
Finite State Transducers
Approximating Hidden Markov Models

A n d r d Kempe
R a n k X e r o x R e s e a r c h C e n t r e - G r e n o b l e L a b o r a t o r y

6, c h e m i n de M a u p e r t u i s - 38240 M e y l a n - F r a n c e

andre, kempe©grenoble, rxrc. xerox, com

http ://www. rxrc. xerox, com/research/mltt

A b s t r a c t

This paper describes the conversion of a
Hidden Markov Model into a sequential
transducer that closely approximates the
behavior of the stochastic model. This
transformation is especially advantageous
for part-of-speech tagging because the re-
sulting transducer can be composed with
other transducers that encode correction
rules for the most frequent tagging errors.
The speed of tagging is also improved. The
described methods have been implemented
and successfully tested on six languages.

1 I n t r o d u c t i o n

Finite-state au tomata have been successfully applied
in many areas of computational linguistics.

This paper describes two algorithms 1 which ap-
proximate a Hidden Markov Model (HMM) used for
part-of-speech tagging by a finite-state transducer
(FST). These algorithms may be useful beyond the
current description on any kind of analysis of written
or spoken language based on both finite-state tech-
nology and HMMs, such as corpus analysis, speech
recognition, etc. Both algorithms have been fully
implemented.

An HMM used for tagging encodes, like a trans-
ducer, a relation between two languages. One lan-
guage contains sequences of ambiguity classes ob-
tained by looking up in a lexicon all words of a sen-
tence. The other language contains sequences of tags
obtained by statistically disambiguating the class se-
quences. From the outside, an HMM tagger behaves
like a sequential transducer that deterministically

1There is a different (unpublished) algorithm by
Julian M. Kupiec and John T. Maxwell (p.c.).

maps every class sequence to a tag sequence, e.g.:

[DET, PRO] [ADJ,NOUN] [ADJ,NOUN] [END] (i)

DET ADJ NOUN END

The aim of the conversion is not to generate FSTs
that behave in the same way, or in as similar a way
as possible like IIMMs, but rather FSTs that per-
form tagging in as accurate a way as possible. The
motivation to derive these FSTs from HMMs is that
HMMs can be trained and converted with little man-
ual effort.

The tagging speed when using transducers is up
to five times higher than when using the underly-
ing HMMs. The main advantage of transforming an
HMM is that the resulting transducer can be han-
dled by finite state calculus. Among others, it can
be composed with transducers that encode:

• correction rules for the most frequent tagging
errors which are automatically generated (Brill,
1992; Roche and Schabes, 1995) or manually
written (Chanod and Tapanainen, 1995), in or-
der to significantly improve tagging accuracy 2.
These rules may include long-distance depen-
dencies not handled by HMM taggers, and can
conveniently be expressed by the replace oper-
ator (Kaplan and Kay, 1994; Karttunen, 1995;
Kempe and Karttunen, 1996).

• further steps of text analysis, e.g. light parsing
or extraction of noun phrases or other phrases
(Ait-Mokhtar and Chanod, 1997).

These compositions enable complex text analysis
to be performed by a single transducer.

An IIMM transducer builds on the data (probabil-
ity matrices) of the underlying HMM. The accuracy

2Automatically derived rules require less work than
manually written ones but are unlikely to yield better
results because they would consider relatively limited
context and simple relations only.

460

of this data has an impact on the tagging accuracy
of both the HMM itself and the derived transducer.
The training of the HMM can be done on either a
tagged or untagged corpus, and is not a topic of this
paper since it is exhaustively described in the liter-
ature (Bahl and Mercer, 1976; Church, 1988).

An HMM can be identically represented by a
weighted FST in a straightforward way. We are,
however, interested in non-weighted transducers.

2 n - T y p e A p p r o x i m a t i o n

This section presents a method that approximates
a (lst order) HMM by a transducer, called n-type
approximation 3.

Like in an HMM, we take into account initial prob-
abilities ~r, transition probabilities a and class (i.e.
observation symbol) probabilities b. We do, how-
ever, not estimate probabilities over paths. The tag
of the first word is selected based on its initial and
class probability. The next tag is selected on its tran-
sition probability given the first tag, and its class
probability, etc. Unlike in an HMM, once a decision
on a tag has been made, it influences the following
decisions but is itself irreversible.

