
Efficient Generation in Primitive Optimality Theory

Jason Eisner
Dept. of Computer and Information Science

University of Pennsylvania
200 S. 33rd St., Philadelphia, PA 19104-6389, USA

j eisner@linc, cis. upenn, edu

A b s t r a c t

This paper introduces primitive Optimal-
ity Theory (OTP), a linguistically moti-
vated formalization of OT. OTP specifies
the class of autosegmental representations,
the universal generator Gen, and the two
simple families of permissible constraints.
In contrast to less restricted theories us-
ing Generalized Alignment, OTP's opti-
mal surface forms can be generated with
finite-state methods adapted from (Ellison,
1994). Unfortunately these methods take
time exponential on the size of the gram-
mar. Indeed the generation problem is
shown NP-complete in this sense. How-
ever, techniques are discussed for making
Ellison's approach fast in the typical case,
including a simple trick that alone provides
a 100-fold speedup on a grammar fragment
of moderate size. One avenue for future
improvements is a new finite-state notion,
"factored automata," where regular lan-
guages are represented compactly via for-
mal intersections N~=IAi of FSAs.

1 W h y f o r m a l i z e O T ?

Phonology has recently undergone a paradigm shift.
Since the seminal work of (Prince & Smolensky,
1993), phonologists have published literally hun-
dreds of analyses in the new constraint-based frame-
work of Optimality Th.eory, or OT. Old-style deriva-
tional analyses have all but vanished from the lin-
guistics conferences.

The price of this creative ferment has been a cer-
tain lack of rigor. The claim for O.T as Universal
Grammar is not substantive or falsifiable without
formal definitions of the putative Universal Gram-
mar objects Repns , Con, and Gen (see below).
Formalizing OT is necessary not only to flesh it out
as a linguistic theory, but also for the sake of compu-
tational phonology. Without knowing what classes
of constraints may appear in grammars, we can say
only so much about the properties of the system,

or about algorithms for generation, comprehension,
and learning.

The central claim of OT is that the phonology of
any language can be naturally described as succes-
sive filtering. In OT, a phonological grammar for
a language consists of ~ vector C1, C2, • .. C, of soft
c o n s t r a i n t s drawn from a universal fixed set Con.
Each constraint in the vector is a function that scores
possible output representations (surface forms):

(1) Ci : R e p n s --* {0, 1, 2, . . .} (Ci E Con)

If C~(R) = 0, the output representation R is said to
sa t i s fy the ith constraint of the language. Other-
wise it is said to v io la te that constraint, where the
value of C~(R) specifies the degree of violation. Each
constraint yields a filter that permits only minimal
violation of the constraint:

(2) Filteri(Set)= {R E Set : Ci(R) is minimal}

Given an underlying phonological input, its set of
legal surface forms under the grammar--typically of
size 1--is just

(3) Filter, (...Filter,. (Filter 1 (Gen(input))))

where the function G en is fixed across languages
and Gen(input) C_ Rep n s is a potentially infinite
set of candidate surface forms.

In practice, each surface form in Gen(input) must
contain a silent copy of input, so the constraints
can score it on how closely its pronounced material
matches input. The constraints also score other cri-
teria, such as how easy the material is to pronounce.
If C1 in a given language is violated by just the forms
with coda consonants, then Filterl(Gen(input)) in-
cludes only coda-free candidates--regardless of their
other demerits, such as discrepancies from input
or unusual syllable structure. The remaining con-
straints are satisfied only as well as they can be given
this set of survivors. Thus, when it is impossible
to satisfy all constraints at once, successive filtering
means early constraints take priority.

Questions under the new paradigm include these:

• Generation. How to implement the input-
output mapping in (3)? A brute-force approach

313

fails to terminate if Gen produces infinitely
many candidates. Speakers must solve this
problem. So must linguists, if they are to know
what their proposed grammars predict.

• Comprehension. How to invert the input-
output mapping in (3)? Hearers must solve this.

• Learn,ng. How to induce a lexicon and a
phonology like (1) for a particular language.
given the kind of evidence available to child lan-
guage learners?

None of these questions is well-posed without restric-
tions on G e n and Con.

In the absence of such restrictions, computational
linguists have assumed convenient ones. gllison
(1994) solves the generation problem where G e n
produces a regular set of strings and Con admits
all finite state transducers that can map a string to
a number in unary notation. (Thus Ci(R) = 4 if the
Ci transducer outputs the string l l l l on input R.)
Tesar (1995. 1996) extends this result to the case
where Gen(mput) is the set of parse trees for input
under some context-free grammar (CFG)3 Tesar's
constraints are functions on parse trees such tha~
Ci([A [B1..] [B~.-- .]]) can be computed from A, B:,
B2, Ci(B1), and Ci(B~.). The optimal tree can then
be found with a standard dynamic-programming
chart parser for weighted CFGs.

