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Abstract 
This paper presents PARADISE (PARAdigm 
for Dialogue System Evaluation), a general 
framework for evaluating spoken dialogue 
agents. The framework decouples task require- 
ments from an agent's dialogue behaviors, sup- 
ports comparisons among dialogue strategies, 
enables the calculation of performance over 
subdialogues and whole dialogues, specifies 
the relative contribution of various factors to 
performance, and makes it possible to compare 
agents performing different tasks by normaliz- 
ing for task complexity. 

1 Introduction 
Recent advances in dialogue modeling, speech recogni- 
tion, and natural language processing have made it possi- 
ble to build spoken dialogue agents for a wide variety of 
applications, n Potential benefits of such agents include 
remote or hands-free access, ease of use, naturalness, 
and greater efficiency of interaction. However, a critical 
obstacle to progress in this area is the lack of a general 
framework for evaluating and comparing the performance 
of different dialogue agents. 

One widely used approach to evaluation is based on the 
notion of a reference answer (Hirschman et al., 1990). An 
agent's responses to a query are compared with a prede- 
fined key of minimum and maximum reference answers; 
performance is the proportion of responses that match the 
key. This approach has many widely acknowledged lim- 
itations (Hirschman and Pao, 1993; Danieli et al., 1992; 
Bates and Ayuso, 1993), e.g., although there may be many 
potential dialogue strategies for carrying out a task, the 
key is tied to one particular dialogue strategy. 

In contrast, agents using different dialogue strategies 
can be compared with measures such as inappropri- 
ate utterance ratio, turn correction ratio, concept accu- 
racy, implicit recovery and transaction success (Danieli 

LWe use the term agent to emphasize the fact that we are 
evaluating a speaking entity that may have a personality. Read- 
ers who wish to may substitute the word "system" wherever 
"agent" is used. 

and Gerbino, 1995; Hirschman and Pao, 1993; Po- 
lifroni et al., 1992; Simpson and Fraser, 1993; Shriberg, 
Wade, and Price, 1992). Consider a comparison of two 
train timetable information agents (Danieli and Gerbino, 
1995), where Agent A in Dialogue I uses an explicit con- 
firmation strategy, while Agent B in Dialogue 2 uses an 
implicit confirmation strategy: 

(1) User: I want to go from Torino to Milano. 
Agent A: Do you want to go from Trento to Milano? 
Yes or No? 
User: No. 

(2) User: I want to travel from Torino to Milano. 
Agent B: At which time do you want to leave from 
Merano to Milano? 
User: No, I want to leave from Torino in the evening. 

Danieli and Gerbino found that Agent A had a higher 
transaction success rate and produced less inappropriate 
and repair utterances than Agent B, and thus concluded 
that Agent A was more robust than Agent B. 

However, one limitation of both this approach and the 
reference answer approach is the inability to generalize 
results to other tasks and environments (Fraser, 1995). 
Such generalization requires the identification of factors 
that affect performance (Cohen, 1995; Sparck-Jones and 
Galliers, 1996). For example, while Danieli and Gerbino 
found that Agent A's dialogue strategy produced dia- 
logues that were approximately twice as long as Agent 
B's, they had no way of determining whether Agent A's 
higher transaction success or Agent B's efficiency was 
more critical to performance. In addition to agent factors 
such as dialogue strategy, task factors such as database 
size and environmental factors such as background noise 
may also be relevant predictors of performance. 

These approaches are also limited in that they currently 
do not calculate performance over subdialogues as well as 
whole dialogues, correlate performance with an external 
validation criterion, or normalize performance for task 
complexity. 

