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A b s t r a c t  

Recognizing shallow linguistic patterns, such as ba- 
sic syntactic relationships between words, is a com- 
mon task in applied natural language and text pro- 
cessing. The common practice for approaching this 
task is by tedious manual definition of possible pat- 
tern structures, often in the form of regular expres- 
sions or finite automata. This paper presents a novel 
memory-based learning method that recognizes shal- 
low patterns in new text based on a bracketed train- 
ing corpus. The training data are stored as-is, in 
efficient suffix-tree data structures. Generalization 
is performed on-line at recognition time by compar- 
ing subsequences of the new text to positive and 
negative evidence in the corpus. This way, no in- 
formation in the training is lost, as can happen in 
other learning systems that construct a single gen- 
eralized model at the time of training. The paper 
presents experimental results for recognizing noun 
phrase, subject-verb and verb-object patterns in En- 
glish. Since the learning approach enables easy port- 
ing to new domains, we plan to apply it to syntac- 
tic patterns in other languages and to sub-language 
patterns for information extraction. 

1 I n t r o d u c t i o n  

Identifying local patterns of syntactic sequences and 
relationships is a fundamental task in natural lan- 
guage processing (NLP). Such patterns may corre- 
spond to syntactic phrases, like noun phrases, or to 
pairs of words that participate in a syntactic rela- 
tionship, like the heads of a verb-object relation. 
Such patterns have been found useful in various 
application areas, including information extraction, 
text summarization, and bilingual alignment. Syn- 
tactic patterns are useful also for many basic com- 
putational linguistic tasks, such as statistical word 
similarity and various disambiguation problems. 

One approach for detecting syntactic patterns is to 
obtain a full parse of a sentence and then extract the 
required patterns. However, obtaining a complete 
parse tree for a sentence is difficult in many cases, 
and may not be necessary at all for identifying most 
instances of local syntactic patterns. 

An alternative approach is to avoid the complex- 
ity of full parsing and instead to rely only on local 
information. A variety of methods have been devel- 
oped within this framework, known as shallow pars- 
ing, chunking, local parsing etc. (e.g., (Abney, 1991; 
Greffenstette, 1993)). These works have shown that 
it is possible to identify most instances of local syn- 
tactic patterns by rules that examine only the pat- 
tern itself and its nearby context. Often, the rules 
are applied to sentences that were tagged by part- 
of-speech (POS) and are phrased by some form of 
regular expressions or finite state automata. 

Manual writing of local syntactic rules has become 
a common practice for many applications. However, 
writing rules is often tedious and time consuming. 
Furthermore, extending the rules to different lan- 
guages or sub-language domains can require sub- 
stantial resources and expertise that are often not 
available. As in many areas of NLP, a learning ap- 
proach is appealing. Surprisingly, though, rather lit- 
tle work has been devoted to learning local syntactic 
patterns, mostly noun phrases (Ramshaw and Mar- 
cus, 1995; Vilain and Day, 1996). 

This paper presents a novel general learning ap- 
proach for recognizing local sequential patterns, that 
may be perceived as falling within the memory- 
based learning paradigm. The method utilizes a 
part-of-speech tagged training corpus in which all in- 
stances of the target pattern are marked (bracketed). 
The training data are stored as-is in suffix-tree data 
structures, which enable linear time searching for 
subsequences in the corpus. 

The memory-based nature of the presented algo- 
rithm stems from its deduction strategy: a new in- 
stance of the target pattern is recognized by exam- 
ining the raw training corpus, searching for positive 
and negative evidence with respect to the given test 
sequence. No model is created for the training cor- 
pus, and the raw examples are not converted to any 
other representation. 

Consider the following example 1. Suppose we 

1We use here the POS tags: DT ---- determiner, ADJ 
= adjective, hDV = adverb, C0NJ = conjunction, VB=verb, 
PP=preposition, NN = singular noun, and NNP ---- plural noun. 
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want to decide whether the candidate sequence 

DT ADJ ADJ NN NNP 

is a noun phrase (NP) by comparing it to the train- 
ing corpus. A good match would be if the entire 
sequence appears as-is several times in the corpus. 
However, due to data  sparseness, an exact match 
cannot always be expected. 

