
C o m p i l i n g R e g u l a r F o r m a l i s m s w i t h R u l e Fea tures into
F i n i t e - S t a t e A u t o m a t a

G e o r g e A n t o n K i r a z

Bell L a b o r a t o r i e s

L u c e n t Techno log ies

700 M o u n t a i n Ave.

M u r r a y Hill, N J 07974, U S A

g k i r a z @ r e s e a r c h , b e l l - l a b s , tom

A b s t r a c t

This paper presents an algorithm for the
compilation of regular formalisms with rule
features into finite-state automata. Rule
features are incorporated into the right
context of rules. This general notion
can also be applied to other algorithms
which compile regular rewrite rules into au-
tomata.

1 I n t r o d u c t i o n

The past few years have witnessed an increased in-
terest in applying finite-state methods to language
and speech problems. This in turn generated inter-
est in devising algorithms for compiling rules which
describe regular languages/relations into finite-state
automata.

It has long been proposed that regular formalisms
(e.g., rewrite rules, two-level formalisms) accom-
modate rule features which provide for finer and
more elegant descriptions (Bear, 1988). Without
such a mechanism, writing complex grammars (say
two-level grammars for Syriac or Arabic morphol-
ogy) would be difficult, if not impossible. Algo-
rithms which compile regular grammars into au-
tomata (Kaplan and Kay, 1994; Mohri and Sproat,
1996; Grimley-Evans, Kiraz, and Pulman, 1996) do
not make use of this important mechanism. This pa-
per presents a method for incorporating rule features
in the resulting automata.

The following Syriac example is used here, with
the infamous Semitic root {ktb} 'notion of writ-
ing'. The verbal pa"el measure 1, /katteb/~ 'wrote
CAUSATIVE ACTIVE', is derived from the following

1Syriac verbs are classified under various measures
(i.e., forms), the basic ones being p'al, pa "el and 'a/'el.

2Spirantization is ignored here; for a discussion on
Syriac spirantization, see (Kiraz, 1995).

morphemes: the pattern {cvcvc} 'verbal pattern',
the above mentioned root, and the voealism {ae}
'ACTIVE'. The morphemes produce the following un-
derlying form: 3

a e

[[*/kateb/ C V C V C

J I I
k t b

/ka t teb / i s derived then by the gemination, implying
CAUSATIVE, of the middle consonant, [t].4

The current work assumes knowledge of regular
relations (Kaplan and Kay, 1994). The following
convention has been adopted. Lexical forms (e.g.,
morphemes in morphology) appear in braces, { },
phonological segments in square brackets, [], and
elements of tuples in angle brackets, ().

Section 2 describes a regular formalism with rule
features. Section 3 introduce a number of mathe-
matical operators used in the compilation process.
Sections 4 and 5 present our algorithm. Finally, sec-
tion 6 provides an evaluation and some concluding
remarks.

2 R e g u l a r F o r m a l i s m w i t h R u l e
F e a t u r e s

This work adopts the following notation for regular
formalisms, cf. (Kaplan and Kay, 1994):

r (=~, <=,<~ } A___p (1)

where T, A and p are n-way regular expressions which
describe same-length relations) (An n-way regu-
lar expression is a regular expression whose terms

3This analysis is along the lines of (McCarthy, 1981)
- based on autosegmental phonology (Goldsmith, 1976).

4This derivation is based on the linguistic model pro-
posed by (Kiraz, 1996).

~More 'user-friendly' notations which allow mapping
expressions of unequal length (e.g., (Grimley-Evans, Ki-
raz, and Pulman, 1996)) are mathematically equivalent
to the above notation after rules are converted into same-

329

R1 k:cl:k:0 ::¢, ___
R2 b:c3:b:0 =¢. __
R3 a:v:0:a => ___
R4 e:v:0:e ::~ ___
R5 t:c2:t:0 t:0:0:0 ¢:~ ___