This paper describes PARADISE, a general framework 
for evaluating spoken dialogue agents that addresses these 
limitations. PARADISE supports comparisons among di- 
alogue strategies by providing a task representation that 
decouples what an agent needs to achieve in terms of 
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Figure 1: PARADISE's structure of objectives for spoken 
dialogue performance 

the task requirements from how the agent carries out the 
task via dialogue. PARADISE uses a decision-theoretic 
framework to specify the relative contribution of various 
factors to an agent's overall performance. Performance 
is modeled as a weighted function of a task-based suc- 
cess measure and dialogue-based cost measures, where 
weights are computed by correlating user satisfaction 
with performance. Also, performance can be calculated 
for subdialogues as well as whole dialogues. Since the 
goal of this paper is to explain and illustrate the appli- 
cation of the PARADISE framework, for expository pur- 
poses, the paper uses simplified domains with hypothet- 
ical data throughout. Section 2 describes PARADISE's 
performance model, and Section 3 discusses its general- 
ity, before concluding in Section 4. 

2 A P e r f o r m a n c e  M o d e l  f o r  D i a l o g u e  

PARADISE uses methods from decision theory (Keeney 
and Raiffa, 1976; Doyle, 1992) to combine a disparate 
set of performance measures (i.e., user satisfaction, task 
success, and dialogue cost, all of  which have been pre- 
viously noted in the literature) into a single performance 
evaluation function. The use of  decision theory requires a 
specification of  both the objectives of the decision prob- 
lem and a set of measures (known as attributes in de- 
cision theory) for operationalizing the objectives. The 
PARADISE model is based on the structure of objectives 
(rectangles) shown in Figure 1. The PARADISE model 
posits that performance can be correlated with a mean- 
ingful external criterion such as usability, and thus that 
the overall goal of  a spoken dialogue agent is to maxi- 
mize an objective related to usability. User satisfaction 
ratings (Kamm, 1995; Shriberg, Wade, and Price, 1992; 
Polifroni et al., 1992) have been frequently used in the 

literature as an external indicator of the usability of a di- 
alogue agent. The model further posits that two types of 
factors are potential relevant contributors to user satisfac- 
tion (namely task success and dialogue costs), and that 
two types of factors are potential relevant contributors to 
costs (Walker, 1996). 

In addition to the use of decision theory to create this 
objective structure, other novel aspects of PARADISE 
include the use of the Kappa coefficient (Carletta, 1996; 
Siegel and Castellan, 1988) to operationalize task suc- 
cess, and the use of linear regression to quantify the rel- 
ative contribution of the success and cost factors to user 
satisfaction. 

The remainder of this section explains the measures 
(ovals in Figure 1) used to operationalize the set of objec- 
tives, and the methodology for estimating a quantitative 
performance function that reflects the objective structure. 
Section 2.1 describes PARADISE's task representation, 
which is needed to calculate the task-based success mea- 
sure described in Section 2.2. Section 2.3 describes the 
cost measures considered in PARADISE, which reflect 
both the efficiency and the naturalness of  an agent's dia- 
logue behaviors. Section 2.4 describes the use of linear 
regression and user satisfaction to estimate the relative 
contribution of the success and cost measures in a single 
performance function. Finally, Section 2.5 explains how 
performance can be calculated for subdialogues as well 
as whole dialogues, while Section 2.6 summarizes the 
method. 

2.1 Tasks as Attribute Value Matrices 

A general evaluation framework requires a task represen- 
tation that decouples what an agent and user accomplish 
from how the task is accomplished using dialogue strate- 
gies. We propose that an attribute value matrix (AVM) 
can represent many dialogue tasks. This consists of the 
information that must be exchanged between the agent 
and the user during the dialogue, represented as a set of 
ordered pairs of attributes and their possible values. 2 

As a first illustrative example, consider a simplification 
of the train timetable domain of Dialogues 1 and 2, where 
the timetable only contains information about rush-hour 
trains between four cities, as shown in Table 1. This AVM 
consists of four attributes (abbreviations for each attribute 
name are also shown). 3 In Table 1, these attribute-value 
pairs are annotated with the direction of information flow 
to represent who acquires the information, although this 
information is not used for evaluation. During the dia- 
logue the agent must acquire from the user the values of 
DC, AC, and DR, while the user must acquire DT. 

Performance evaluation for an agent requires a corpus 
of dialogues between users and the agent, in which users 
execute a set of scenarios. Each scenario execution has 

2For infinite sets of values, actual values found in the exper- 
imental data constitute the required finite set. 