A somewhat weaker match may be obtained if we 
consider sub-parts of the candidate sequence (called 
tiles). For example, suppose the corpus contains 
noun phrase instances with the following structures: 

(i) DT ADJ ADJ NN NN 
(2) DT ADJ NN NNP 

The first structure provides positive evidence that 
the sequence "DT ADJ ADJ NN" is a possible NP pre- 
fix while the second structure provides evidence for 
"ADJ NN NNP" being an NP suffix. Together, these 
two training instances provide positive evidence that  
covers the entire candidate. Considering evidence 
for sub-parts of the pat tern enables us to general- 
ize over the exact structures that  are present in the 
corpus. Similarly, we also consider the negative evi- 
dence for such sub-parts by noting where they occur 
in the corpus without being a corresponding part  of 
a target instance. 

The proposed method, as described in detail in 
the next section, formalizes this type of reasoning. It 
searches specialized data  structures for both positive 
and negative evidence for sub-parts of the candidate 
structure, and considers additional factors such as 
context and evidence overlap. Section 3 presents ex- 
perimental results for three target syntactic patterns 
in English, and Section 4 describes related work. 

2 T h e  A l g o r i t h m  

The input to the Memory-Based Sequence Learning 
(MBSL) algorithm is a sentence represented as a se- 
quence of POS tags, and its output  is a bracketed 
sentence, indicating which subsequences of the sen- 
tence are to be considered instances of the target 
pat tern (target instances). MBSL determines the 
bracketing by first considering each subsequence of 
the sentence as a candidate to be a target instance. 
It computes a score for each candidate by comparing 
it to the training corpus, which consists of a set of 
pre-bracketed sentences. The algorithm then finds a 
consistent bracketing for the input sentence, giving 
preference to high scoring subsequences. In the re- 
mainder of this section we describe the scoring and 
bracketing methods in more detail. 

2.1 S c o r i n g  c a n d i d a t e s  

We first describe the mechanism for scoring an in- 
dividual candidate. The input is a candidate sub- 
sequence, along with its context, i.e., the other tags 

in the input sentence. The method is presented at 
two levels: a general memory-based learning schema 
and a particular instantiation of it. Further instan- 
tiations of the schema are expected in future work. 

2.1.1 T h e  g e n e r a l  M B S L  s c h e m a  

The MBSL scoring algorithm works by considering 
situated candidates. A situated candidate is a sen- 
tence containing one pair of brackets, indicating a 
candidate to be a target instance. The portion of 
the sentence between the brackets is the candidate 
(as above), while the portion before and after the 
candidate is its context. (Although we describe the 
algorithm here for the general case of unlimited con- 
text,  for computational reasons our implementation 
only considers a limited amount  of context on either 
side of the candidate.) This subsection describes 
how to compute the score of a situated candidate 
from the training corpus. 

The idea of the MBSL scoring algorithm is to con- 
struct a tiling of subsequences of a situated candi- 
date which covers the entire candidate. We con- 
sider as tiles subsequences of the situated candidate 
which contain a bracket. (We thus consider only tiles 
within or adjacent to the candidate that  also include 
a candidate boundary.) 

Each tile is assigned a score based on its occur- 
rence in the training memory. Since brackets cor- 
respond to the boundaries of potential target in- 
stances, it is important  to consider how the bracket 
positions in the tile correspond to those in the train- 
ing memory. 

For example, consider the training sentence 

[ NN ] VB [ ADJ NN NN ] ADV PP [ NN ] 

We may now examine the occurrence in this sentence 
of several possible tiles: 

VB [ ADJ NN occurs positively in the sentence, and 

NN NN ] ADV also occurs positively, while 

NN [ NN ADV occurs negatively in the training sen- 
tence, since the bracket does not correspond. 

The positive evidence for a tile is measured by its 
positive count, the number of times the tile (in- 
cluding brackets) occurs in the training memory 
with corresponding brackets. Similarly, the nega- 
tive evidence for a tile is measured by its negative 
count, the number of times that  the POS sequence 
of the tile occurs in the training memory with non- 
corresponding brackets (either brackets in the train- 
ing where they do not occur in the tile, or vice versa). 
The total count of a tile is its positive count plus its 
negative count, that  is, the total  count of the POS 
sequence of the tile, regardless of bracket position. 
The score ](t) of a tile t is a function of its positive 
and negative counts. 