([cat=verb], [measure=pa"el], [])
R6 t:c~:t:0 ¢¢, ___

([cat=verb], [measure=p'al], [])
R7 0:v:0:a ¢:~ ___ t:c2:t:0 a:v:0:a

Figure 1: Simple Syriac Grammar

are n-tuples of alphabetic symbols or the empty
string e. A same-length relation is devoid of e. For
clarity, the elements of the n-tuple are separated
by colons: e.g., a:b:c* q:r:s describes the 3-relation
{ (amq, bmr, cms) [m > 0 }. Following current ter-
minology, we call the first j elements 'surface '6 and
the remaining elements 'lexical'.) The arrows corre-
spond to context restriction (CR), surface coercion
(SC) and composite rules, respectively. A compound
rule takes the form

r { ~ , ~ , ¢, } ~l___pl; ~2__p2;. . . (2)

To accommodate for rule features, each rule may
be associated with an (n - j) - t u p l e of feature struc-
tures, each of the form

[attributel =val l , a t tr ibute ,=val2 , . . .] (3)

i.e., an unordered set of at tr ibute=val pairs. An
attribute is an atomic label. A val can be an atom or
a variable drawn from a predefined finite set of possi-
ble values, z The ith element in the tuple corresponds
to the (j z_ i)th element in rule expressions. As a
way of illustration, consider the simplified grammar
in Figure 1 with j = 1.

The four elements of the tuples are: surface, pat-
tern, root, and vocalism. R1 and R2 sanction the
first and third consonants, respectively. R3 and R4
sanction vowels. R5 is the gemination rule; it is
only triggered if the given rule features are satisfied:
[cat=verb] for the first lexical element (i.e., the pat-
tern) and [measure=pa"el] for the second element
(i.e., the root). The rule also illustrates that r can
be a sequence of tuples. The derivation o f / k a t t e b /
is illustrated below:

length descriptions at some preprocessing stage.
6In natural language, usually j = 1.
tit is also possible to extend the above formalism in

order to allow val to be a category-feature structure,
though that takes us beyond finite-state power.

Sublexicon Entry Feature Structure
Pattern ClVC2VC3 [cat=verb]

Root ktb [measure=(p'al ,pa"el)t]
Voealism ae [voice=active,

measure=pa"el]
aa [voice=active,

measure=p'al]
tParenthesis denote disjunction over the given values.

Figure 2: Simple Syriac Lexicon

0 [a 100 e 0 vocalism
k I 0 I t 0 0 b root
cl I v It20 v c3 pattern
1 3 5 4 2

[k] a l e t e b]surface

The numbers between the lexical expressions and the
surface expression denote the rules in Figure 1 which
sanction the given lexical-surface mappings.

Rule features play a role in the semantics of rules:
a =~ states that if the contexts and rule features
are satisfied, the rule is triggered; a ¢=: states that
if the contexts, lexical expressions and rule features
are satisfied, then the rule is applied. For example,
although R5 is devoid of context expressions, the
rule is composite indicating that if the root measure
is pa "el, then gemination must occur and vice versa.
Note that in a compound rule, each set of contexts
is associated with a feature structure of its own.

What is meant by 'rule features are satisfied'?
Regular grammars which make use of rule features
normally interact with a lexicon. In our model, the
lexicon consists of (n - j) sublexica corresponding
to the lexical elements in the formalism. Each sub-
lexical entry is associate with a feature structure.
Rule features are satisfied if they match the feature
structures of the lexical entries containing the lexical
expressions in r, respectively. Consider the lexicon
in Figure 2 and rule R5 with 7" = t:c.,:t:0 t:0:0:0 and
the rule features ([cat=verb], [measure=pa"el], []).
The lexical entries containing r are {clvc_,vc3} and
{ktb}, respectively. For the rule to be triggered,
[cat=verb] of the rule must match with [cat=verb]
of the lexical entry {clvc2vc3}, and [measure=pa"el]
of the rule must match with [measure=(p'al,pa"el)]
of the lexical entry {ktb}.