3The AVM serves as an evaluation mechanism only. We are 
not claiming that AVMs determine an agent's behavior or serve 
as an utterance's semantic representation. 
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attribute possible values information flow 
depart-city (DC) 
arrival-city (AC) 
depart-range (DR) 
depart-time (DT) 

Milano, Roma. Torino, Trento 
Milano, Roma, Torino, Trento 
morning,evening 
6am,8am,6pm,Spm 

to agent 
to agent 
to agent 
to user  

Table 1: Attribute value matrix, simplified train timetable 
domain 

A 1 : Hello, This is Train Enquiry Service. DC,AC,DR,DT 
Please speak after the tone. DC,AC,DR,DT 
Which information do you need? DC,AC,DR,DT 

U 1: I want to go from Torino to Milano. DC,AC 
A2: Do you want to go from Trento to Milano? DC,AC 

Yes or No? DC,AC 
U2: No. DC,AC 
A3: Do you want to leave from Trento? DC 

Yes or No? DC 
U3: No. DC 
A4: Where do you want to leave from? DC 
U4: I want to leave from Torino. DC 
A5: Do you want to leave from Torino? DC 

Yes or No? DC 
U5: Yes. DC 
A6: Do you want to go to Milano? AC 
U6: Yes. AC 
A7: At which time do you want to leave? DR 
U7: I want to travel in the evening. DR 
A8: Do you want to leave between 6 and 9 p.m.? DR 

Yes or No? DR 
U8: Yes. DR 
A9: There is a train leaving at 8:00 p.m. DT 

Figure 2: Agent A dialogue interaction (Danieli and 
Gerbino, 1995) 

a corresponding AVM instantiation indicating the task 
information requirements for the scenario, where each 
attribute is paired with the attribute value obtained via 
the dialogue. 

For example, assume that a scenario requires the user 
to find a train from Torino to Milano that leaves in the 
evening, as in the longer versions of Dialogues 1 and 2 in 
Figures 2 and 3.4 Table 2 contains an AVM corresponding 
to a "key" for this scenario. All dialogues resulting from 
execution of this scenario in which the agent and the 
user correctly convey all attribute values (as in Figures 
2 and 3) would have the same AVM as the scenario key 
in Table 2. The AVMs of the remaining dialogues would 
differ from the key by at least one value. Thus, even 
though the dialogue strategies in Figures 2 and 3 are 
radically different, the AVM task representation for these 
dialogues is identical and the performance of the system 
for the same task can thus be assessed on the basis of the 
AVM representation. 

2.2 Measuring Task Success 

Success at the task for a whole dialogue (or subdia- 
logue) is measured by how well the agent and user achieve 
the information requirements of the task by the end of the 

4These dialogues have been slightly modified from (Danieli 
and Gerbino, 1995). The attribute names at the end of each 
utterance will be explained below. 

B I : Hello, This is Train Enquiry Service. DC,AC,DILDT 
Please speak after the tone. DC,AC,DR,DT 
Which information do you need? DC,AC,DR,DT 

U 1 : I want to travel from Torino to Milano. DC,AC 
B2: At which time do you want to leave 

from Merano to Milano? DC,AC,DR 
U2: No, I want to leave from Torino 

in the evening. DC, DR 
B3: Do you want to leave from Torino 

between 6 and 11 p.m? DC, DR 
Plees~ answer Yes or No. DC, DR 

U3: Yes. DC, DR 
B4: A train leaves at 8 p.m. DT 

Figure 3: Agent B dialogue interaction (Danieli and 
Gerbino, 1995) 

attribute actual value 
depart-city Torino 
arrival-city Milano 
depart-range evening 
depart-time 8pm 

Table 2: Attribute value matrix instantiation, scenario 
key for Dialogues 1 and 2 

dialogue (or subdialogue). This section explains how 
PARADISE uses the Kappa coefficient (Carletta, 1996; 
Siegel and Castellan, 1988) to operationalize the task- 
based success measure in Figure 1. 

