
String Transformation Learning

Giorgio Satta
D i p a r t i m e n t o di E l e t t r o n i c a e I n f o r m a t i c a

U n i v e r s i t h di P a d o v a

v i a G r a d e n i g o , 6 / A

1-35131 P a d o v a , I t a l y

satt a@dei, unipd, it

J o h n C . H e n d e r s o n

D e p a r t m e n t o f C o m p u t e r S c i e n c e

J o h n s H o p k i n s U n i v e r s i t y

B a l t i m o r e , M D 2 1 2 1 8 - 2 6 9 4

j hndrsn~cs, j hu. edu

A b s t r a c t

String t ransformat ion systems have been
introduced in (Brill, 1995) and have sev-
eral applications in natural language pro-
cessing. In this work we consider the com-
putat ional problem of automatical ly learn-
ing from a given corpus the set of transfor-
mat ions presenting the best evidence. We
introduce an original da ta structure and
efficient algori thms that learn some fam-
ilies of t ransformations that are relevant
for part-of-speech tagging and phonologi-
cal rule systems. We also show that the
same learning problem becomes NP-hard
in cases of an unbounded use of don ' t care
symbols in a t ransformation.

1 I n t r o d u c t i o n

Ordered sequences of rewriting rules are used in
several applications in natural language process-
ing, including phonological and morphological sys-
tems (Kaplan and Kay, 1994), morphological disam-
biguation, part-of-speech tagging and shallow syn-
tactic parsing (Brill, 1995), (Karlsson et ah, 1995).
In (Brill, 1995) a learning paradigm, called error-
driven learning, has been introduced for automat ic
induction of a specific kind of rewriting rules called
transformations, and it has been shown that the
achieved accuracy of the resulting transformation
systems is competi t ive with tha t of existing systems.

In this work we further elaborate on the error-
driven learning paradigm. Our main contribution
is summarized in what follows. We consider some
families of t ransformations and design efficient al-
gori thms for the associated learning problem that
improve existing methods. Our results are achieved
by exploiting a da ta structure originally introduced
in this work. This allows us to simultaneously repre-
sent and test the search space of all possible transfor-
mations. The t ransformations we investigate make
use of classes of symbols, in order to generalize regu-
larities in rule applications. We also show that when

an unbounded number of these symbol classes are al-
lowed within a transformation, then the associated
learning problem becomes NP-hard.

The notat ion we use in the remainder of the paper
is briefly introduced here. ~3 denotes a fixed, finite
alphabet and e the null string. E* and E+ are the
set of all strings and all non-null strings over E, re-
spectively. Let w 6 E*. We denote by Iwl the length
o f w . Let w = uxv; u i s a p r e f i x and v is a suf-
fix of w; when x is non-null, it is called a f a c t o r of
w. The suffix of w of length i is denoted suf f i (w) ,
for O < i _< Iwl. Assume that x is non-null, and
w = u ixsu f f i (w) for ~ > 0 different values of i but
not for ~ + 1, or x is not a factor of w and ~ = 0.
Then we say that ~ is the statistic of factor z in w.

2 T h e l e a r n i n g p a r a d i g m

The learning paradigm we adopt is called error-
driven learning and has been originally proposed
in (Brill, 1995) for part of speech tagging applica-
tions. We briefly introduce here the basic assump-
tions of the approach.

A string t r a n s f o r m a t i o n is a rewriting rule de-
noted as u -* v, where u and v are strings such that
[u[= Ivt. This means that i fu appears as a factor of
some string w, then u should be replaced by v in w.
The application of the t ransformation might be con-
ditioned by the requirement tha t some additionally
specified pattern matches some part of the string w
to be rewritten.

We now describe how transformations can be au-
tomatically learned. A pair of strings (w, w ') is an
a l i g n e d p a i r if IT[=]w'[. When w = uzsu f f i (w) ,
w' = u ' x ' su f f i (w ') and Ixl = Ix'l, we say that fac-
tors x and x' occur at aligned positions within
(w, w'). A multi-set of aligned pairs is called an
a l i g n e d c o r p u s . Let (w, w ') be an aligned pair and
let 7- be some transformation of the form u --~ v.
The p o s i t i v e e v i d e n c e of v (w.r.t. (w, w')) is the
number of different positions at which factors u and
v are aligned within (w, w'). The n e g a t i v e ev i -
d e n c e of r (w.r.t. w, w ~) is the number of different
positions at which factors u and u are aligned within

444

¢

a ~

(

C

$'

$

-a.,

a l
(p

$ c l
q~

$,

[1 , 2 ~

Figure 1: Trie and suffix tree for string w = accbacac$. Pair [i, j] denotes the factor of w starting at position
i and ending at position j (hence [1, 2] denotes ac).