As a second illustration, R6 derives the simple p'al
measu re , / k t ab / . Note that in R5 and R6,

1. the lexical expressions in both rules (ignoring
0s) are equivalent,

2. both rules are composite, and

330

3. they have d i f f e r e n t surface expression in r.

In tradit ional rewrite formalism, such rules will be
contradicting each other. However, this is not the
case here since R5 and R6 have different rule fea-
tures. The derivation of this measure is shown below
(R7 completes the derivation deleting the first vowel
on the surfaceS):

l a 101a 10 I~oc~tism
0 1 t i 0 1 b root

c v Ic2! v Ip . rn
1 7 6 3 2

Ik!0!t !albl rI ce
Note that in order to remain within finite-state

power, both the attributes and the values in feature
structures must be atomic. The formalism allows a
value to be a variable drawn from a predefined finite
set of possible atomic values. In the compilation
process, such variables are taken as the disjunction
of all possible predefined values.

Additionally, this version of rule feature match-
ing does not cater for rules whose r span over two
lexical forms. It is possible, of course, to avoid this
l imitation by having rule features match the feature
structures of both lexical entries in such cases.

3 M a t h e m a t i c a l P r e l i m i n a r i e s

We define here a number of operations which will be
used in our compilation process.

If an operator 0p takes a number of arguments
(at , • •., ak), the arguments are shown as a subscript,
e.g. 0p(a,,...,~k) - the parentheses are ignored if there
is only one argument. When the operator is men-
tioned without reference to arguments, it appears
on its own, e.g. 0p.

Operations which are defined on tuples of strings
can be extended to sets of tuples and relations. For
example, if S is a tuple of strings and 0p(S) is an
operator defined on S, the operator can be extended
to a relation R in the following manner

op(n) = { Op(3) I s e n }

D e f i n i t i o n 3 . 1 (I d e n t i t y) Let L be a regu-
lar language. I d , (L) = { X I X is an
n-tuple of the form (x , . - . , x), x E L } is the n-way
identity of L. 9

R e m a r k 3.1 If I d is applied to a string s, we simply
write Ida(s) to denote the n-tuple (s , s}.

SShort vowels in open unstressed syllables are deleted
in Syriac.

9This is a generalization of the operator Id in (Kaplan
and Kay, 1994).

D e f i n i t i o n 3.2 (I n s e r t i o n) Let R be a regular re-
lation over the alphabet E and let m be a set of
symbols not necessarily in E. I a s e r t m (R) inserts
the relation Ida(a) for all a E m, freely throughout
R. Insert~ I o Insertm(R) = R removes all such
instances if m is disjoint from E. 1°

R e m a r k 3.2 We can define another form of I n s e r t
where the elements in rn are tuples of symbols as fol-
lowS: Let R be a regular relation over the alphabet

and let rn be a set of tuples of symbols not nec-
essarily in E. I n s e r t m (R) inserts a, for all a E m,
freely throughout R.

D e f i n i t i o n 3.3 (S u b s t i t u t i o n) Let S and S ' be
same-length n-tuples o f strings over the alphabet
(E × ' ' ' X E), [---- Ida (a) for some a E E, and
S = S t I S , . I . . . S k , k > 1, such that Si does not
contain I - i.e. Si E ((E x - . . x E) - { I}) ' .
S u b s t i t u t e (s , i) (S) = $ 1 S ' S , . S ' . . . S k substitutes
every occurrence of I in S with S' .

D e f i n i t i o n 3.4 (P r o j e c t i o n) Let S = (st , s,,)
be a tuple of strings, p ro jec ' c i (S) , for some
i 6 { 1 n} , denotes the tuple element s i .

Pro jec t~- l (S) , for some i E { 1 , n }, denotes the
(n - 1)-tuple (Sl , s i - 1 , s i+ l , s n) .

The symbol ,-r denotes 'feasible tuples' , similar to
'feasible pairs ' in traditional two-level morphology.
The number of surface expressions, j , is always 1.

The operator o represents mathemat ica l composi-
tion, not necessarily the composition of transducers.