A transducer encoding this behaviour can be gen-
erated as sketched in figure 1. In this example we
have a set of three classes, Cl with the two tags t n
and t12, c2 with the three tags t21, t22 and t23 , and
c3 with one tag t31. Different classes may contain
the same tag, e.g. t12 and t2s may refer to the same
tag.

For every possible pair of a class and a tag (e.g.
Cl :t12 or I'ADJ,NOUN] :NOUN) a state is created and
labelled with this same pair (fig. 1). An initial state
which does not correspond with any pair, is also cre-
ated. All states are final, marked by double circles.

For every state, as many outgoing arcs are created
as there are classes (three in fig. 1). Each such arc
for a particular class points to the most probable
pair of this same class. If the arc comes from the
initial state, the most probable pair of a class and a
tag (destination state) is estimated by:

argrnkaxpl(ci,tih) ---- 7r(tik) b(ciltik) (2)

If the arc comes from a state other than the initial
state, the most probable pair is estimated by:

argmaxp2(ci,tik) = a(tlkltp,eoio~,) b(ciltik) (3)

In the example (fig. 1) cl :t12 is the most likely pair
of class cl, and c2:t23 the most likely pair of class e2

aName given by the author.

when coming from the initial state, and c2 :t21 the
most likely pair of class c2 when coming from the
state of c3 :t31.

Every arc is labelled with the same symbol pair
as its destination state, with the class symbol in the
upper language and the tag symbol in the lower lan-
guage. E.g. every arc leading to the state of cl :t12
is labelled with Cl :t12.

Finally, all state labels can be deleted since the
behaviour described above is encoded in the arc la-
bels and the network structure. The network can be
minimized and determinized.

We call the model an nl-type model, the resulting
FST an nl-type transducer and the algorithm lead-
ing from the HMM to this transducer, an nl-type
approximation of a 1st order HMM.

Adapted to a 2nd order HMM, this algorithm
would give an n2-type approximation. Adapted to
a zero order HMM, which means only to use class
probabilities b, the algorithm would give an nO-type
approximation.

n-Type transducers have deterministic states only.

3 s - T y p e A p p r o x i m a t i o n

This section presents a method that approxi-
mates an HMM by a transducer, called s-type
approximation 4.

Tagging a sentence based on a 1st order HMM
includes finding the most probable tag sequence T
given the class sequence C of the sentence. The joint
probability of C and T can be estimated by:

p (C , T) = p (c l Cn, t l t n) =

Its) 12 I a(t, lt _l) ItO
i=2

(4)

The decision on a tag of a particular word cannot
be made separately from the other tags. Tags can
influence each other over a long distance via transi-
tion probabilities. Often, however, it is unnecessary
to decide on the tags of the whole sentence at once.
In the case ofa 1st order HMM, unambiguous classes
(containing one tag only), plus the sentence begin-
ning and end positions, constitute barriers to the
propagation of HMM probabilities. Two tags with
one or more barriers inbetween do not influence each
other's probability.

4Name given by the author.

461

classes

r-}
tags of classes

22 ~

Figure 1: Generation of an nl - type transducer

3.1 s - T y p e S e n t e n c e M o d e l

To tag a sentence, one can split its class sequence at
the barriers into subsequences, then tag them sep-
arately and concatenate them again. The result is
equivalent to the one obtained by tagging the sen-
tence as a whole.

We distinguish between initial and middle sub-
sequences. The final subsequence of a sentence is
equivalent to a middle one, if we assume that the
sentence end symbol (. or ! or ?) always corresponds
to an unambiguous class c~. This allows us to ig-
nore the meaning of the sentence end position as an
HMM barrier because this role is taken by the un-
ambiguous class cu at the sentence end.