(w, w'). Intuitively speaking, positive (negative) ev-
idence is a count of how many times we will do well
(badly, respectively) when using v on w in trying to
get w'. The score associated with v is the differ-
ence between the positive evidence and the negative
evidence of r. This extends to an aligned corpus
in the obvious way. We are interested in the set of
transformations that are associated with the high-
est score in a given aligned corpus, and will develop
algorithms to find such a set in the next sections.

3 D a t a S t r u c t u r e s

This section introduces two data structures that are
basic to the development of the algorithms presented
in this paper.

3.1 Suffix t rees

We briefly present here a data structure that is
well known in the text processing literature; the
reader is referred to (Crochemore and Rytter, 1994)
and (Apostolico, 1985) for definitions and further
references.

Let w be some non-null string. Throughout the
paper we assume that the rightmost symbol of w is
an end-marker not found at any other position in
the string. The suffix t r ee associated with w is a
"compressed" trie of all strings suffi(w), 1 < i < Iwl.
Edges are labeled by factors of w which are encoded
by means of two natural numbers denoting endpoints
in the string. An example is reported in Figure 1.
An impl ic i t n o d e is a node not explicitly repre-
sented in the suffix tree, that splits the label of some
edge at a given position. (Each implicit node cor-
responds to some node in the original trie having
only one child.) We denote by parent(p) the parent
node of (implicit) node p and by label(p, q) the la-
bel of the edge spanning (implicit) nodes p and q.
Throughout the paper, we take the dominance rela-

tion between nodes to be reflexive, unless we write
p r o p e r dominance. We also say that implicit node
q i m m e d i a t e l y dominates node p if q splits the arc
between parent(p) and p. Of main interest here are
the following properties of suffix trees:

• if node p has children Pl , Pd, then d _> 2 and
strings label(p, pi) differ one from the other at
the leftmost symbol;

. all and only the factors of w are represented by
paths from the root to some (implicit) node;

• the statistic of factor u of w is the number of
leaves dominated by the (implicit) node ending
the path representing u.

In the remainder of the paper, we sometimes identify
an (implicit) node of a suffix tree with the factor
represented by the path from the root to that node.

The suffix tree and the statistics of all factors of
w can be constructed/computed in time O([w[), as
reported in (Weiner, 1973) and (McCreight, 1976).
McCreight algorithm uses two basic functions to
scan paths in the suffix tree under construction.
These functions are briefly introduced here and will
be exploited in the next subsection. Below, p is a
node in a tree and u is a non-null string.

f u n c t i o n Slow_scan(p, u): Starting at p, scan u sym-
bol by symbol. Return the {implicit) node corre-
sponding to the last matching symbol.

The next function runs faster than Slow_scan, and
can be used whenever we already know that u is an
(implicit) node in the tree (u completely matches
some path ill the tree).

f u n c t i o n Fast_scan(p, u): Starting at p, scan u by
iteratively (i) finding the edge between the current
node and one of its children, that has the same first
symbol as the suffix of u yet to be scanned, and
(ii) skipping a prefix of u equal to the length of the
selected edge label. Return the (implicit) node u.

4 4 5

[1 , 2 ~ / \"-M9,91

d/[8,9] t : : 7 ~ ~ N a [~

/ [8 . 9] / [6 . 9]

9,9]

7(13)~(2) .

[3~] N " ~ "91

Figure 2: Suffix tree aligmnent for strings w = accbacac$, w' = acabacba$ and the identity homomorphism
h(a) = a, h(b) = b, h(c) = c. Each a-link is denoted by indexing the incident nodes with the same integer
number; if the incident node is an implicit node, then we add between parentheses the relative position w.r.t.
the arc label.

From each node au in the suffix tree, au some factor,
McCreight's algorithm creates a pointer, called an s-
l ink, to node u which necessarily exists in the suffix
tree. We write q = s-link(p) if there is an s-link from
p t o q .

3.2 Suffix t r e e a l i g n m e n t

In the next section each transformation will be as-
sociated with several strings. Given an input text,
we will compute transformation scores by comput-
ing statistics of these strings. This can easily be
done using suffix trees, and by pairing statistics cor-
responding to the same transformation. The latter
task can be done using the data structure originally
introduced here.

