is 
replaced by the left pointer of y. After step 1, the 
PAT-tree structure is properly reset. However the 
node y is deleted instead of x. This will not affect 
the searching of the PAT-tree, but it will damage 
the algorithm of the evaluation function to keep 
the time lapse properly. Therefore, the whole 
record of the data in x is copied to y, and is reset 
to the left pointer of the parent node of x be y in 
the step 2. Of course, it is not necessary to divide 
the deletion process into the above two steps. This 
is just for the sake of clear illustration. In the 
actual implementation, management of those 
pointers has to be handled carefully. Since there is 
no backward pointer which points to a parent 
decision node, the relevant nodes and their 
ancestor relations have to be accessed and retained 
after searching DATA(x) and DATA(y). 

..°" .°o" 

Dclctc this 
Term 

C~py the data .o 

l 

.o o,"* 
,°o°," 

x 
x 

, , . ~ F r  

E 

Fig. 3.2 The deletion process 

4. Learning word collocations by 
Pat-trees 
The following simple experiments were carried 
out in order to determine the learning performance 
of the PAT-tree under different memory 
constraints. We wanted to find out how the high 
frequency word bi-grams were retained when the 
total number of different word bi-grams much 
greater than the size of the PAT-tree. 
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4.1 The testing environment 

We used the Sinica corpus as our testing data. The 
Sinica corpus is a 3,500,000-word Chinese corpus 
in which the words are delimited by blanks and 
tagged with their part-of-speeches[Chen 96]. To 
simplify the experimental process, the word length 
was limited to 4 characters. Those words that had 
more than four characters were truncated. A 
preprocessor, called reader, read the word bi- 
grams from the corpus sequentially and did the 
truncation. Then the reader fed the bi-grams to the 
construction process for the Pat-tree. There were 
2172634 bigrams and 1180399 different bi-grams. 
Since the number of nodes in the PAT-trees was 
much less than the number of input bi-grams, the 
deletion process was carried out and some bi- 
grams was removed from the PAT-tree. The recall 
rates of each different frequency bi-grams under 
the different memory constraints were examined 
to determine how the PAT-tree performed with 
learning important information. 

4.2 Experimental Results 

Table 4.1 Finding the minimum of the next 200 nodes. 

"~--¢, /~1 e~l :w41 4/641 .~1 6/641 7/641 ~/6¢ 
>256 15 I(X 100 10C II/ 1(1 10(} ICE 
• 16~ 15 10( I(D IOC 1~ 1(}{ 100 I(E 

• 75 lff~ lOC 100 10~ 1(~ 10( 100 I(E 
>66 99.9?, lff lff.3 IOC I(I I(D !(I] 1(£ 
>56 99.T~ 10( lff3 I(E lOC 1(I) I03 IOC 
>46 98..: 99,oA ICO IOC l(I 1()0 1(I] I(IC' 
>3J  96., 99.8~ 1(13 1~ 10~ I(I) l(I] I(£ 
>36 94.6J 99.6] 1(30 10{ 113( 1(I) 10(3 1(1(: 
>2.5 91.6~ 98.'A 99.93 I0C 1(}( I(D 1(I] 1(1{: 
>2~ 85.4~ 97.(12 99.63 99.~ 100 l(ll l(I; I(/ 
• / 3  76.1! 92.87 98.37 99.61 99.89 t~).94 99.9~ l(I 
• It; 62.3.' 83.2 93.19 %.95, 98.5 t ~ .3  99.~ 99.~ 

>J  39.4~ 60.95 74.~ 83.1~ 88.55 91.86 94.18 %.31 
>2 23.52 43.56 57.01 66.4z 73.~ 78.78 83.(~ 86.65 
>,~ 14,8: 29.34 43.55 52.22 59.45 65.37 70.55 74.81 
• i 6.51 12.97 19.44 25.6[ 31.85 38.04 44.62 48.7~ 

Different  t ime lapses and PAT-tree  sizes were 

tested to see how they per formed by 

comparing the results with the ideal cases. 

The ideal cases were obtained using a 

procedure in which the input bi-grams were 

pre-sorted according to their f requency counts. 

The bi-grams were  inserted in descending 

order of  their frequencies.  Each bi-gram was 

inserted n times, where  n was its frequency.  

According to the deletion criterion, under  

such an ideal case, the PAT-t ree  will retain as 

many  high f requency bi-grams as it can. 

Table 4.2 Input bi-grams in descending order of their 
aencies. 