68 



Candidate: NN VB [ ADJ NN NN ] ADV 
MTile I: VB [ ADJ NN NN ] 
MTile 2: VB [ ADJ 
MTile 3: [ ADJ NN 
MTile 4: NN NN ] 
MTile 5: NN ] ADV 

Figure 1: A candidate subsequence with some of its 
context, and 5 matching tiles found in the training 
corpus. 

The overall score of a situated candidate is gen- 
erally a function of the scores of all the tiles for the 
candidate, as well as the relations between the tiles' 
positions. These relations include tile adjacency, 
overlap between tiles, the amount  of context in a 
tile, and so on. 

2.1.2 A n  i n s t a n t i a t i o n  o f  t h e  M B S L  s c h e m a  
In our instantiation of the MBSL schema, we define 
the score f i t )  of a tile t as the ratio of its positive 
count pos(t) and its total count total(t): 

1 if -P-P--~!!- > 0 
total(t) 

I ( t )  = 0 otherwise 

for a predefined threshold O. Tiles with a score of 
1, and so with sufficient positive evidence, are called 
matching tiles. 

Each matching tile gives supporting evidence that  
a part of the candidate can be a part  of a target in- 
stance. In order to combine this evidence, we try to 
cover the entire candidate by a set of matching tiles, 
with no gaps. Such a covering constitutes evidence 
that  the entire candidate is a target instance. For 
example, consider the matching tiles shown for the 
candidate in Figure 1. The set of matching tiles 2, 
4, and 5 covers the candidate, as does the set of tiles 
1 and 5. Also note that  tile 1 constitutes a cover on 
its own. 

To make this precise, we first say that  a tile T1 
connects to a tile T2 if (i) T2 starts after T1 starts, 
(ii) there is no gap between the end of T1 and the 
start  of T2 (there may be some overlap), and (iii) T2 
ends after T1 (neither tile includes the other). For 
example, tiles 2 and 4 in the figure connect, while 
tiles 2 and 5 do not, and neither do tiles 1 and 4 
(since tile 1 includes tile 4 as a subsequence). 

A cover for a situated candidate c is a sequence 
of matching tiles which collectively cover the en- 
tire candidate, including the boundary brackets, and 
possibly some context, such that  each tile connects 
to the following one. A cover thus provides posi- 
tive evidence for the entire sequence of tags in the 
candidate. 

The set of all the covers for a candidate summa- 
rizes all of the evidence for the candidate being a 

target instance. We therefore compute the score of 
a candidate as a function of some statistics of the 
set of all its covers. For example, if a candidate has 
many different covers, it is more likely to be a target 
instance, since many different pieces of evidence can 
be brought to bear. 

We have empirically found several statistics of the 
cover set to be useful. These include, for each cover, 
the number of tiles it contains, the total number of 
context tags it contains, and the number of positions 
which more than one tile covers (the amount of over- 
lap). We thus compute, for the set of all covers of a 
candidate c, the 

• Total number of different covers, num(c) ,  

* Minimum number of matches in any cover, 
mins ize(c) ,  

• Maximum amount of context in any cover, 
m a x c o n t e x t ( c ) ,  and 

• Maximum total overlap between tiles for any 
cover, m ax o v e r l ap (c ) .  

Each of these items gives an indication regarding the 
overall strength of the cover-based evidence for the 
candidate. 

The score of the candidate is a linear function of 
its statistics: 

f (c)  = a n u m ( c )  - 13minsize(c)+ 
3' m a x c o n t e x t  (c) + 

m a x o v e r l a p  (c) 

If candidate c has no covers, we set f (c)  = O. Note 
that  m in s i ze  is weighted negatively, since a cover 
with fewer tiles provides stronger evidence for the 
candidate. 

In the current implementation, the weights were 
chosen so as to give a lexicographic ordering, pre- 
ferring first candidates with more covers, then those 
with covers containing fewer tiles, then those with 
larger contexts, and finally, when all else is equal, 
preferring candidates with more overlap between 
tiles. We plan to investigate in the future a data- 
driven approach (based on the Winnow algorithm) 
for optimal selection and weighting of statistical fea- 
tures of the score. 