A total function h : E ~ E ~, ~ and E' two alpha-
bets, is called a (restricted) h o m o m o r p h i s m . We
extend h to a string function in the usual way by
posing h(¢) = s and h(au) = h(a)h(u), a E E and
u E E*. Given w,w' E E +, we need to pair each
factor u of w with factor h(u) possibly occurring in
w ~. To solve this problem, we construct the suffix
trees T , T ' for w,w' , respectively. Then we estab-
lish an a - l i nk (a pointer) from each node u of T,
u some factor, to the (implicit) node h(u) of T ~, if
h(u) exists. Furthermore, if factor ua with a E E is
an (implicit) node of T such that h(u) but not h(ua)
are (implicit) nodes of T', we create node u in T (if
u was an implicit node) and establish an a-link from
u to (implicit) node h(u) of T ' . Note that the to-
tal number of a-links is O(Iwl). The resulting data
structure is called here suffix t r e e a l i g m n e n t . An
example is reported in Figure 2.

We now specify a method to compute suffix tree
alignments. In what follows p,p~ are tree nodes and
u is a non-null string. Crucially, we assume we can
access the s-links of T and T ' . Paths u and v in T
and T ' , respectively, are aligned if v = h(u). The
next two functions are used to move a-links up and
down two aligned paths.

f u n c t i o n Move_link_down(p,p',u): Starting at. p

and p', simultaneously scan u and h(u), respectively,
using function Slow_scan. Stop as soon as a symbol
is not matched. At each encountered node of T and
at the (implicit) node of T corresponding to the last
successful match, create an a-link to the paired (im-
plicit) node of T' . Return the pair of nodes in the
lastly created a-link Mong with the length of the suc-
cessfully matched prefix of u.

In the next function, we use function Fast_scan in-
troduced in Section 3.1, but we run it upward the
tree (with the obvious modifications).

f u n c t i o n Move_link_up(p,p'): Starting at p and p',
simultaneously scan the paths to the roots of T and
T' , respectively, using function Fast_scan. Stop as
soon as a node of T is encountered that already ha.s
an a-link. At each encountered node of T create an
a-link to the paired (implicit) node of T'.
We also need a function that "shifts" a-links to a new
pair of aligned paths. This is done using s-links. The
next auxiliary function takes care of those (implicit)
nodes for which the s-link is missing. (This is the
case for implicit nodes of T ~ and for some nodes of
T that have been newly created.) We rest on the
property that the parent node of any such (implicit)
node always has an s-link, when it differs from the
root.

f u n c t i o n Up_link_down(p): If s-link(p) is defined
then return s-link(p). Else, let pl = parent(p). If
Pl is not the root node, let P2 = s-link(p1) and
return (implicit) node FasLscan(p2,1abel(pl,p)).
If Pl is the root node, return (implicit) node
Fast_scan(p1, sufflZab~l(p~,p)i_ l (label(pl , p)).

f u n c t i o n Shifl_link(p,p'): P l = Up_link_down(p),
P'I = Up_linLdown(p'). Return (Pl,P~).

We can now present the algorithm for the con-
struction of suffix tree alignments.

A l g o r i t h m 1 Let T and T ' be the suffix trees for
strings w and w', respectively:
(bl~l ' G l ' d) ,-- Move_link_down(root of T,

446

I i l ab' I bi I a-linkl
9 - ac 1, 2
8 C C - -

7 e cba 4
6 ba bac 5
5 ac aca 6
4 ca ca 7
3 a ac --
2 c c 8
1 e $ -

Figure 3: The table reports the values of 8bi, bi
and the established a-links at each iteration of Algo-
r i thm 1, when constructing the suffix tree aligmnent
in Figure 2. To denote a-links we use the same inte-
ger numbers as in Figure 2.

roo t of T',
f o r i f r o m]w I - 1 d o w n t o 1 do b e g i n

(sbi, sb;) ~-- Shift_link(bi+l, b;+l)
M ove_link_up(sbi , sb~)
(b, , dd) Move_link_do n(ab, , abe,

s wl-d(w))
d . - - d + d d
e n d

e n d

In Figure 3 a sample run of Algori thm 1 is schemat-
ically represented.

In the next section we use the following properties
of Algori thm 1:

• after T and T' have been processed, for every
node p o f T representing factor u of w, (implicit)
node a-link(p) of T ~ is defined if and only if
a-link(p) represents factor h(u) of w';

• the algori thm can be executed in time
O(Iwl + Iw'l).