An initial subsequence Ci starts with the sentence
initial position, has any number (incl. zero) of am-
biguous classes ca and ends with the first unambigu-
ous class c~ of the sentence. It can be described by
the regular expressionS:

Ci = ca* (5)

The joint probability of an initial class subse-
quence Ci of length r, together with an initial tag
subsequence ~ , can be estimated by:

r

p(C,, ~1~) = r(tl) b(cl]tl). H a(tj]tj_l) b(cj Itj) (6)
j = 2

A middle subsequence Cm starts immediately af-
ter an unambiguous class cu, has any number (incl.

SRegular expression operators used in this section are
explained in the annex•

zero) of ambiguous classes ca and ends with the fol-
lowing unambiguous class c~ :

Cm = ca* c~ (7)

For correct probability estimation we have to in-
clude the immediately preceding unambiguous class
cu, actually belonging to the preceding subsequence
Ci or Cm. We thereby obtain an extended middle
subsequence 5:

= % ca* (8)

The joint probability of an extended middle class
subsequence C~ of length s, together with a tag sub-
sequence Tr~ , can be estimated by:

$

p(c£ ,7£) = b(clltl). I-[a(tjltj_) b(cjlt) (9)
j=2

3.2 Construct ion of a n s - T y p e T r a n s d u c e r

To build an s-type transducer, a large number of ini-
tial class subsequences Ci and extended middle class
subsequences C~n are generated in one of the follow-
ing two ways:

(a) Extract ion from a corpus
Based on a lexicon and a guesser, we annotate an

untagged training corpus with class labels. From ev-
ery sentence, we extract the initial class subsequence
Ci that ends with the first unambiguous class c~ (eq.
5), and all extended middle subsequences C~n rang-
ing from any unambiguous class cu (in the sentence)
to the following unambiguous class (eq. 8).

462

A frequency constraint (threshold) may be im-
posed on the subsequence selection, so that the only
subsequences retained are those that occur at least
a certain number of times in the training corpus 6.

(b) G e n e r a t i o n o f poss ib le subsequences
Based on the set of classes, we generate all possi-

ble initial and extended middle class subsequences,
Ci and C,e, (eq. 5, 8) up to a defined length.

Every class subsequence Ci or C~ is first dis-
ambiguated based on a 1st order HMM, using the
Viterbi algorithm (Viterbi, 1967; Rabiner, 1990) for
efficiency, and then linked to its most probable tag
subsequence ~ or T~ by means of the cross product
operationS:

Si -- Ci . x . T / ---- c 1 : t l c2 : t 2 Cn :tn (10)

01) e . e S~ = C~ .x. 7~ = el . t1 c2:t2 c, : t ,

In all extended middle subsequences S~n, e.g.:

S~ - C~ _ (12)

[DET] [ADJ,NOUN] [ADJ, NOUN] [NOUN]
DET ADJ ADJ NOUN

the first class symbol on the upper side and the first
tag symbol on the lower side, will be marked as an
extension that does not really belong to the middle
sequence but which is necessary to disambiguate it
correctly. Example (12) becomes:

s ° = = (13)
T O

O.[DET] [ADJ,NOUN] [ADJ, NOUN] [NOUN]
O.DET ADJ ADJ NOUN

We then build the union uS i of all initial subse-
quences Si and the union uS~n of all extended middle
subsequences S,e=, and formulate a preliminary sen-
tence model:

uS ° = ~S, uS°~* (14)

in which all middle subsequences S ° are still marked
and extended in the sense that all occurrences of all
unambiguous classes are mentioned twice: Once un-
marked as cu at the end of every sequence Ci or COn,

0 at the beginning and the second time marked as c u
of every following sequence C ° . The upper side of
the sentence model uS° describes the complete (but

6The frequency constraint may prevent the encoding
of rare subsequences which would encrease the size of
the transducer without contributing much to the tagging
accuracy.

extended) class sequences of possible sentences, and
the lower side of uS° describes the corresponding (ex-
tended) tag sequences.

To ensure a correct concatenation of initial and
middle subsequences, we formulate a concatenation
constraint for the classes:

0 = N [-*[% (15)
J

stating that every middle subsequence must begin
0 with the same marked unambiguous class % (e.g.