We compute a candidate's statistics efficiently by 
performing a depth-first traversal of the cover graph 
of the candidate. The cover graph is a directed 
acyclic graph (DAG) whose nodes represent match- 
ing tiles of the candidate, such that  an arc exists 
between nodes n and n',  if tile n connects to n'.  A 
special start  node is added as the root of the DAG, 
that  connects to all of the nodes (tiles) that  contain 
an open bracket. There is a cover corresponding to 
each path from the start  node to a node (tile) that  
contains a close bracket. Thus the statistics of all the 
covers may be efficiently computed by traversing the 
cover graph. 
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2.1.3 Summary 
Given a candidate sequence and its context (a situ- 
ated candidate): 

1. Consider all the subsequences of the situated 
candidate which include a bracket as tiles; 

2. Compute a tile score as a function of its positive 
count and total counts, by searching the train- 
ing corpus. Determine which tiles are matching 
tiles; 

3. Construct the set of all possible covers for 
the candidate, that is, sequences of connected 
matching tiles that cover the entire candidate; 

4. Compute the candidate score based on the 
statistics of its covers. 

2.2 Searching the training memory  

The MBSL scoring algorithm searches the training 
corpus for each subsequence of the sentence in or- 
der to find matching tiles. Implementing this search 
efficiently is therefore of prime importance. We do 
so by encoding the training corpus using suffix trees 
(Edward and McCreight, 1976), which provide string 
searching in time which is linear in the length of the 
searched string. 

Inspired by Satta (1997), we build two suffix trees 
for retrieving the positive and total counts for a tile. 
The first suffix tree holds all pattern instances from 
the training corpus surrounded by bracket symbols 
and a fixed amount of context. Searching a given 
tile (which includes a bracket symbol) in this tree 
yields the positive count for the tile. The second 
suffix tree holds an unbracketed version of the en- 
tire training corpus. This tree is used for searching 
the POS sequence of a tile, with brackets omitted, 
yielding the total count for the tile (recall that the 
negative count is the difference between the total 
and positive counts). 

2.3 Selecting candidates 

After the above procedure, each situated candidate 
is assigned a score. In order to select a bracketing for 
the input sentence, we assume that target instances 
are non-overlapping (this is usually the case for the 
types of patterns with which we experimented). We 
use a simple constraint propagation algorithm that 
finds the best choice of non-overlapping candidates 
in an input sentence: 

1. Examine each situated candidate c with 
f (c)  > 0, in descending order of f(c): 

(a) Add c's brackets to the sentence; 

(b) Remove all situated candidates overlapping 
with c which have not yet been examined. 

2. Return the bracketed sentence. 

NP 
VO 
SV 

NP 
VO 
SV 

Train Data: 
sentences words 

8936 229598 
16397 454375 
16397 454375 

patterns 
54760 
14271 
25024 

Test Data: 
sentences words patterns 

2012  5 1 4 0 1  12335 
1921 53604 1626 
1921 53604 3044 

Table 1: Sizes of training and test data 

Len 
1 16959 31 
2 21577 39 3203 22 7613 30 
3 10264 19 5922 41 7265 29 
4 3630 7 2952 21 3284 13 
5 1460 3 1242 9 1697 7 
6 521 1 506 4 1112 4 
7 199 0 242 2 806 3 
8 69 0 119 1 ,592 2 
9 40 0 44 0 446 2 
10 18 0 20 0 392 2 

>10 23 0 23 0 1917 8 
total 54760 14271 25024 

avg. len 2.2 3.4 4.5 

Table 2: Distribution of pattern lengths, total num- 
ber of patterns and average length in the training 
data. 

3 E v a l u a t i o n  

3.1 The Data 

We have tested our algorithm in recognizing three 
syntactic patterns: noun phrase sequences (NP), 
verb-object (VO), and subject-verb (SV) relations. 
The NP patterns were delimited by ' [ '  and ' ] '  
symbols at the borders of the phrase. For VO pat- 
terns, we have put the starting delimiter before the 
main verb and the ending delimiter after the object 
head, thus covering the whole noun phrase compris- 
ing the object; for example: 

... investigators started to 

[ view the lower price levels ] 

as attractive ... 