The first property above can be proved as follows.
For 1 < i < Iwl, bi in Algori thm 1 is (the node
representing) the longest prefix of suffi(w) such that
h(bi) is an (implicit) node of T ' (is a factor of w').
This can be proved by induction on [w I - i , using the
definition of Move_link_down and of s-link. We then
observe that , if u is a node of T, then factor u is a
prefix of some suffi(w) and either u dominates bi or
bi properly dominates u in T. If u dominates bi, then

• h(u) must be an (implicit) node o f T ' . In this case an
a-link is established from u to h(u) by Move_link_up
or Move_link_down, depending on whether u dom-
inates or is dominated by sbi in T. If bi properly
dominates u, h(u) does not occur in w'. In this
case, node u is never reached by the algorithm and
no a-link is established for this node.

The proof of the linear time result is rather long,
we only give an outline here. The interesting case

is the function Shift_link, which is executed Iwl- 1
times by the algorithm. When executed once on
nodes p and if , Shift_link uses t ime 0(1) if s-link(p)
and s-link(p ~) are both defined. In all other cases,
it uses an amount of time proport ional to the num-
ber of (implicit) nodes visited by function FasLscan,
which is called through function Up_link_down. We
use an amort izat ion technique and charge a constant
amount of time to the symbols in w and w', for each
node visited in this way. Consider the execution of
Shi f l_ l ink(b i+l , b~+l) for some i, 1 < i < I w [- 1. As-
sume that , correspondingly, Fast_scan visits nodes
u l , . . . , U d of T in this order, with d __ 1 and each
uj some factor of w. Then we have that each uj is
a (proper) prefix of uj+l , and Ud = sbi. For each
u j, 1 < j _< d - 1, we charge a constant amount of
time to the symbol in w "corresponding" to the last
symbol of uj. The visit to Ud, on the other hand, is
charged to the ith symbol of w. (Note that charging
the visit to ud to the symbol in w "corresponding"
to the last symbol of Ud does not work, since in the
case of sbi ---" bi the same symbol would be charged
again at the next iteration of the for-cycle.) It is not
difficult to see that, in this way, each symbol of w is
charged at most once. A similar argument works for
visits to nodes of T' by Fast_scan, which are charged
to symbols of u?. This shows that the t ime used by
all executions of Shift_link is 0(Iwl + Iw'l).

Suffix trees and suffix tree alignments can be gen-
eralized to finite multi-sets of strings, each string
ending with the same end-marker not found at any
other position. In this case each leaf holds a record,
called c o u n t , of the number of times the correspond-
ing suffix appears in the entire multi-set, which will
be propagated appropriately when comput ing factor
statistic. Most impor tant here, all of the above re-
sults still hold for these generalizations. In the next
section, we will deal with the multi-set case.

4 T r a n s f o r m a t i o n l e a r n i n g

This section deals with the computat ional problem
of learning string transformations from an aligned
corpus. We show that some families of t ransforma-
tions can be efficiently learned exploiting the da ta
structures of Section 3. We also consider more gen-
eral kinds of transformations and show that for this
class the learning problem is NP-hard.

4.1 D a t a r e p r e s e n t a t i o n

We introduce a representation of aligned corpora
that reduces the problem of comput ing the pos-
it ive/negative evidence of t ransformations to the
problem of computing factor statistics.

Let (w, w') be an aligned pair, w = a l . . "an and
w ' = a ' l . . . a , ~ ; w i t h a i E E f o r l < i < n , a n d n > _ 1.
We define

w × w ' = (a l , a ~) . " (a ~ , a ~) . (1)

447

Note that w x w ~ is a string over the new al-
phabet E x E. Let N > 1 and let L =
{(wl, w~) , . . . , (Wg, W~v)} be an aligned corpus. We
represent L as a string multi-set over alphabet E x E:

L× = {w x w' I (w,w') E L}, (2)

where w x w ~ appears in Lx as many times as (w, w ~)
appears in L.

4 .2 L e a r n i n g a l g o r i t h m s

Let L be an aligned corpus with N aligned pairs over
a fixed alphabet E, and let n be the length of the
longest string in a pair in L. We start by considering
plain t ransformations of the form

u --* v , (3)

where u, v E E +, lul = Ivl, We want to find all in-
stances of strings u, v E E* such that , in L, u ~ v
has score greater or equal than the score of any other
t ransformation. Existing methods for this problem
are data-driven. They consider all pairs of factors
(with lengths bounded by n) occurring at aligned
positions within some pair in L, and update the
positive and the negative evidence of the associated
transformations. They thus consider O(Nn 2) fac-
tor pairs, where each pair takes t ime O(n) to be
read/stored. We conclude that these methods use
an amount of t ime O(Nn3) . We can improve on
this by using suffix tree alignments.

Let Lx be defined as in (2) and let hi : (E x E)
(E x E) be the homomorphism specified as:

h~((a,b)) = (a ,a) .