1/64 "2/64 .t,/64 4/64 5/64 6/64 7/64 8/64 
>250 I ~  ICE ICE ICE ICE ICE l~  ICE 
• 100 ICE ICE ICE 1~ ICE, IOC IOC IOC 
• 75 I(]0 lifo lif0 1(30 ICE 10C 10G lffd 
>60 ICE ICE ICE ICE 10C 1~ 10C I0C 
>.Y0 ICE ICE ICE ICE ICE IOC I(E 1~ 
>40 IO(J ICE ICE lO0 ICE ICE 1~ ICE 
>35 ICE lO(l ICE ICE lie lOC IOC lOC 
>30 ICE ICE ICE ICE IOC IOC IOC ICE 
> ,~  10C 1013 ICE ICE I(l: 15 10C ICE 
>20 10C ICE ICE ICE 10L ICE 10C lCE 
• 15 ICE ICE ICE 100 1~; lCE IOC ICE 
• 16 lOf IOC 10: 1('£ 10¢ I0(. 1(.( IOC 
>5 46.12 92.2~ lff~ ICE 10( lO( IOC IOC 
>3 24 48 72 ~ I0(. 10( lff~ IOC 
>2 15 3(] 45 6C 7f 9C IOC IOC 
>1 6.55 13.1 19.65 26.N 32.74 39.2~ 46.2~ 52.3t~ 

The deletion process worked as follows. A 
fixed number of nodes were checked starting from 
the last modified node, and the one with the 
minimal frequency was chosen for deletion. Since 
the pointer was moving forward along the index 
of the array, a time lapse was guaranteed to revisit 
a node. Hopefully the high frequency bi-grams 
would reoccur during the time lapse. Different 
forward steps, such as 100, 150, 200, 250, and 300, 
were tested, and the results show that deletion of 
the least important elements within 200 nodes led 
to the best result. However the performance 
results of different steps were not very different. 
Table 4.1 shows the testing results of step size 200 
with different PAT-tree sizes. Table 4.2 shows the 
results under the ideal cases. Comparing the 
results between Table 4.1 and Table 4.2, it is seen 
that the recall rates of the important bi-grams 
under the normal learning process were 
satisfactory. Each row denotes the recall rates of a 
bi-gram greater than the frequency under different 
sizes of PAT-tree. For instance, the row 10 in 
Table 4.1 shows that the bi-grams which had the 
frequency greater than 20, were retained as 
follows: 85.46%, 97.02%, 99.63%, 99.95%, 100%, 
100%, 100%, and 100%, when the size of the 
PAT-tree was 1/64, 2/64 ..... 8/64 of the total 
number of the different bi-grams, respectively. 

5. Conclusion 

The most appealing features of the PAT-tree with 
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deletion are the efficient searching for patterns 
and its on-line learning property. It has the 
potential to be a good on-line training tool. Due to 
the fast growing WWW, the supply of electronic 
texts is almost unlimited and provides on-line 
training data for natural language processing. 
Following are a few possible applications of PAT- 
trees with deletion. 
a) Learning of high frequency patterns by 

inputting unlimited amounts of patterns. The 
patterns might be character/word n-grams or 
collocations. Thus, new words can be extracted. 
The language model of variable length n-grams 
can be trained. 

b) The most recently inserted patterns will be 
retained in the PAT-tree for a while as if it has 
a short term memory. Therefore, it can on-line 
adjust the language model to adapt to the 
current input text. 

c) Multiple PAT-trees can be applied to learn the 
characteristic patterns of different domains or 
different style texts. They can be utilized as 
signatures for auto-classification of texts. 

With the deletion mechanism, the memory 
limitation is reduced to some extent. The 
performance of the learning process also relies on 
the good evaluation criteria. Different applications 
require different evaluation criteria. Therefore, 
under the current PAT-tree system, the evaluation 
function is left open for user design. 

Suffix search can be done through 
construction of a PAT-tree containing reverse text. 
Wiidcard search can be done by traversing sub- 
trees. When a wiidcard is encountered, an 
indefinite number of decision bits should be 
skipped. 

To cope with the memory limitation on the 
core memory, secondary memory might be 
required. In order to speed up memory accessing, 
a PAT-tree can be split into a PAT-forest. Each 
time, only the top-level sub-tree and a demanded 
lower level PAT-tree will resided in the core 
memory. The lower level PAT-tree will be 
swapped according to demand. 
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