4 C o m p i l a t i o n w i t h o u t R u l e

F e a t u r e s

The current algorithm is motivated by the work of
(Grimley-Evans, Kiraz, and Puhnan, 1996). tt

Intuitively, the au tomata is built by three approx-
imations as follows:

1.

2.

Accepting rs irrespective of any context.

Adding context restriction (=~) constraints
making the au tomata accept only the sequences
which appear in contexts described by the
grammar .

. Forcing surface coercion constraints (¢=) mak-
ing the au tomata accept all and only the se-
quences described by the grammar .

1°This is similar to the operator In t ro in (Kaplan and
Kay, 1994).

11The subtractive approach for compiling rules into
FSAs was first suggested by Edmund Grimley-Evans.

331

4.1 A c c e p t i n g rs

Let 7- be the set of all rs in a regular grammar, p be
an auxiliary boundary symbol (not in the grammar ' s
alphabets) and p ' = Ida(p) . The first approxima-
tion is described by

Centers : U (4)
rET

C e n t e r s accepts the symbols, p ' , followed by zero
or more rs, each (if any) followed by p' . In other
words, the machine accepts all centers described by
the g rammar (each center surrounded by p ') irre-
spective of their contexts.

It is implementation dependent as to whether T
includes other correspondences which are not explic-
itly given in rules (e.g., a set of additional feasible
centers).

4.2 C o n t e x t R e s t r i c t i o n Ru le s

For a given compound rule, the set of relations in
which r is invalid is

Restrict(r) = 7r" rTr* - U 7r')~krPkTr* (5)
k

i.e., r in any context minus r in all valid contexts.
However, since in §4.1 above, the symbol p appears
freely, we need to introduce it in the above expres-
sion. The result becomes

R e s t r i c t (v) = I n s e r t { o } o (6)

k

The above expression is only valid if r consists of
only one tuple. However, to allow it to be a sequence
of such tuples as in R5 in Figure 1, it must be

1. surrounded by p~ on both sides, and

2. devoid of p~.

The first condition is accomplished by simply plac-
ing p ' to the left and right of r. As for the sec-
ond condition, we use an auxiliary symbol, w, as a
place-holder representing r, introduce p freely, then
substitute r in place of w. Formally, let w be an
auxiliary symbol (not in the grammar 's alphabet),
and let w ~ = Ida(w) be a place-holder representing
r. The above expression becomes

R e s t r i c t (r) = S u b s t i t u t e (v , w') o (7)

Insert{~} o

,'r* p~w ~ ~o ~ ,-r" - U 7r* A k p~J p~p'~ 7r*
k

For all rs, we subtract this expression from the
automaton under construction, yielding

C R = Centers - U Restrict(') (S)
T

C R now accepts only the sequences of tuples
which appear in contexts in the g rammar (but in-
cluding the partitioning symbols p~); however, it
does not force surface coercion constraints.

4.3 Sur f ace C o e r c i o n Rules

Let r ' represent the center of the rule with the cor-
rect lexical expressions and the incorrect surface ex-
pressions with respect to ,'r*,

r ' = Pro j ' ec t l (r} × Pro jec t~- l (r) (9)

The coerce relation for a compound rule can be
simply expressed by l~-

Coerce(r ') = I n s e r t { p } o (10)

U ,-r* A k p ' r ' p ' p k lr*

k

The two p~s surrounding r ~ ensure that coercion ap-
plies on at least one center of the rule.

For all such expressions, we subtract Coerce from
the automaton under construction, yielding

S C = C R - U Coerce(v) (11)
T

S C now accepts all and only the sequences of tu-
pies described by the grammar (but including the
partitioning symbols p~).

It remains only to remove all instances of p from
the final machine, determinize and minimize it.
There are two methods for interpreting transduc-
ers. When interpreted as acceptors with n-tuples
of symbols on each transition, they can be deter-
minized using standard algorithms (Hopcroft and
Ullman, 1979). When interpreted as a transduc-
tion that maps an input to an output, they can-
not always be turned into a deterministic form (see
(Mohri, 1994; Roche and Schabes, 1995)).