Recall that, each suffix of a multi-set of strings is
represented by a leaf in the associated suffix-tree,
because of the use of the end-marker, and that each
leaf stores the count of the occurrences of the corre-
sponding suffix in the source multi-set. We schemat-
ically specify our first learning algori thm below.

A l g o r i t h m 2
S t e p 1: construct two copies Tx and T x of the suf-
fix tree associated with L× and align them using hi;
S t e p 2: visit trees T× and T~ in post-order, and an-
notate each node p with the number e(p) computed
as the sum of the counts at leaves that p dominates;
S t e p 3: annota te each node p of T× with the score
e(p) - e(p'), where p' = a-link(p) if a-link(p) is an

actual node, p~ is the node immediately dominated
by a-link(p) if a-link(p) is an implicit node, and
e(p ~) = 0 if a-link(p) is undefined; make a list of
the nodes with the highest annotated score.

Let p be a node of Tx associated with factor u x v.
Integer e(p) computed at Step 2 is the number of
times a suffix having u x v as a prefix appears in
strings in Lx . Thus e(p) is the number of differ-
ent positions at which factors u and v are aligned
within Lx and hence the positive evidence of trans-
format ion u --~ v w.r.t. L, as defined in Section 2.

Similarly, e(#) is the statistic of factor u >< u and
hence the negative evidence of u --+ v (as well as the
negative evidence of all t ransformations having u as
left-hand side). It follows that Algori thm 2 records,
at Step 3, the transformations having the highest
score in L among all t ransformations represented by
nodes of Tx. It is not difficult to see tha t the re-
maining transformations, denoted by implicit nodes
of Tx, do not have score greater than the one above.
The latter transformations with highest score, if any,
can be easily recovered by visiting the implicit nodes
that immediately dominate the nodes of Tx recorded
at Step 3.

A complexity analysis of Algori thm 2 is straight-
forward. Step 1 can be executed in t ime O(Nn), as
discussed in Section 3. Since the size of Tx and T~<
is O(Nn)~ all other steps can be easily executed in
linear time. Hence Algori thm 2 runs in t ime O(Nn).

We now turn to a more general kind of transfor-
mations. In several natural language processing ap-
plications it is useful to generalize over some trans-
formations of the form in (3), by using classes of
symbols in E. Let t > 1 and let C1, • . . , Ct be a par-
tition of E (each Ci ~-O). Consider F = { C 1 , . . . , Ct}
as an alphabet. We say that string al . . .ad E ~+
m a t c h e s string Ci,.. .Cid E F + if ak E Cik for
1 < k < d. We define transformations 1

u 7 -* v- - , (4)

u, v E E +, lut = Ivt, 7 E F +, and assume the follow-
ing interpretation. An occurrence of string u must
be rewritten to v in a text whenever u is followed
by a substring matching 7. String 7 is called the
r i g h t c o n t e x t of the transformation. The positive
evidence for such transformation is the number of
positions at which factors ux and vx ~ are aligned
within the corpus, for all possible x, x ~ E E + with
x matching 7. (We do not require x = x' , since
later transformations can change the right context.)
The negative evidence for the t ransformation is the
number of positions at which factors ux and ux ~ are
aligned within the corpus, x, x ¢ as above.

We are not aware of any learning method for
transformations of the form in (4). A naive method
for this task would consider all factor pairs appear-
ing at aligned positions in some pair in L. The left
component of each factor must then be split into
a string in E + and a string in F +, to represent a
t ransformation in the desired form. Overall, there
are O(Nn 3) possible transformations, and we need
time O(n) to read/store each transformation. Then
the method uses an amount of time O(Nn4). Again,
we can improve on this. We need a representa-
tion for right context strings. Define homomorphism
h2 : (E X E)---+ F as

h~((a,~)) = C, a ~ C .

1In generative phonology (4) is usually written as u ---+
v / _ 7. Our notation can more easily be generalized, as
it is needed in some transformation systems.

448

(h2 is well defined since r is a part i t ion of E.) Let
also

L r = {h2(w x w ') I w x w' e Lx},

where h2(w x w') appears in L r as many times as
w x w' appears in L x.

u x v

/ \ ~ q

Figure 4: At Step 3 of Algori thm 3, triple (q, e, e')
is inserted in v(p) if the relations depicted above are
realized, where dashed arrows denote a-links, black
circles denote nodes, and white circles denote nodes
that might be implicit. Integer e > 0 is a count of
the paths from node q downward, having the form
y x y' with a prefix of y matching 7. Similarly, e ~ is a
count of the paths from node q~ downward satisfying
the same matching condition with 7. The matching
condition is enforced by the fact tha t the above paths
have their ending leaf nodes a-linked to a leaf node
of Tr dominated by node p.