0.[DET]) which occurs unmarked as c~ (e.g. [DET])
at the end of the preceding subsequence since both
symbols refer to the same occurrence of this unam-
biguous class.

Having ensured correct concatenation, we delete
all marked classes on the upper side of the relation
by means of

and all marked tags on the lower side by means of

By composing the above relations with the prelim-
inary sentence model, we obtain the final sentence
modelS:

S = Dc .o. Rc .o. uS° .o. Dt (18)

We call the model an s-type model, the corre-
sponding FST an s-type transducer, and the whole
algorithm leading from the HMMto the transducer,
an s-type approximation of an HMM.

The s-type transducer tags any corpus which con-
tains only known subsequences, in exactly the same
way, i.e. with the same errors, as the corresponding
HMM tagger does. However, since an s-type trans-
ducer is incomplete, it cannot tag sentences with
one or more class subsequences not contained in the
union of the initial or middle subsequences.

3.3 C o m p l e t i o n o f an s - T y p e T r a n s d u c e r

An incomplete s-type transducer S can be completed
with subsequences from an auxiliary, complete n-
type transducer N as follows:

First, we extract the union of initial and the union
of extended middle subsequences, u u e Si and s Sm from
the primary s-type transducer S, and the unions ~Si

463

and ~S,~ from the auxiliary n-type transducer N. To
extract the union °S i of initial subsequences we use
the following filter:

F s , = [\ < c ~ , t >] * <c- ,0 [? : []] * (19)

where (c,, t) is the l-level format 7 of the symbol pair
cu :t. The extraction takes place by

usi = [N.1L .o. Fs,].l.2L (20)

where the transducer N is first converted into l-
level format 7, then composed with the filter Fs, (eq.
19). We extract the lower side of this composition,
where every sequence of N.1L remains unchanged
from the beginning up to the first occurrence of an
unambiguous class c, . Every following symbol is
mapped to the empty string by means of [? :[]] .
(eq. 19). Finally, the extracted lower side is again
converted into 2-level format 7.

The extraction of the union uSe of extended mid-
die subsequences is performed in a similar way.

We then make the joint unions of initial and ex-
tended middle subsequences 5 :

U~/ U O O U : I []] (21) -- ~Si .o. ~Si

U e U e U e U e U e = [, Sm.u s . , ,s in I [(22) -] .o.]

In both cases (eq. 21 and 22) we union all subse-
quences from the principal model S, with all those
subsequences from the auxiliary model N that are
not in S.

Finally, we generate the completed s+n-typc
transducer from the joint unions of subsequences uSi
and uS~n , as decribed above (eq. 14-18).

A transducer completed in this way, disam-
biguates all subsequences known to the principal
incomplete s-type model, exactly as the underlying
HMM does, and all other subsequences as the aux-
iliary n-type model does.

4 A n I m p l e m e n t e d F i n i t e - S t a t e

T a g g e r

The implemented tagger requires three transducers
which represent a lexicon, a guesser and any above
mentioned approximation of an HMM.

All three transducers are sequential, i.e. deter-
ministic on the input side.

Both the lexicon and guesser unambiguously map
a surface form of any word that they accept to the
corresponding class of tags (fig. 2, col. 1 and 2):

~l-Level and 2-level format are explained in the an-
f l e x .

First, the word is looked for in the lexicon. If this
fails, it is looked for in the guesser. If this equally
fails, it gets the label [UNKNOWN] which associates
the word with the tag class of unknown words. Tag
probabilities in this class are approximated by tags
of words that appear only once in the training cor-
pus.

As soon as an input token gets labelled with the
tag class of sentence end symbols (fig. 2: [SENT]),
the tagger stops reading words from the input. At
this point, the tagger has read and stored the words
of a whole sentence (fig. 2, col. 1) and generated the
corresponding sequence of classes (fig. 2, col. 2).

The class sequence is now deterministically
mapped to a tag sequence (fig. 2, col. 3) by means of
the HMM transducer. The tagger outputs the stored
word and tag sequence of the sentence, and contin-
ues in the same way with the remaining sentences of
the corpus.