It is an important question whether these for-
malisms are useful in practice. On the one hand, are
they expressive enough to describe real languages?
On the other, are they restrictive enough to admit
good comprehension and unsupervised-learning al-
gorithms?

The present paper sketches p r i m i t i v e O p t i m a l -
i t y T h e o r y (O T P) - - a new formalization of OT
that is explicitly proposed as a linguistic hypothe-
sis. Representations are autosegmental, G e n is triv-
ial, and only certain simple and phonologically local
constraints are allowed. I then show the following:

i. Good news: Generation in OTP can be solved
attractively with finke-state methods. The so-
lution is given in some detail.

2. Good news: OTP usefully restricts the space of
grammars to be learned. (In particular. Gener-
alized Alignment is outside the scope of finite-
state or indeed context-free methods.}

3. Bad news: While OTP generation is close to lin-
ear on the size of the input form. it is NP-hard
on the size of the grammar, which for human
languages is likely to be quite large.

4. Good yews: Ellison's algorithm can be improved
so that its exponential blowup is often avoided.

*This extension is useful for OT syntax but may have
little application to phonology, since the context-free
case reduces to the regular case (i.e., Ellison) unless the
CFG contains recursive productions.

2 P r i m i t i v e O p t i m a l i t y T h e o r y

Primitive Optimality Theory. or OTP. is a formal-
ization of OT featuring a homogeneous output repre-
sentation, extremely' local constraints, and a simple,
unrestricted Gen. Linguistic arguments t'or OTP 's
constraints and representations are given in !Eisner.
1997). whereas the present description focuses ,an its
formal properties and suitability for computational
work. An axiomatic treatment is omitted for rea-
sons of space. Despite its simplicity. OTP appears
capable of capturing virtually all analyses found in
the (phonological) OT literature.

2.1 Repns: R e p r e s e n t a t i o n s in OTP
To represent imP], OTP uses not the autosegmentai
representation in (4a) IGoldsmith. 1976: Goldsmith.
1990) but rather the simplified autosegmental rep-
resentation in (4b), which has no association lines.
Similarly (Sa) is replaced by (Sb). The central rep-
resentational notion is that of a c o n s t i t u e n t t ime -
line: an infinitely divisible line along on which con-
stituents are laid out. Every constituent has width
and edges.

(4) a. voi b. ,~o,[
• J t , o ~

haS/ n~Jt]ha,
1/ c! cIc]c

!
C C l a b [j l a b

l ab
For phonetic interpretation:]~o, says to end voic-
ing (laryngeal vibration). At the same instant,
],,~, says to end nasality (raise velum}.

(5) a.
O" O"

/ 1 \ / I
CVCV

b. ~[
C [~ " : C ,-"

~a
]¢-.
j -

V i .V

.k timeline can carry tl~e full panoply of phonolog-
ical and morphological ,:onstituents--an.vthing that
phonological constraints might have to refer to.
Thus, a timetine bears not only autosegmental fe,.'>
tures like nasal gestures inasi and prosodic ,:on-
stituents such as syllables [o']. but also stress marks
[x], feature dpmains such as [ATRdom] (Cole L:
Kisseberth, 1994) and morphemes such as [Stem i.
All these constituents are formally identicah each
marks off an interval on the timeline. Let T ie r s de-
note the fixed finite set of constituent types. {has.
~. x, A T R d o m . S*.em }.

It is always possible to recover the old representa-
tion (4a) from the new one (4b), under the conven-
tion that two constituents on the timeline are linked
if their interiors overlap (Bird & Ellison, 1994). The
i n t e r i o r of a constituent is the open interval that

314

excludes its edges: Thus, lab is linked to both con-
sonants C in (4b), but the two consonants are not
linked to each other, because their interiors do not
overlap.

By eliminating explicit association lines, OTP
eliminates the need for faithfulness constraints on
them, or for well-formedness constraints against gap-
ping or crossing of associations. In addition, OTP
can refer naturally to the edges of syllables (or mor-
phemes). Such edges are tricky to define in (5a), be-
cause a syllable's features are scattered across multi-
ple tiers and perhaps shared with adjacent syllables.

In diagrams of timelines, such as (4b) and (5b),
the intent is that only horizontal order matters.
Horizontal spacing and vertical order are irrelevant.
Thus, a timeline may be represented as a finite col-
lection S of labeled edge brackets, equipped with or-
dering relations -~ and " that indicate which brack-
ets precede each other or fall in the same place.

Valid timelines (those in R e p n s) also require that
edge brackets come in matching pairs, that con-
stituents have positive width, and that constituents
of the same type do not overlap (i.e., two con-
stituents on the same tier may not be linked).