Below we link a suffix-tree to more than one suffix-
tree. In the notat ion of a-links we then use a sub-
script indicating the suffix tree of the target node,
in order to distinguish among different linkings. We
now schematically specify the learning algorithm;
additional computat ional details will be provided
later in the discussion of the complexity.

A l g o r i t h m 3
S t e p 1: construct two copies Tx and T~ of the suffix
tree associated with L× and construct the suffix tree
Tr associated with Lr ;
S t e p 2: align Tx with T" using hi and align the
resulting suffix trees Tx and T~ with Tr using h~;
S t e p 3: for each node p of Tr, store a set v(p)
including all triples (q, e, e') such that (see Figure 4):

• q is a node of Tx such that a-linkTr(q) properly
dominates p

• e > 0 is the sum of the counts at leaves of Tx
dominated by q that have an a-link to a leaf of
Tr dominated by p

• if ql = a_linkT, x (q) is defined, e' is the sum of
the counts at leaves of T x dominated by q' that

have an a-link to a leaf of Tr dominated by p;
otherwise, e ~ = 0;

S t e p 4: find all pairs (p,q), p a node of Tr and
(q, e, e') E v(p), such that e - e ~ is greater than or
equal to any other el - e~, (ql, el, el) in some r(pl) .

We next show that if pair (p, q) is found at Step 4,
then q represents a factor u x v, p represents a factor
h2(u x v)7, and transformation u7 ~ v -- has the
highest score among all t ransformations represented
by nodes of Tx and Tr. Similarly to the case of Al-
gori thm 2, this is the highest score achieved in L,
and other transformations with the same score can
be obtained from some of the implicit nodes imme-
diately dominat ing p and q.

Let p a i d q be defined as in Step 3 above. Assume
that q represents a factor u x v of some string in L×
and p represents a factor 87 E F* of some string in
Lr , where [81 = lul. Since a-linkTr(q) dominates
p, we must have h2(u x v) = 8. Consider a suffix
(u x v)(z x x')(y x y') appearing in ~ > 0 strings
in Lx, such that h2(x x x') = 7. (This means that
x matches 7, and there are at least ~ positions at
which u --+ v has been applied with a right-context of
%) We have that string h2((u x v)(x x x ') (y x y ')) =
&Th2(y x y') must be a suffix of some strings in Lr .
It follows that (u x v)(x x z')(y x y') is a leaf of
Tx with a count of ~, ~Th2(y x y') is a leaf of Tr,
and there is an a-link between these two nodes. Leaf
(u x v)(x x z')(y × y') is dominated by q, and leaf
&Th2(y x y') is dominated by p. Then, at Step 3,
integer ~ is added to e. Since no condition has been
imposed above on string x' and on suffix (y x y ') , we
conclude that the final value ofe must be the positive
evidence of transformation u7 --+ v --. A similar
argument shows that the negative evidence of this
transformation is stored in e'. It then follows that , at
Step 4, Algori thm 3 finds the transformations with
the highest score among those represented by nodes
of Tx and Tr.

Algori thm 3 can be executed in t ime O(Nn2). We
only outline a proof of this property here, by fo-
cusing on Step 3. To execute this step we visit Tr
in post order. At leaf node p, we consider the set
F(p) of all leaves q of Tx such that p = a-linkT× (q),
and the set F~(p) of all leaves q~ of T~ such that
p = a-linkTx (q'). For each (implicit) node of T"
that dominates some node in F~(p) and that is
the target of some a-link (from some source node
of Tx), we record the sum of the counts of the
dominated nodes in Fl(p). This can be done in
time O(IF'(p)l n). For each node q of Tx dominat-
ing some node in F(p), we store in v(p) the triple
(q,e, e'), since a-linkTr(q) necessarily dominates p.
We let e > 0 be the sum of the counts of the dom-
inated nodes in F(p), and let e' be the value re-
trieved from the a-link to T ' , if any. This takes
time O(IF(P)l n). When p ranges over the leaves of

449

Tr, we have ~-~p IF(p)I = EC, IF'(p)I = O(Nn). We
then conclude that sets r(p) for all leaves p of Tr
can be computed in t ime O(Nn2). At internal node
p with children Pi, 1 < i _< d, d > 1, we assume
that sets r (p i) ' s have already been computed. As-
sume tha t for some i we have (q, ei, e~) E r(pl) and
a-linkTr(q) does not immediately dominate Pi. If

' to e, respectively; (q, e, e') E r(p), we add ei, e i e',
otherwise, we insert (q, el, e{) in r(p). We can then
compute sets r(p) for all internal nodes p of Tr using
an amount of time }-'~p Ir(p)t = O(Nn=).