5 C o m p i l a t i o n w i t h R u l e F e a t u r e s

This section shows how feature structures which are
associated with rules and lexical entries can be in-
corporated into FSAs.

12A special case can be added for epenthetic rules.

3 3 2

Entry Feature Structure
abcd ./1
ef fa
ghi fs

Figure 3: Lexicon Example

5.1 I n t u i t i v e D e s c r i p t i o n

We shall describe our handling of rule features with a
two-level example. Consider the following analysis.

l a [b l c ldI ~ te [f ! ~ [g l h [i]1~ [Lexical
1 2 3 4 5 6 7 5 8 9 1 0 5

[a!blcldlOlelf!O!g!h!i!OlS""Saee
The lexical expression contains the lexical forms

{abcd}, {ef} and {ghi}, separated by a boundary
symbol, b, which designates the end of a lexical entry.
The numbers between the tapes represent the rules
(in some grammar) which allow the given lexical-
surface mappings.

Assume that the above lexical forms are associ-
ated in the lexicon with the feature structures as in
Figure 3. Further, assume that each two-level rule
m, 1 < m < 10, above is associated with the fea-
ture structure Fro. Hence, in order for the above
two-level analysis to be valid, the following feature
structures must match

All the structures ... must match ...
F1,F2, F3, F4 fl
F6,F7 f2
Fs, Fg, Fl o .1:3

Usually, boundary rules, e.g. rule 5 above, are not
associated with feature structures, though there is
nothing stopping the grammar writer from doing so.

To match the feature structures associated with
rules and those in the lexicon we proceed as follows.
Firstly, we suffix each lexical entry in the lexicon
with the boundary symbol, ~, and it's feature struc-
ture. (For simplicity, we consider a feature struc-
ture with instantiated values to be an atomic object
of length one which can be a label of a transition
in a FSA.) 13 Hence the above lexical forms become:
'abcd kfl ' , 'efbf~.', and 'ghi ~f3'. Secondly, we incor-
porate a feature structure of a rule into the rule's
right context, p. For example, if p of rule 1 above is
b:b c:c, the context becomes

b:b c:c ,'r* 0:F1 (12)

(this simplified version of the expression suffices for
the moment). In other words, in order for a:a to be
sanctioned, it must be followed by the sequence:

13As to how this is done is a matter of implementation.

1. b:b c:c, i.e., the original right context;

2. any feasible tuple, ,'r*; and

3. the rule's feature structure which is deleted on
the surface, 0:F1.

This will succeed if only if F1 (of rule 1) and f l (of
the lexical entry) were identical. The above analysis
is repeated below with the feature structures incor-
porated into p.

lalblcldlblS~le fl~lS~lg hli!~!f~lL~ic~t
1 2 3 4 5 6 7 5 8 9 1 0 5

[alblcldlO!O!e flOlOlg hlilO!OiSuqace
As indicated earlier, in order to remain within

finite-state power, all values in a feature structure
must be instantiated. Since the formalism allows
values to be variables drawn from a predefined finite
set of possible values, variables entered by the user
are replaced by a disjunction over all the possible
values.

5.2 C o m p i l i n g t h e Lex icon

Our aim is to construct a FSA which accepts any
lexical entry from the ith sublexicon on its j " ith
tape.

A lexical entry # (e.g., morpheme) which is asso-
ciated with a feature structure ¢ is simply expressed
b y / ~ ¢ , where k is a (morpheme) boundary symbol
which is not in the alphabet of the lexicon. The
expression of sublexicon i with r entries becomes,

L, -- U # % ¢ ~ (13)
r

We also compute the feasible feature structures of
sublexicon i to be

z, = U (14)
r

and the overall feasible feature structures on all sub-
lexica to be

• = O" x F1 x F~ x .-- (15)

The first element deletes all such features on the
surface. For convenience in later expressions, we in-
corporate features with ~ as follows

~¢ - ,T U • (16)

The overall lexicon can be expressed by, 14

Lexicon = LI × L~ × . . . (17)

14To make the lexicon describe equal-length relations,
a special symbol, say 0, is inserted throughout.