2.2 G e m I n p u t a n d o u t p u t in O T P

OT's principle of Containment (Prince & Smolen-
sky, 1993) says that each of the potential outputs in
R e p n s includes a silent copy of the input, so that
constraints evaluating it can consider the goodness
of match between input and output. Accordingly,
OTP represents both input and output constituents
on the constituent timeline, but on different tiers.
Thus surface nasal autosegments are bracketed with
,~as[and],,a~, while underlying nasal autosegments
are bracketed with ,as[and] The underlining
is a notational convention to denote input material.
No connection is required between [nas] and [nas!
except as enforced by constraints that prefer [nas]
and [nas] or their edges to overlap in some way. (6)
shows a candidate in which underlying [nas] has sur-
faced "in place" but with rightward spreading.

(6) ~o,[]~o~
.o,[].o,

Here the left edges and interiors overlap, but the
right edges fail to. Such overlap of interiors may be
regarded as featural Input-Output Correspondence
in the sense of (McCarthy & Prince, 1995).

The lexicon and morphology supply to G e n an
u n d e r s p e c i f i e d t i m e l i n e - - a partially ordered col-
lection of input edges. The use of a partial ordering
allows the lexicon and morphology to supply float-
ing tones, floating morphemes and templatic mor-
phemes.

Given such an underspecified timeline as lexical
input, G e n outputs the set of all fully specified time-
lines that are consistent with it. No new input con-
stituents may be added. In essence, G e n generates

every way of refining the partial order of input con-
stituents into a total order and decorating it freely
with output constituents. Conditions such as the
prosodic hierarchy (Selkirk, 1980) are enforced by
universally high-ranked constraints, not by Gen . -~

2.3 Con: T h e p r i m i t i v e c o n s t r a i n t s

Having described the representations used, it is now
possible to describe the constraints that evaluate
them. OTP claims that Con is restricted to the
following two families of p r i m i t i v e c o n s t r a i n t s :

(7) a --* /3 ("implication"):
"Each ~ temporally overlaps some ~."

Scoring: Constraint(R) = number of a ' s in R
that do not overlap any 8.

(8) a 3- /3 ("clash"):
"Each cr temporally overlaps no/3."

Scoring: Constraint(R) = number of (a, ';3)
pairs in R such that the a overlaps the/3.

That is, a --~ /3 says that a ' s at t ract /3's, while
a 3_ /3 says that c~'s repel/3's. These are simple and
arguably natural constraints; no others are used.

In each primitive constraint, cr and /3 each spec-
ify a phonological event. An event is defined to be
either a type of labeled edge, written e.g. ~[, or
the interior (excluding edges) of a type of labeled
constituent, written e . g . a . To express some con-
straints that appear in real phonologies, it is also
necessary to allow, a and /3 to be non-empty con-
junctions and disjunctions of events. However, it
appears possible to limit these cases to the forms in
(9)-(10). Note that other forms, such as those in
(11), can be decomposed into a sequence of two or

~The formalism is complicated slightly by the pos-
sibility of deleting segments (syncope) or inserting seg-
ments (epenthesis), as illustrated by the candidates be-
low.

(i) Syncope (CVC ~ CC): the _V is crushed to zero
width so the C's can be adjacent.

c[Ic]c
~[1~_]~

v l v

(ii) Epenthesis (CC ~ CVC): the C__'s are pushed
apart.

c[]~ ~[]~
~_[]~_ ~[]~

In order to Mlow adjacency of the surface consonants in
(i), as expected by assimilation processes (and encour-
aged by a high-ranked constraint), note that the underly-
ing vowel must be allowed to have zero width--an option
available to to input but not output constituents. The
input representation must specify only v["< Iv , not
v[~]v. Similarly, to allow (ii), the input representa-
tion must specify only]c, __. c_~[, not]o, ~ c2[.

315

more constraints. 3

(9) (c~1 and a~ and . . .) ---* (/31 or/32 or . . .)
Scoring: Constraint(R) = number of sets of
events {A1, A2, . . .} of types (~l, a , respec-
tively that all overlap on the timeline and
whose intersection does not overlap any event
of type/31,/3.,, • ...

(10) (a l a n d a 2 and . . .) .L (/31 and/3~ and . . .)
Scoring: Constraint(R) = number of sets
of events {A1 ,A~ . , . . . , B1,B~ } of types
oq ,a~ ,/31,/32,... respectively that all
overlap on the timeline.

(Could a/so be notated:
al ± a2 ± "" ± Zl ± /~2 ± "".)

(11) ¢X ~ (fll and /32) [cf. o~ ~ /31 >> c~ --~ /32]
(cq or ~.~) --* ,3 [cf. ~1 ---* /3 >> a.~ --~ /3]

The unifying theme is that each primitive con-
straint counts the number of times a candidate gets
into some bad local configuration. This is an inter-
val on the timeline throughout which certain events
(one or more specified edges or interiors) are all
present and certain other events (zero or more spec-
ified edges or interiors) are all absent.