The [AT] AT
share [NN, VB] NN
of [IN] IN

tripled [VBD, VBN] VBD
within [IN,RB] IN
that [CS, DT, WPS] DT
span INN, VB, VBD] VBD
of [IN] IN
t ime INN, VB] NN

[SENT] SENT

Figure 2: Tagging a sentence

5 E x p e r i m e n t s a n d R e s u l t s

This section compares different n-type and s-type
transducers with each other and with the underlying
HMM.

The FSTs perform tagging faster than the HMMs.
Since all transducers are approximations of

HMMs, they give a lower tagging accuracy than the
corresponding HMMs. However, improvement in ac-
curacy can be expected since these transducers can
be composed with transducers encoding correction
rules for frequent errors (sec. 1).

Table 1 compares different transducers on an En-
glish test case.

The s+nl - type transducer containing all possible
subsequences up to a length of three classes is the
most accurate (table 1, last line, s+n l -FST (~ 3):
95.95 %) but Mso the largest one. A similar rate of
accuracy at a much lower size can be achieved with
the s+nl- type, either with all subsequences up to a

464

HMM

accuracy
in %

96.77

tagging speed
in words/sec

4 590

transducer size creation
time # states # arcs

1 297
71 21 087

927 203 853
2 675 564 887
4 709 976 785

476 107 728
211 52 624
154 41 598

2 049 418 536
799 167 952
432 96 712

9 796 1 311 962
92 463 13 681 113

n0-FST 83.53 20 582 16 sec
n l -FST 94.19 17 244 17 sec

s + n l - F S T (20K, F1) 94.74 13 575 3 min
s + n l - F S T (50K, F1) 94.92 12 760 10 min
s + n l - F S T (100K, F1) 95.05 12 038 23 min
s+n l -F S T (100K, F2) 94.76 14 178 2 min
s+n l -F S T (100K, F4) 94.60 14 178 76 sec
s+n l -F S T (100K, F8) 94.49 13 870 62 see
s+n l -F S T (1M, F2) 95.67 11 393 7 min
s+n l -F S T (1M, F4) 95.36 11 193 4 min
s+n l -F S T (1M, FS) 95.09 13 575 3 min

s+n l -F S T (< 2) 95.06 8 180 39 min
s+n l -F S T (< 3) 95.95 4 870 47 h

Language: English
Corpora: 19 944 words for HMM training, 19 934 words for test
Tag set: 74 tags 297 classes
Types of FST (Finite-State Transducers) :

nO, nl n0-type (with only lexical probabilities) or nl-type (sec. 2)
s+nl (100K, F2) s-type (sec. 3), with subsequences of frequency > 2, from a training

corpus of 100 000 words (sec. 3.2 a), completed with nl-type (sec. 3.3)
s+nl (< 2) s-type (sec. 3), with all possible subsequences of length _< 2 classes

(sec. 3.2 b), completed with nl-type (sec. 3.3)
Computer: ultra2, 1 CPU, 512 MBytes physical RAM, 1.4 GBytes virtual RAM

Table 1: Accuracy, speed, size and creation time of some HMM transducers

length of two classes (s+n l -FST (5 2): 95.06 %) or
with subsequences occurring at least once in a train-
ing corpus of 100 000 words (s+n l -FST (lOOK, F1):
95.05 %).

Increasing the size of the training corpus and the
frequency limit, i.e. the number of times that a sub-
sequence must at least occur in the training corpus
in order to be selected (sec. 3.2 a), improves the re-
lation between tagging accuracy and the size of the
transducer. E.g. the s+n l - type transducer that en-
codes subsequences from a training corpus of 20 000
words (table 1, s + n l -F S T (20K, F1): 94.74 %, 927
states, 203 853 arcs), performs less accurate tagging
and is bigger than the transducer that encodes sub-
sequences occurring at least eight times in a corpus
of 1 000 000 words (table 1, s+n l -FST (1M, F8):
95.09 %, 432 states, 96 712 arcs).

Most transducers in table 1 are faster then the
underlying HMM; the n0-type transducer about five
times s. There is a large variation in speed between

SSince n0-type and nl-type transducers have deter-
ministic states only, a particular fast matching algorithm
can be used for them.

the different transducers due to their structure and
size.