4.3 G e n e r a l t r a n s f o r m a t i o n s

We have mentioned tha t the introduction of classes
of a lphabet symbols allows abstraction over plain
t ransformat ions that is of interest to natural lan-
guage applications. We generalize here transforma-
tions in (47 by letting 7 be a string over E U F. More
precisely, we assume 7 has the form:

"1 = u o ~ i u l . . - u ~ - i ~ ' a ~ , (5)

where u0,ud E ~*, ui E ~+ and ~j E F + for 1 _
i_< d - 1 and l _ < j _ < d, and d>_ 1. The notion of
matching previously defined is now extended in such
a way that , for a, b E P,, a matches b if a = b. Then
the interpretat ion of the resulting t ransformation is
the usual one. The parameter d in (5) is called the
number of a l t e r n a t i o n s of the transformation. We
have established the following results:

• t ransformations with a bounded number of al-
ternations can be learned in polynomial time;

• learning t ransformations with an unbounded
number of alternations is NP-hard.

Again, we only give an outline of the proof below.
The first result is easy to show, by observing that

in an aligned corpus there are polynomially many
occurrences of t ransformations with a bounded num-
ber of alternations. The second result holds even if
we restrict ourselves to IEI = 2 and Irl = 1, that is
if we use a don~t c a r e symbol. Here we introduce
a decision problem associated with the optimiza-
tion problem of learning the t ransformations with
the highest, score, and outline an NP-completeness
proof.

TRANSFORMATION SCORING (TS)
Instance: (L , K) , with L an aligned corpus, K a
positive integer.
Question: Is there a t ransformat ion that has score
greater than or equal to K w.r.t. L?

Membership in NP is easy to establish for TS. To
show NP-hardness, we consider the CLIQUE de-
cision problem for undirected, simple, connected
graphs and transform such a problem to the TS
problem. (The NP-completeness for .the used restric-
t ion of the CLIQUE problem (Garey and Johnson,
1979) is easy to establish.) Let (G , K ') be an in-
stance of the C L I Q U E problem as above, G = (V, E)

and K ' > 0. Without loss of generality, we assume
that V = { 1 , 2 , . . . , q } . Let E = {a,b}; we construct
an instance of the TS problem (L, K} over E as fol-
lows. For each {i, j} E V with i < j let

wi,j = a i - lbaJ- i - lba q-j. (6)

We add to the aligned corpus L:

1. one instance of pair Pi,j = (awl j , bwi,j) for each
i < j , { i , j } E E;

2. q2 instances of pair Pi,j = (awi,j, awi,j) for each
i , j E Y with i < j and { i , j} ~ E;

3. q2 instances of pair Pa = (aaa, ban).

Also, we set K = q2 + (~ ') . The above instance of
TS can easily be constructed in polynomial deter-
ministic time with respect to the length of (G, K'}.

It is easy to show that when (G, K ') is a positive
instance of the source problem, then the correspond-
ing instance of TS is satisfied by at least one trans-
formation. Assume now that there exists a trans-
formation r having score greater equal than K > 0,
w . r . t . L . Since the replacement of a with b is the
only rewriting that appears in pairs of L, r must
have the form a7 --+ b --. If 7 includes some occur-
rence of b, then r cannot match Pa and the positive
evidence of r will not exceed IEI < (3) < K, con-
trary to our assumption. We then conclude tha t 7
has the form (? denotes the don ' t care symbol):

aJl-l?aJ~-ji-1 ? ...?.aq'-Ja,

where V" = { j i , . . . , J d } C_ V, d > 0 and q' < q. If
there exists i, j E V" such that {-i, j} ~ E, then r
would match some pair Pi,j E L and it would have
negative evidence smaller or equal than q2. Since
the positive evidence of r cannot exceed q2 + IEI,
r would have a score not exceeding IEI < (q) < If ,
contrary to our assumption. Then r matches no pair
Pij E L and, for each i , j E V", we have { i , j } E E.

= K' (K') Since K - q2 (2), at least pairs Pi,j E L are
matched by r. We therefore conclude that d > K '
and that V" is a clique in G of size greater equal
than K' . This concludes our outline of the proof.