Several examples of phonologically plausible con-
straints, with monikers and descriptions, are given
below. (Eisner, 1997) shows how to rewrite hun-
dreds of constraints from the literature in the primi-
tive constraint notation, and discusses the problem-
atic case of reduplication. (Eisner, in press) gives
a detailed stress typology using only primitive con-
straints; in particular, non-local constraints such
as FTBIN, FOOTFORM, and Generalized Alignment
(McCar thy & Prince, 1993) are eliminated.

(12) a. ONSET: a [- C[
"Every syllable starts with a consonant."

b. NONFINALITY:]Wo,-d _1_]F
"The end of a word may not be footed."

c o[,

l"eet start and end on syllable boundaries."
d. P A C K F E E T :]F ""+ F[

"Each foot is followed immediately by an-
other foot; i.e., minimize the number of gaps
between feet. Note that the final foot, if any,
will always violate this constraint."

e, NOCLASH:]X A_ x[
"Two stress marks may not be adjacent."

f. PROGRESSIVEVOICING:]voi _1_ C[
"If the segment preceding a consonant is
voiced, voicing may not stop prior to the

3Such a sequence does alter the meaning slightly. To
get the exact original meaning, we would have to de-
compose into so-cMled "unranked" constraints, whereby
Ci (R) is defined as C,, (R)+Ci~ (R). But such ties under-
mine OT's idea of strict ranking: they confer the power
to minimize linear functions such as (C1 + C1 + C1 +
C2 + C3 + C3)(R) = 3C1 (R) + C2(R) + 2C3(R). For this
reason, OTP currently disallows unranked constraints; I
know of no linguistic data that crucially require them.

consonant but must be spread onto it."
g, NASVOI: nas - - voi

"Every nasal gesture must be at least partly
voiced."

h. FULLNASVOI: has _[_ vo i [, has I]voi
"A nasal gesture may not be only partly
voiced."

i. MAX(VOi) or PARSE(voi): vo._i ~ voi
"Underlying voicing features surface."

j. DEP(voi) or FILL(voi): voi ---, voi
"Voicing features appear on the surface only
if they are a/so underlying."

k. NoSPREADRIGHT(voi): voi _1_]vo__i_
"Underlying voicing may not spread right-
ward as in (6)."

h NONDEGENERATE: F - - ~ [
"Every foot must cross at l e a s t o n e morn
boundary ,[."

m. TAUTOMORPHEMICFOOT: F _]_ .~Iorph[
"No foot may cross a morpheme boundary."

3 F i n i t e - s t a t e g e n e r a t i o n i n O T P

3.1 A s i m p l e g e n e r a t i o n a l g o r i t h m

Recall that the generation problem is to find the
output set S,~, where

(13) a. So = Gen(inpu~) C_ R e p n s
b. Si+l = Filteri+l(Si) C Si

Since in OTP, the input is a partial order of edge
brackets, and Sn is a set of one or more total orders
(timelines), a natural approach is to successively re-
fine a partial order. This has merit. However, not
every Si can be represented as a single partial order,
so the approach is quickly complicated by the need
to encode disjunction.

A simpler approach is to represent Si (as well
as inpu~ and R e p n s) as a finite-state au tomaton
(FSA), denoting a regular set of strings that encode
timelines. The idea is essentially due to (Ellison,
1994), and can be boiled down to two lines:

(14) E l l i s o n ' s a l g o r i t h m (variant).
So = input N R e p n s

= all conceivable outputs containing input
Si+l = BestP~tths(Si N Ci+l)

Each constraint Ci must be formulated as an edge-
weighted FSA that scores candidates: Ci accepts any
string R, on a singl e path of weight Ci(R). 4 Best-
Paths is Dijkstra 's "single-source shortest paths"
algorithm, a dynamic-programming algori thm that
prunes away all but the minimum-weight paths in
an automaton, leaving an unweighted automaton.

OTP is simple enough that it can be described in
this way. The next section gives a nice encoding.

4Weighted versions of the state-labeled finite au-
tomata of (Bird & EUison, 1994) could be used instead.

316

3 . 2 O T P w i t h a u t o m a t a

We m a y encode each t imel ine as a s tr ing over an
enormous a lphabe t E. If [T ie r s l = k, then each
symbol in E is a k-tuple, whose components describe
wha t is happen ing on the various tiers at a given
moment . The components are drawn from a smal ler
a lphabe t A = { [,] , l, +, -} . Thus at any t ime, the
i th tier may be beginning or ending a const i tuent ([,
]) or bo th at once (I), or it may be in a s teady s ta te
in the interior or exterior of a const i tuent (+, -) .
At a min imum, the s tr ing must record all moments
where there is an edge on some tier. If all tiers are in
a s teady s ta te , the s tr ing need not use any symbols
to say so. Thus the s tr ing encoding is not unique.