Table 2 compares the tagging accuracy of different
transducers and the underlying HMM for different
languages. In these tests the highest accuracy was
always obtained by s-type transducers, either with
all subsequences up to a length of two classes 9 or
with subsequences occurring at least once in a corpus
of 100 000 words.

6 C o n c l u s i o n a n d F u t u r e R e s e a r c h

The two methods described in this paper allow the
approximation of an HMM used for part-of-speech
tagging, by a finite-state transducer. Both methods
have been fully implemented.

The tagging speed of the transducers is up to five
times higher than that of the underlying HMM.

The main advantage of transforming an HMM
is that the resulting FST can be handled by finite

9A maximal length of three classes is not considered
here because of the high increase in size and a low in-
crease in accuracy.

465

.... HMM

-'n0-FST
n l -FST

English

96.77

83.53
94.19

s+nl -FST (20K, F1) 94.74
s+nl -FST (50K, F1) 94.92
s+n l -FST (100K, F1) 95.05
s+n l -FST (100K, F2) 94.76
s÷n l -FST (100K, F4)
s+n l -FST (100K, F8)

94.60
94.49

: H M M train.crp. (#wd)
'"test corpus (# words)

s+n l -FST (< 2) 95.06

19 944
19 934

t a g s 74
#c lasses 297

accuracy in %
I Dutch I French I German

I 94"76[98"651 97.62

81.99 91.13
91.58 98.18
92.17 98.35
92.24 98.37

92.36 98.37
92.17 98.34
92.02 98.30
91.84 98.32
92.25 98.37

26 386 22 622
10 468 6 368

47 45
230 287

[Types of FST (Finite-State Transducers) :

Portug. Spanish

[97.12 97.60

82.97 91.03 93.65
94.49 96.19 96.46
95.23 96.71
95.57
95.81
95.51
95.29

96.33
96.49

96.56
96.42
96.27

96.76
96.87
96.74
96.64

95.02 96.23 96.54
95.92 96.50 96.90

91 060 20 956 16 221
39 560 15 536 15 443

66 67 55
389 303 254

cf. table 1 I

Table 2: Accuracy of some HMM transducers for different languages

state calculus 1° and thus be directly composed with
other transducers which encode tag correction rules
and/or perform further steps of text analysis.

F u t u r e r e s e a r c h will mainly focus on this pos-
sibility and will include composition with, among
others:

• Transducers that encode correction rules (pos-
sibly including long-distance dependencies) for
the most frequent tagging errors, ill order to
significantly improve tagging accuracy. These
rules can be either extracted automatically from
a corpus (Brill, 1992) or written manually
(Chanod and Tapanainen, 1995).

• Transducers for light parsing, phrase extraction
and other analysis (A'/t-Mokhtar and Chanod,
1997).

An HMM transducer can be composed with one or
more of these transducers in order to perform com-
plex text analysis using only a single transducer.

We also hope to improve the n-type model by us-
ing look-ahead to the following tags 11.

A c k n o w l e d g e m e n t s

I wish to thank the anonymous reviewers of my pa-
per for their valuable comments and suggestions.

I am grateful to Lauri Karttunen and Gregory
Grefenstette (both RXRC Grenoble) for extensive
and frequent discussion during the period of my
work, as well as to Julian Kupiec (Xerox PARC)
and Mehryar Mohri (AT&:T Research) for sending
me some interesting ideas before I started.

Many thanks to all my colleagues at RXRC
Grenoble who helped me in whatever respect, partic-
ularly to Anne Schiller, Marc Dymetman and Jean-
Pierre Chanod for discussing parts of the work, and
to Irene Maxwell for correcting various versions of
the paper.

l°A large library of finite-state functions is available
at Xerox.

11Ongoing work has shown that, looking ahead to just
one tag is worthless because it makes tagging results
highly ambiguous.

466

R e f e r e n c e s ANNEX: R e g u l a r E x p r e s s i o n O p e r a t o r s

Ait-Mokhtar, Salah and Chanod, Jean-Pierre
(1997). Incremental Finite-State Parsing. In
the Proceedings of the 5th Conference of Applied
Natural Language Processing. ACL, pp. 72-79.
Washington, DC, USA.