We used a similar policy for SV patterns, defining 
the start of the pattern at the start of the subject 
noun phrase and the end at the first verb encoun- 
tered (not including auxiliaries and medals); for ex- 
ample: 

... argue that 

[ the U.S. should regulate ] 

the class ... 
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Figure 2: Recall-Precision curves for NP, VO, and 
SV; 0.1 < 8 < 0.99 

The subject and object noun-phrase borders were 
those specified by the annotators, phrases which con- 
tain conjunctions or appositives were not further an- 
alyzed. 

The training and testing data were derived from 
the Penn TreeBank. We used the NP data prepared 
by Ramshaw and Marcus (1995), hereafter RM95. 
The SV and VO data were obtained using T (Tree- 
Bank's search script language) scripts. 2 Table 1 
summarizes the sizes of the training and test data 
sets and the number of examples in each. 

The T scripts did not attempt to match depen- 
dencies over very complex structures, since we are 
concerned with shallow, or local, patterns. Table 2 
shows the distribution of pattern length in the train 
data. We also did not attempt to extract passive- 
voice VO relations. 

3.2 Tes t ing  M e t h o d o l o g y  

The test procedure has two parameters: (a) maxi- 
mum context size of a candidate, which limits what 
queries are performed on the memory, and (b) the 
threshold 8 used for establishing a matching tile, 
which determines how to make use of the query re- 
sults. 

Recall and precision figures were obtained for var- 
ious parameter values. F~ (van Rijsbergen, 1979), a 
common measure in information retrieval, was used 

2The scripts may be found at the URL 
http://www.cs.biu.ac.il/ ,-~yuvalk/MBSL. 

as a single-figure measure of performance: 

(f12 + 1). P .  n 
F~ = f12 . P + R 

We use ~ = 1 which gives no preference to either 
recall or precision. 

3.3 Results  

Table 3 summarizes the optimal parameter settings 
and results for NP, VO, and SV on the test set. In 
order to find the optimal values of the context size 
and threshold, we tried 0.1 < t~ < 0.95, and maxi- 
mum context sizes of 1,2, and 3. Our experiments 
used 5-fold cross-validation on the training data to 
determine the optimal parameter settings. 

In experimenting with the maximum context size 
parameter, we found that the difference between the 
values of F~ for context sizes of 2 and 3 is less than 
0.5% for the optimal threshold. Scores for a context 
size of 1 yielded F~ values smaller by more than 1% 
than the values for the larger contexts. 

Figure 2 shows recall/precision curves for the 
three data sets, obtained by varying 8 while keeping 
the maximum context size at its optimal value. The 
difference between F~=I values for different thresh- 
olds was always less than 2%. 

Performance may be measured also on a word-by 
word basis, counting as a success any word which 
was identified correctly as being part of the tar- 
get pattern. That method was employed, along 
with recall/precision, by RM95. We preferred to 
measure performance by recall and precision for 
complete patterns. Most errors involved identifica- 
tions of slightly shifted, shorter or longer sequences. 
Given a pattern consisting of five words, for example, 
identifying only a four-word portion of this pattern 
would yield both a recall and precision errors. Tag- 
assignment scoring, on the other hand, will give it a 
score of 80%. We hold the view that such an identi- 
fication is an error, rather than a partial success. 

We used the datasets created by RM95 for NP 
learning; their results are shown in Table 3. 3 The 
F~ difference is small (0.4%), yet they use a richer 
feature set, which incorporates lexicai information as 
well. The method of Ramshaw and Marcus makes a 
decision per word, relying on predefined rule tem- 
plates. The method presented here makes deci- 
sions on sequences and uses sequences as its mem- 
ory, thereby attaining a dynamic perspective of the 