(15) gives an expression for all strings tha t cor-
rectly describe the single tier shown. (16) describes
a two-tier t imel ine consistent with (15). Note tha t
the brackets on the two tiers are ordered with re-
spect to each other. Timel ines like these could be
assembled morphologica l ly from one or more lexical
entries (Bird & Ellison, 1994), or produced in the
course of a lgor i thm (14).

(15)]= -*[+*1+'3-*
(16)

(-,->*<[:,-)<,,->*<+, r><+, +)*(I, +)<+, +)*
(+,])(+,-)*(*, [)(*, +)*C], 1)

We store t imel ine expressions like (16) as deter-
minis t ic FSAs. To reduce the size of these au toma ta ,
i t is convenient to label arcs not with individual el-
ements of El (which is huge) but with subsets of E,
denoted by predicates. We use conjunctive predi-
cates where each conjunct lists the allowed symbols
on a given tier:

(17) +F, 3cr, [l+-voi (arc label w/ 3 conjuncts)

The arc label in (17) is said to m e n t i o n the tiers
F, o', voi E T i e r s . Such a predicate allows any sym-
bol from A on the tiers it does not mention.

The input FSA constrains only the input tiers. In
(14) we intersect it with R e p n s , which constrains
only the ou tpu t tiers. R e p n s is defined as the inter-
section of many a u t o m a t a exact ly like (18), called
t i e r r u l e s , which ensure tha t brackets are proper ly
paired on a given tier such as F (foot).

(18) -F ,+F

Like the tier rules, the const ra int a u t o m a t a Ci are
smal l and de terminis t ic and can be buil t au toma t -
ically. Every edge has weight O or 1. Wi th some
care it is possible to draw each Ci with two or fewer
s tates , and with a number of arcs propor t iona l to
the number of tiers ment ioned by the constraint .

Keeping the constraints smal l is i m p o r t a n t for ef-
ficiency, since real languages have m a n y const ra in ts
tha t must be intersected.

Let us do the hardes t case first. An impl ica t ion
const ra in t has the general form (9). Suppose tha t all
the c~i are interiors, not edges. Then the cons t ra in t
ta rge ts intervals of the form a = c~1 f'l c~2 fq • • .. Each
t ime such an interval ends wi thout any 3j having
occurred during it, one violat ion is counted:

(19) Weight-1 arcs are shown in bold; others are
weight-0.

(other)
(other)

b during a ~ / ~
" - 1 / I I

a ends

A c a n d i d a t e tha t does see a #j dur ing an c~ can go
and rest in the r ight -hand s ta te for the dura t ion of
the a .

Let us fill in the detai ls of (19). How do we detect
the end of an a ? Because one or more of the a i end
(] , I), while all the a l either end or continue (+), so
tha t we know we are leaving an a . 5 Thus:

(20) (in all ai)- (some bj)

in all ai

An unusual ly complex example is shown in (21).
Note tha t to preserve the form of the predicates
in (17) and keep the a u t o m a t o n determinis t ic , we
need to spl i t some of the arcs above into mul t i -
ple arcs. Each flj gets its own arc, and we must
also expand set differences into mul t ip le arcs, using
the scheme W - z A y A z = W V ~ (x A y A z) =
(W A ~x) V (W A z A-~y) V (W A x A y A -~:).

s i t is important to take], not +, as our indication that
we have been inside • constituent. This means that the
timeline ([, -)(+, -)*(+, [)(% +)*('], +)(-, +)*(-,]) cannot
avoid violating a clash constraint simply by instantiat-
ing the (+, +)* part as e. Furthermore, the] convention
means that a zero-width input constituent (more pre-
cisely, a sequence of zero-width constituents, represented
as a single 1 symbol) will often act as if it has an interior.
Thus if V syncopates as in footnote 2, it still violates the
parse constraint _V - - V. This is an explicit property of
OTP: otherwise, nothing that failed to parse would ever
violate PARSE, because it would be gone!

On the other hand, "l does not have this special role
on the right hand side of ---+ , which does not quantify
universally over an interval. The consequence for zero-
width consituents is that even if a zero-width 1/_" overlaps
(at the edge, say) with a surface V, the latter cannot
claim on this basis alone to satisfy FILL: V - - V__. This
too seems like the right move linguistically, although fur-
ther study is needed.

317

(21) (p a n d q) --* (b o r c [)

+p +q []l-b]+-c

How about other cases? If the antecedent of
an implication is not. an interval, then the con-
straint needs only one state, to penalize mo-
ments when the antecedent holds and the con-
sequent does not. Finally, a clash constraint
cq I a2 _1_ . . . is identical to the implication
constraint (or1 and a.~ a n d . . .) --* FALSE. Clash
FSAs are therefore just degenerate versions of im-
plication FSAs, where the arcs looking for/3j do not
exist because they would accept no symbol. (22)
shows the constraints (p and]q) --+ b and p 3_ q.