Bahl, Lalit R. and Mercer, Robert L. (1976). Part
of Speech Assignment by a Statistical Decision
Algorithm. In IEEE international Symposium on $A
Information Theory. pp. 88-89. Ronneby.

Brill, Eric (1992). A Simple Rule-Based Part-of- -A
Speech Tagger. In the Proceedings of the 3rd con-
ference on Applied Natural Language Processing, \a
pp. 152-155. Trento, Italy.

Chanod, Jean-Pierre and Tapanainen, Pasi (1995). A*
Tagging French - Comparing a Statistical and a
Constraint Based Method. In the Proceedings of A+
the 7th conference of the EACL, pp. 149-156.
ACL. Dublin, Ireland. a -> b

Church, Kenneth W. (1988). A Stochastic Parts
Program and Noun Phrase Parser for Unre-
stricted Text. In Proceedings of the 2nd Con- a <- b
ference on Applied Natural Language Processing.
ACL, pp. 136-143.

a :b
Kaplan, Ronald M. and Kay, Martin (1994). Reg-

ular Models of Phonological Rule Systems. In (a,b)
Computational Linguistics. 20:3, pp. 331-378.

Karttunen, Lauri (1995). The Replace Operator. R.u
In the Proceedings of the 33rd Annual Meeting R. 1
of the Association for Computational Linguistics. h B
Cambridge, MA, USA. cmp-lg/9504032

A I B
Kempe, Andrd and Karttunen, Lauri (1996). Par- A ~ B

allel Replacement in Finite State Calculus. In A - B
the Proceedings of the 16th International Confer-
ence on Computational Linguistics, pp. 622-627. h .x. B
Copenhagen, Denmark. crap-lg/9607007

Rabiner, Lawrence R. (1990). A Tutorial on Hid- R .o. q
den Markov Models and Selected Applications in it.lL
Speech Recognition. In Readings in Speech Recog-
nition (eds. A. Waibel, K.F. Lee). Morgan Kauf-
mann Publishers, Inc. San Mateo, CA., USA.

A.2L
Roche, Emmanuel and Schabes, Yves (1995). De-

terministic Part-of-Speech Tagging with Finite- O o r f]
State Transducers. In Computational Linguistics. ?
Vol. 21, No. 2, pp. 227-253.

Viterbi, A.J. (1967). Error Bounds for Convolu-
tional Codes and an Asymptotical Optimal De-
coding Algorithm. In Proceedings of IEEE, vol.
61, pp. 268-278.

Below, a and b designate symbols, A and
B designate languages, and R and q desig-
nate relations between two languages. More
details on the following operators and point-
ers to finite-state literature can be found in
http ://www. rxrc. xerox, com/research/mltt/f st

Contains. Set of strings containing at least
one occurrence of a string from A as a
substring.
Complement (negation). All strings ex-
cept those from A.
Term complement. Any symbol other
than a.
Kleene star. Zero or more times h con-
catenated with itself.
Kleene plus. One or more times A concate-
nated with itself.
Replace. Relation where every a on the
upper side gets mapped to a b on the lower
side.
Inverse replace. Relation where every b on
the lower side gets mapped to an a on the
upper side.
Symbol pair with a on the upper and b on
the lower side.
1-Level symbol which is the 1-1eve! form
(. 1L) of the symbol pair a: b.
Upper language of R.
Lower language of R.
Concatenation of all strings of A with all
strings of tl.
Union of A and B.
Intersection of A and B.
Relative complement (minus). All strings
of A that are not in B.
Cross Product (Cartesian product) of the
languages A and B.
Composition of the relations R and q.
1-Level form. Makes a language out of
the relation R. Every symbol pair becomes
a simple symbol. (e.g. a: b becomes (a, b)
and a which means a : a becomes (a, a))
2-Level form. Inverse operation to .1L
(R.1L.2L = R).
Empty string (epsilon).
Any symbol in the known alphabet and its
extensions

467