5 C o n c l u d i n g r e m a r k s

With some minor technical changes to function
Up_link_down, we can align a suffix tree with itself
(w.r.t. a given homomorphism). In this way we
improve space performance of Algori thms 2 and 3,
avoiding the construction of two copies of the same
suffix tree. Algori thm 3 can trivially be adapted to
learn transformations in (4) where a left context is
specified in place of a right context. The algori thm
can also be used to learn tradit ional phonological
rules of the form a --* b / _7 , where a ,b are sin-
gle phonemes and "/ is a sequence over {C, V}, the
classes of consonants and vowels. In this case the

4 5 0

algorithm runs in t ime O(Nn) (for fixed alphabet).
We leave it as an open problem whether rules of the
form in (4) can be learned in linear time.

We have been concerned with learning the best
transformations that should be applied at a given
step. An ordered sequence of transformations can
be learned by iteratively learning a single transfor-
mation and by processing the aligned corpus with
the transformation just learned (Brill, 1995). Dy-
namic techniques for processing the aligned corpus
were first proposed in (Ramshaw and Marcus, 1996)
to re-edit the corpus only where needed. Those au-
thors report that this is not space efficient if trans-
formation learning is done by independently test-
ing all possible transformations in the search space
(as in (Brill, 1995)). The suffix tree alignment data
structure allows simultaneous scoring for all trans-
formations. We can now take advantage of this and
design dynamical algorithms that re-edit a suffix tree
alignment only where needed, on the line of a similar
method for suffix trees in (McCreight, 1976).

An alternative data structure to suffix trees for
the representations of string factors, called DAWG,
has been presented in (Blumer et al., 1985). We
point out here that, because a DAWG is an acyclic
graph rather than a tree, straightforward ways of
defining alignment between two DAWGs results in a
quadratic number of a-links, making DAWGs much
less attractive than suffix trees for factor alignment.
We believe that suffix tree alignments are a very flex-
ible data structure, and that other transformations
could be efficiently learned using these structures.

We do not regard the result in Section 4.3 as a neg-
ative one, since general transformations specified as
in (5) seem too powerful for the proposed applica-
tions in natural language processing, and learning
might result in corpus overtraining.

Other than transformation based systems the
methods presented in this paper can be used for
learning rules of constraint grammars (Karlsson et
al., 1995), phonological rule systems as in (Kaplan
and Kay, 1994), and in general those grammatical
systems using constraints represented by means of
rewriting rules. This is the case whenever we can
encode the alphabet of the corpus in such a way
that alignment is possible.

A c k n o w l e d g e m e n t s

Part of the present research was done while the first
author was visiting the Center for Language and
Speech Processing, Johns Hopkins University, Bal-
timore, MD. The second author is a member of the
Center for Language and Speech Processing. This
work was funded in part by NSF grant IRI-9502312.
The authors are indebted to Eric Brill for technical
discussions on topics related to this paper.

References

Apostolico, A. 1985. The myriad virtues of suf-
fix trees. In A. Apostolico and Z. Galil, editors,
Combinatorial Algorithms on Words, volume 12.
Springer-Verlag, Berlin, Germany, pages 85-96.
NATO Advanced Science Institutes, Seires F.

Blumer, A., J. Blumer, D. Haussler, A. Ehrenfeucht,
M. Chen, and J. Seiferas. 1985. The smallest au-
tomaton recognizing the subwords of a text. The-
oretical Computer Science, 40:31-55.

Brill, E. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part of speech tagging. Computational
Linguistics.

Crochemore, M. and W. Rytter. 1994. Text Algo-
rithms. Oxford University Press, Oxford, UK.

Garey, M. R. and D. S. Johnson. 1979. Computers
and Intractability. Freeman and Co., New York,
NY.

Kaplan, R. M. and M. Kay. 1994. Regular models
of phonological rule sistems. Computational Lin-
guistics, 20(3):331-378.

Karlsson, F., A. Voutilainen, J. Heikkil~, and
A. Anttila. 1995. Constraint Grammar. A
Language Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter.

McCreight, E. M. 1976. A space-economical suffix
tree construction algorithm. Journal of the Asso-
ciation for Computing Machinery, 23(2):262-272.

Ramshaw, L. and M. P. Marcus. 1996. Explor-
ing the nature of transformation-based learning.
In J. Klavans and P. Resnik, editors, The Bal-
ancing Act--Combining Symbolic and Statistical
Approaches to Language. The MIT Press, Cam-
bridge, MA, pages 135-156.

Weiner, P. 1973. Linear pattern-matching algo-
rithms. In Proceedings of the i4th IEEE Annual
Symposium on Switching and Automata Theory,
pages 1-11, New York, NY. Institute of Electrical
and Electronics Engineers.

451