(22) +p +q

4 C o m p u t a t i o n a l r e q u i r e m e n t s

4.1 G e n e r a l i z e d A l i g n m e n t is no t f l n i t e - s t a t e

Ellison's method can succeed only on a restricted
formalism such as OTP, which does not admit such
constraints as the popular Generalized Alignment
(GA) family of (McCarthy & Prince, 1993). A typ-
ical GA constraint is ALIGN(F, L, Word, L), which
sums the number of syllables between each left foot
edge F[and the left edge of the prosodic word. Min-
imizing this sum achieves a kind of left-to-right it-
erative footing. OTP argues that such non-local,
arithmetic constraints can generally be eliminated
in favor of simpler mechanisms (Eisner, in press).

Ellison's method cannot directly express the above
GA constraint, even outside OTP, because it cannot
compute a quadratic function 0 + 2 + 4 + -. . on a
string like [~cr]F [~a]r [~] r '" '. Path weights in an
FSA cannot be more than linear on string length.

Perhaps the filtering operation of any GA con-
straint can be simulated with a system of finite-
state constraints? No: GA is simply too powerful.
The proof is suppressed here for reasons of space,
but it relies on a form of the pumping lemma for
weighted FSAs. The key insight is that among can-
didates with a fixed number of syllables and a single
(floating) tone, ALIGN(a, L, H, L) prefers candidates

where the tone docks at the center. A similar argu-
ment for weighted CFGs (using two tones) shows this
constraint to be too hard even for (Tesar, 1996).

4.2 G e n e r a t i o n is N P - c o m p l e t e e v e n in O T P

When algorithm (14) is implemented literally and
with moderate care, using an optimizing C compiler
on a 167MHz UltraSPARC, it takes fully 3.5 minutes
(real time) to discover a stress pattern for the syl-
lable sequence ~ . 6 The au tomata
become impractically huge due to intersections.

Much of the explosion in this case is introduced
at the start and can be avoided. Because R e p n s
has 21Tiersl = 512 states, So, $1, and $2 each
have about 5000 states and 500,000 to 775,000 arcs.
Thereafter the S~ automata become smaller, thanks
to the pruning performed at each step by BestPaths.
This repeated pruning is already an improvement
over Ellison's original algorithm (which saves prun-
ing till the end, and so continues to grow exponen-
tially with every new constraint). If we modify (14)
further, so that each tier rule from R e p n s is inter-
sected with the candidate set only when its tier is
first mentioned by a constraint, then the au tomata
are pruned back as quickly as they grow. They have
about 10 times fewer states and 100 times fewer arcs.
and the generation time drops to 2.2 seconds.

This is a key practical trick. But neither it nor
any other trick can help for all grammars, for in the
worst case, the OTP generation problem is NP-hard
on the number of tiers used by the grammar . The
locality of constraints does not save us here. Many
NP-complete problems, such as graph coloring or
bin packing, a t tempt to minimize some global count
subject to numerous local restrictions. In the case of
OTP generation, the global count to minimize is the
degree of violation of Ci, and the local restrictions
are imposed by C1, C2,... Ci-1.

P r o o f o f N P - h a r d n e s s (by polytime reduction
from Hamilton Path). Given G = (V(G), E(G)),
an n-vertex directed graph. Put T i e r s = V(G)tO
{Stem, S}. Consider the following vector of O(n -~)
primitive constraints (ordered as shown):

(23) a. V v e V (a) : ~ [- ~ s [
b. Vv E V(G):]~ - -]s
c. Vv e V(G): St-era -~ v
d. Stem .1_ S
e. Vu, v e V(G) s.t. uv ~ E(G):]u .L o[
f. Is -

SThe grammar is taken from the OTP stress typol-
ogy proposed by (Eisner, in press). It has tier rules for 9
tiers, and then spends 26 constraints on obvious univer-
sal properties of morns and syllables, followed by 6 con-
straints for universal properties of feet and stress marks
and finally 6 substantive constraints that can be freely
reranked to yield different stress systems, such as left-to-
right iambs with iambic lengthening.

318

Suppose the input is simply [Stem]. Filtering
Gen(input) through constraints (23a-d), we are left
with just those candidates where Stem bears n (dis-
joint) constituents of type S, each coextensive with
a constituent bearing a different label v E V(G).
(These candidates satisfy (23a-c) but violate (23d)
n times.) (23e) says that a chain of abutting con-
stituents [u I v I w] . • • i s allowed only if it corresponds
to a path in G. Finally, (23f) forces the grammar to
minimize the number of such chains. If the minimum
is 1 (i.e., an arbitrarily selected output candidate vi-
olates (23f) only once), then G has a Hamilton path.