333

The operator × creates one large lexicon out of
all the sublexica. This lexicon can be substantially
reduced by intersecting it with Proj ect~'l (~0)..

If a two-level g rammar is compiled into an au-
tomaton, denoted by Gram, and a lexicon is com-
piled into an automaton, denoted by Lez, the au-
tomaton which enforces lexical constraints on the
language is expressed by

L = (P r o j , c t l (~) * × Lex) A Gram (18)

The first component above is a relation which ac-
cepts any surface symbol on its first tape and the
lexicon on the remaining tapes.

5.3 C o m p i l i n g R u l e s

A compound regular rule with m context-pairs and
m rule features takes the form

v {==~,<==,¢~} kl___pl;k2--p2; . . . ;Am---p m

[¢1, ¢2 , . . . , ¢-~] (19)

where v, A ~, and pk, 1 < k < m are like before and
ck is the tuple of feature structures associated with
rule k.

The following modifications to the procedure
given in section 4 are required.

Forgetting contexts for the moment, our basic ma-
chine scans sequences of tuples (from "/-), but re-
quires that any sequence representing a lexical entry
be followed by the entry's feature structure (from
•). This is achieved by modifying eq. 4 as follows:

Centers = [.J (20)
vET

The expression accepts the symbols, 9' , followed
by zero or more occurrences of the following:

1. one or more v, each followed by ~a', and

2. a feature tuple in • followed by p' .

In the second and third phases of the compilation
process, we need to incorporate members of ¢I, freely
throughout the contexts. For each A k, we compute
the new left context

fk = Insert.(A ~) (21)

The right context is more complicated. It requires
that the first feature structure to appear to the right
of v is Ck. This is achieved by the expression,

7"~ k = I n s e r t o (p k) CI ~'*¢k~r~ (22)

The intersection with a'*¢k,'r; ensures that the first

feature structure to appear to the right of v is Ck:
zero or more feasible tuples, followed by Ck, followed
by zero or more feasible tuples or feature structures.

Now we are ready to modify the Restrict relation.
The first component in eq. 5 becomes

A = (; U ~O)*vTr~ (23)

The expression allows ~ to appear in the left and
right contexts of v; however, at the left of v, the
expression (Tr tO ~r¢) puts the restriction that the first
tuple at the left end must be in a', not in ¢.

The second component in eq. 5 simply becomes

B = U "r; £k rTCkTr; (24)
k

Hence, Restrict becomes (after replacing v with
w' in eq. 23 and eq. 24)

Restrict(r) = S u b s t i t u t e (r , w ') o (25)

Insert{~} o

A-B

In a similar manner, the Coercer relation be-
comes

Coerce(r') = Insert{~}o (26)

k

6 C o n c l u s i o n a n d F u t u r e W o r k

The above algorithm was implemented in Prolog and
was tested successfully with a number of sample-
type grammars. In every case, the au tomata pro-
duced by the compiler were manually checked for
correctness, and the machines were executed in gen-
eration mode to ensure that they did not over gen-
erate.

It was mentioned that the algorithm presented
here is based on the work of (Grimley-Evans, Kiraz,
and Pulman, 1996) rather than (Kaplan and Kay,
1994). It must be stated, however, that the intu-
itive ideas behind our compilation of rule features,
viz. the incorporation of rule features in contexts,
are independent of the algorithm itself and can be
also applied to (Kaplan and Kay, 1994) and (Mohri
and Sproat, 1996).

One issue which remains to be resolved, how-
ever, is to determine which approach for compiling
rules into au tomata is more efficient: the standard
method of (Kaplan and Kay, 1994) (also (Mohri and
Sproat, 1996) which follows the same philosophy) or

334

Algorithm Intersection Determini-
(N 2) zation (2 N)

KK (n -- i) "J- 3 ~in_-i ki 8 ~']~=1 ki
EKP 1 ± ~"]n n ,i=t ki 1 ..t. ~ i = 1 ki
where n = number of rules in a grammar,
a n d ki = number of contexts for rule i, 1 < i < n.