S N o t i c e  tha t  our results, as well as those we cite from 
RM95, pertains to a training set of 229,000 words. RM95 
report also results for a larger t raining set, of 950,000 words, 
for which recall/precision is 93.5%/93.1%, correspondingly 
(F~=93.3%). Our system needs to be further optimized in 
order to handle tha t  amount  of data,  though our major con- 
cern in future work is to reduce the overall amount of labeled 
training data. 
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Thresh. 
VO 2 0.5 81.3 
SV 3 0.6 86.1 
NP 3 0.6 91.4 

aM95 (NP) I I - I 

Recall (%) Precision (%) 
89.8 77.1 
84.5 88.6 
91.6 91.6 

I 92.3 91.8 

83.0 
86.5 
91.6 

192.0 

Table 3: Results with optimal parameter settings for context size and threshold, and breakeven points. The 
last line shows the results of Ramshaw and Marcus (1995) (recognizing NP's) with the same train/test data. 
The optimal parameters were obtained by 5-fold cross-validation. 
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pattern structure. We aim to incorporate lexical in- 
formation as well in the future, it is still unclear 
whether that will improve the results. 

Figure 3 shows the learning curves by amount of 
training examples and number of words in the train- 
ing data, for particular parameter settings. 

4 R e l a t e d  W o r k  

Two previous methods for learning local syntactic 
patterns follow the transformation-based paradigm 
introduced by Brill (1992). Vilain and Day (1996) 
identify (and classify) name phrases such as com- 
pany names, locations, etc. Ramshaw and Marcus 
(1995) detect noun phrases, by classifying each word 
as being inside a phrase, outside or on the boundary 
between phrases. 

Finite state machines (FSMs) are a natural for- 
malism for learning linear sequences. It was used 
for learning linguistic structures other than shallow 
syntax. Gold (1978) showed that learning regular 
languages from positive examples is undecidable in 
the limit. Recently, however, several learning meth- 
ods have been proposed for restricted classes of FSM. 
OSTIA (Onward Subsequential Transducer Infer- 
ence Algorithm; Oncina, Garcia, and Vidal 1993), 
learns a subsequential transducer in the limit. This 
algorithm was used for natural-language tasks by Vi- 

lar, Marzal, and Vidal (1994) for learning translation 
of a limited-domain language, as well as by Gildea 
and Jurafsky (1994) for learning phonological rules. 
Ahonen et al. (1994) describe an algorithm for learn- 
ing (k,h)-contextual regular languages, which they 
use for learning the structure of SGML documents. 

Apart from deterministic FSMs, there are a num- 
ber of algorithms for learning stochastic models, 
eg., (Stolcke and Omohundro, 1992; Carrasco and 
Oncina, 1994; Ron et al., 1995). These algorithms 
differ mainly by their state-merging strategies, used 
for generalizing from the training data. 

A major difference between the abovementioned 
learning methods and our memory-based approach is 
that the former employ generalized models that were 
created at training time while the latter uses the 
training corpus as-is and generalizes only at recog- 
nition time. 

Much work aimed at learning models for full pars- 
ing, i.e., learning hierarchical structures. We re- 
fer here only to the DOP (Data Oriented Parsing) 
method (Bod, 1992) which, like the present work, is 
a memory-based approach. This method constructs 
parse alternatives for a sentence based on combina- 
tions of subtrees in the training corpus. The MBSL 
approach may be viewed as a linear analogy to DOP 
in that it constructs a cover for a candidate based 
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on subsequences of training instances. 
Other implementations of the memory-based 

paradigm for NLP tasks include Daelemans et al. 
(1996), for POS tagging; Cardie (1993), for syntactic 
and semantic tagging; and Stanfill and Waltz (1986), 
for word pronunciation. In all these works, examples 
are represented as sets of features and the deduction 
is carried out by finding the most similar cases. The 
method presented here is radically different in that 
it makes use of the raw sequential form of the data, 
and generalizes by reconstructing test examples from 
different pieces of the training data. 

5 C o n c l u s i o n s  

We have presented a novel general schema and a par- 
ticular instantiation of it for learning sequential pat- 
terns. Applying the method to three syntactic pat- 
terns in English yielded positive results, suggesting 
its applicability for recognizing local linguistic pat- 
terns. In future work we plan to investigate a data- 
driven approach for optimal selection and weighting 
of statistical features of candidate scores, as well as 
to apply the method to syntactic patterns of Hebrew 
and to domain-specific patterns for information ex- 
traction. 
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