When confronted with this pathological case, the
finite:state methods respond essentially by enumer-
ating all possible permutations of V(G) (though
with sharing of prefixes). The machine state stores,
among other things, the subset of V(G) that has al-

ready been seen; so there are at least 2 ITiersl states.
It must be emphasized that if the grammar is

fixed in advance, algorithm (14) is close to linear
in the size of the input form: it is dominated by
a constant number of calls to Dijkstra's BestPaths
method, each taking time O([input arcs[log [input
statesl). There are nonetheless three reasons why
the above result is important. (a) It raises the prac-
tical specter of huge constant factors (> 2 4°) for real
grammars. Even if a fixed grammar can somehow be
compiled into a fast form for use with many inputs,
the compilation itself will have to deal with this con-
stant factor. (b) The result has the interesting im-
plication that candidate sets can arise that cannot
be concisely represented with FSAs. For if all Si
were polynomial-sized in (14), the algorithm would
run in polynomial time. (c) Finally, the grammar
is not fixed in all circumstances: both linguists and
children crucially experiment with different theories.

4.3 W o r k in p rog res s : F a c t o r e d a u t o m a t a

The previous section gave a useful trick for speeding
up Ellison's algorithm in the typical case. We are
currently experimenting with additional improve-
ments along the same lines, which at tempt to de-
fer intersection by keeping tiers separate as long as
possible.

The idea is to represent the candidate set S /not as
a large unweighted FSA, but rather as a collection A
of preferably small unweighted FSAs, called fac to rs ,
each of which mentions as few tiers as possible. This
collection, called a f a c t o r e d a u t o m a t o n , serves as
a compact representation of hA. It usually has far
fewer states than 71.,4 would if the intersection were
carried out.

For instance, the natural factors of So are input
and all the tier rules (see 18). This requires only
O([Tiers[+ [input[) states, not O(21Tiersl. [input[).
Using factored automata helps Ellison's algorithm
(14) in several ways:

• The candidate sets Si tend to be represented

more compactly.

• In (14), the constraint Ci+l needs to be inter-
sected with only certain factors of Si.

• Sometimes Ci+l does not need to be intersected
with the input, because they do not mention
any of the same tiers. Then step i + 1 can be
performed in time independent of input length.

Example: input = , which is
a 43-state automaton, and C1 is F - - x, which says
that every foot bears a stress mark. Then to find
$1 = BestPaths(S0 71 C1), we need only consider
S0's tier rules for F and x, which require well-formed
feet and well-formed stress marks, and combine them
with C1 to get a new factor that requires stressed
feet. No other factors need be involved.

The key operation in (14) is to find Bestpaths(A 71
C), where .4 is an unweighted factored automaton
and C is an ordinary weighted FSA (a constraint).
This is the bes t i n t e r s e c t i o n problem. For con-
creteness let us suppose that C encodes F ---* x, a
two-state constraint.

A naive idea is simply to add F ---* x to ..4 as
a new factor. However, this ignores the BestPaths
step: we wish to keep just the best paths in r [~ x[
that are compatible with A. Such paths might be
long and include cycles in F[---* x[. For example,
a weight-1 path would describe a chain of optimal
stressed feet interrupted by a single unstressed one
where A happens to block stress.

A corrected variant is to put I -- 71.A and run
BestPaths on I 71 C. Let the pruned result be B.
We could add B directly back to to ,4 as a new
factor, but it is large. We would rather add a smaller
factor B' that has the same effect, in that 1 71 B' =
1 71 B. (B' will look something like the original C,
but with some paths missing, some states split, and
some cycles unrolled.) Observe that each state of B
has the form i x c for some i E I and c E C. We
form B' from B by "re-merging" states i x c and
i' x c where possible, using an approach similar to
DFA minimization.

Of course, this variant is not very efficient, because
it requires us to find and use I = N.4. What we
really want is to follow the above idea but use a
smaller I, one that considers just the relevant factors
in .,4. We need not consider factors that will not
affect the choice of paths in C above.

Various approaches are possible for choosing such
an I. The following technique is completely general,
though it may or may not be practical.

Observe that for BestPaths to do the correct
thing, I needs to reflect the sum total of .A's con-
straints on F and x, the tiers that C mentions. More
formally, we want I to be the projection of the can-
didate set N.A onto just the F and x tiers. Unfortu-
nately, these constraints are not just reflected in the
factors mentioning F or x, since the allowed con-
figurations of F and x may be mediated through

319

additional factors. As an example, there may be a
factor mentioning F and ¢, some of whose paths are
incompatible with the input factor, because the lat-
ter allows ¢ only in certain places or because only
allows paths of length 14.