Figure 4: Statistics of Complex Operation's

dealt with at the morphotactic level using a unifica-
tion based formalism.

A c k n o w l e d g m e n t s

I would like to thank Richard Sproat for comment-
ing on an earlier draft. Many of the anonymous
reviewers' comments proofed very useful. Mistakes,
as always, remain mine.

the subtractive approach of (Grimley-Evans, Kiraz,
and Pulman, 1996).

The statistics of the usage of computationally ex-
pensive operations - viz., intersection (quadratic
complexity) and determinization (exponential com-
plexity) - in both algorithms are summarized in Fig-
ure 4 (KK = Kaplan and Kay, EKP = Grimley-
Evans, Kiraz and Pulman). Note that complemen-
tation requires determinization, and subtraction re-
quires one intersection and one complementation
since

A - B = A n B (27)

Although statistically speaking the number of op-
erations used in (Grimley-Evans, Kiraz, and Pul-
man, 1996) is less than the ones used in (Kaplan
and Kay, 1994), only an empirical study can resolve
the issue as the following example illustrates. Con-
sider the expression

A =al Ua2U.. .Uan

and the De Morgan's law equivalent

(28)

B = ~ n ~ n . - . n ~ . (29)

The former requires only one complement which re-
sults in one determinization (since the automata
must be determinized before a complement is com-
puted). The latter not only requires n complements,
but also n - 1 intersections. The worst-case analy-
sis clearly indicates that computing A is much less
expensive than computing B. Empirically, however,
this is not the case when n is large and ai is small,
which is usually the case in rewrite rules. The reason
lies in the fact that the determinization algorithm
in the former expression applies on a machine which
is by far larger than the small individual machines
present in the latter expression, is

Another aspect of rule features concerns the mor-
photactic unification of lexical entries. This is best

aSThis important difference was pointed out by one of
the anonymous reviewers whom I thank.

R e f e r e n c e s

Bear, J. 1988. Morphology with two-level rules and
negative rule features. In COLING-88: Papers
Presented to the 12th International Conference on
Computational Linguistics, volume 1, pages 28-
31.

Goldsmith, J. 1976. Autosegmental Phonology.
Ph.D. thesis, MIT. Published as Autosegmental
and Metrical Phonology, Oxford 1990.

Grimley-Evans, E., G. Kiraz, and S. Pulman. 1996.
Compiling a partition-based two-level formalism.
In COLING-96: Papers Presented to the 16th
International Conference on Computational Lin-
guistics.

Hopcroft, J. and J. Ullman. 1979. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley.

Kaplan, R. and M. Kay. 1994. Regular models of
phonological rule systems. Computational Lin-
guistics, 20(3):331-78.

Kiraz, G. 1995. Introduction to Syriac Spirantiza-
tion. Bar Hebraeus Verlag, The Netherlands.

Kiraz, G. [1996]. Syriac morphology: From a lin-
guistic description to a computational implemen-
tation. In R. Lavenant, editor, VIItum Sympo-
sium Syriacum 1996, Forthcoming in Orientalia
Christiana Analecta. Pontificio Institutum Studio-
rum Orientalium.

Kiraz, G. [Forthcoming]. Computational Ap-
proach to Nonlinear Morphology: with empha-
sis on Semitic languages. Cambridge University
Press .

McCarthy, J . 1981. A prosodic theory of non-
concatenative morphology. Linguistic Inquiry,
12(3):373-418.

Mohri, M. 1994. On some applications of finite-state
automata theory to natural language processing.
Technical report, Institut Gaspard Monge.

335

Mohri, M. and S. Sproat. 1996. An efficient com-
piler for weighted rewrite rules. In Proceedings
of the 3~th Annual Meeting of the Association for
Computational Linguistics, pages 231-8.

Roche, E. and Y. Schabes. 1995. Deterministic
part-of-speech tagging with finite-state transduc-
ers. CL, 21(2):227-53.

336