1. Number the tiers such that F and x are num-
bered 0, and all other tiers have distinct positive
numbers.

2. Parti t ion the factors of .4 into lists L0, L1,
L2 , . . . Lk, according to the highest-numbered
tier they mention. (Any factor that mentions
no tiers at all goes onto L0.)

3. If k -- 0, then return MLk as our desired I.

4. Otherwise, MLk exhausts tier k's ability to me-
diate relations among the factors. Modify the
arc labels of ML} so that they no longer restrict
(mention) k. Then add a determinized, mini-
mized version of the result to to Lj, where j is
the highest-numbered tier it now mentions.

5. Decrement k and return to step 3.

If n.4 has k factors, this technique must per-
form k - 1 intersections, just as if we had put
I = n.4. However, it intersperses the intersections
with determinization and minimization operations,
so that the automata being intersected tend not
to be large. In the best case, we will have k -
1 intersection-determinization-minimizations that
cost O(1) apiece, rather than k - 1 intersections that
cost up to 0 (2 k) apiece.

5 C o n c l u s i o n s

Primitive Optimality Theory, or OTP, is an a t tempt
to produce a a simple, rigorous, constraint-based
model of phonology that is closely fitted to the needs
of working linguists. I believe it is worth study both
as a hypothesis about Universal Grammar and as a
formal object.

The present paper introduces the OTP formal-
ization to the computational linguistics community.
We have seen two formal results of interest, both
having to do with generation of surface forms:

• OTP ' s generative power is low: finite-state
optimization. In particular it is more con-
strained than theories using Generalized Align-
ment. This is good news for comprehension and
learning.

• OTP ' s computational complexity, for genera-
tion, is nonetheless high: NP-complete on the
size of the grammar. This is mildly unfortunate
for OTP and for the OT approach in general.
It remains true that for a fixed grammar, the
time to do generation is close to linear on the
size of the input (Ellison, 1994), which is heart-
ening if we intend to optimize long utterances
with respect to a fixed phonology.

Finally, we have considered the prospect of building
a practical tool to generate optimal outputs from
OT theories. We saw above to set up the represen-
tations and constraints efficiently using determinis-
tic finite-state automata, and how to remedy some
hidden inefficiencies in the seminal work of (Elli-
son, 1994), achieving at least a 100-fold observed
speedup. Delayed intersection and aggressive prun-
ing prove to be important. Aggressive minimization
and a more compact. "factored" representation of
au tomata may also turn out to help.

R e f e r e n c e s
Bird, Steven, &: T. Mark Ellison. One Level Phonol-

ogy: Autosegmental representations and rules as
finite automata. Comp. Linguistics 20:55-90.

Cole, Jennifer, ~z Charles Kisseberth. 1994. An op-
timal domains theory of harmony. Studies in the
Linguistic Sciences 24: 2.

Eisner, Jason. In press. Decomposing FootForm:
Primitive constraints in OT. Proceedings of SCIL
8, NYU. Published by MIT Working Papers.
(Available at ht tp: / /ruccs.rutgers.edu/roa.html.)

Eisner, Jason. What constraints should OT allow?
Handout for talk at LSA, Chicago. (Available at
http:/ /ruccs.rutgers.edu/roa.html.)

Ellison, T. Mark. Phonological derivation in opti-
mality theory. COLING '94, 100%1013.

Goldsmith, John. 1976. Autosegmental phonology.
Cambridge, Mass: MIT PhD. dissertation. Pub-
lished 1979 by New York: Garland Press.

Goldsmith, John. i990. Autosegmental and metrical
phonology. Oxford: Blackwell Publishers.

McCarthy, John, & Alan Prince. 1993. General-
ized alignment. Yearbook of Morphology, ed. Geert
Booij & 3aap van Marle, pp. 79-153. Kluwer.

McCarthy, John and Alan Prince. 1995. Faithful-
ness and reduplicative identity. In Jill Beckman
et al., eds., Papers in Optimality Theory. UMass.
Amherst: GLSA. 259-384.

Prince, Alan, & Paul Smolensky. 1993. Optimality
theory: constrainl interaction in generative gram-
mar. Technical Reports of the Rutgers University
Center for Cognitive Science.

Selkirk, Elizabeth. 1980. Prosodic domains in
phonology: Sanskrit revisited. In Mark Aranoff
and Mary-Louise Kean, eds., Juncture, pp. 107-
129. Anna Libri, Saratoga, CA.

Tesar, Bruce. 1995. Computational Optimali ty The-
ory. Ph.D. dissertation, U. of Colorado, Boulder.

Tesar, Bruce. 1996. Computing optimal descriptions
for Optimality Theory: Grammars with context-
free position structures. Proceedings of the 34th
Annual Meeting of the ACL.

320