The Kappa coefficient, ~, is calculated from a confu- 
sion matrix that summarizes how well an agent achieves 
the information requirements of a particular task for a set 
of dialogues instantiating a set of scenarios, s For exam- 
ple, Tables 3 and 4 show two hypothetical confusion ma- 
trices that could have been generated in an evaluation of 
100 complete dialogues with each of two train timetable 
agents A and B (perhaps using the confirmation strategies 
illustrated in Figures 2 and 3, respectively), 6 The values 
in the matrix cells are based on comparisons between the 
dialogue and scenario key AVMs. Whenever an attribute 
value in a dialogue (i.e., data) AVM matches the value in 
its scenario key, the number in the appropriate diagonal 
cell of the matrix (boldface for clarity) is incremented 
by 1. The off diagonal cells represent misunderstand- 
ings that are not corrected in the dialogue. Note that 
depending on the strategy that a spoken dialogue agent 
uses, confusions across attributes are possible, e.g., "Mi- 
lano " could be confused with "morning." The effect of 
misunderstandings that are corrected during the course 
of the dialogue are reflected in the costs associated with 
the dialogue, as will be discussed below. 

The first matrix summarizes how the 100 AVMs rep- 
resenting each dialogue with Agent A compare with the 
AVMs representing the relevant scenario keys, while the 

5Confusion matrices can be constructed to summarize the 
result of dialogues for any subset of the scenarios, attributes, 
users or dialogues. 

~The distributions in the tables were roughly based on per- 
formance results in (Danieli and Gerbino, 1995). 
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DATA 
vl 
v2 
v3 
v4 
v5 
v6 
v7 
v8 
v9 

vlO 
v i i  
v12 
v13 
vl4 
sum 

KEY 
DEPART.CITY ARRIVAL-CTrY DEPART-RANGE DEPART-TIME 

vl v2 v3 v4 v5 v6 v7 v8 v9 vl0 v i i  v12 v13 v14 
22 1 3 

29 
4 16 4 I 
1 1 5 11 1 
3 20 

22 
2 1 1 20 5 
1 1 2 8 15 

45 10 
5 40 

oIBI~ 15 25 25 30 20 50 50 

20 2 
I 19 2 4 
2 18 
2 6 3 21 

25 25 25 25 

Table 3: Confusion matrix, Agent A 

DEPART-CITY 
DATA vl v2 v3 v4 

v! 16 1 
v2 1 20 1 

v 3  5 1 9 4 
v4 1 2 6 6 
v5 4 
v6 1 6 
v7 5 2 
v8 1 3 3 
v9 2 

vl0 
v i i  
v12 
v13 
v14 
sum 30 30 25 15 

ARR2VAL-CITY 
v5 v6 v7 v8 

4 
3 

2 4 
2 

15 
19 

1 1 15 
1 2 9 

25 25 30 

DEPART-RANGE 
v9 vl0 

3 2 

2 
3 

2 3 

4 
11 

39 10 
6 35 

20 5O 50 

DEPAK'F-TIME 
I / E  

20 5 5 4 
10 5 5 

5 5 10 5 
5 5 11 

25 25 25 25 

Table 4: Confusion matrix, Agent B 

second matrix summarizes the information exchange with 
Agent B. Labels vl to v4 in each matrix represent the 
possible values of depart-city shown in Table 1; v5 to 
v8 are for arrival-city, etc. Columns represent the key, 
specifying which information values the agent and user 
were supposed to communicate to one another given a 
particular scenario. (The equivalent column sums in both 
tables reflects that users of both agents were assumed to 
have performed the same scenarios). Rows represent the 
data collected from the dialogue corpus, reflecting what 
attribute values were actually communicated between the 
agent and the user. 

Given a confusion matrix M, success at achieving the 
information requirements of the task is measured with the 
Kappa coefficient (Carletta, 1996; Siegel and Castellan, 
1988): 

P(A) - P(E) 
K - -  

1 - P ( E )  

P(A) is the proportion of times that the AVMs for the 
actual set of dialogues agree with the AVMs for the sce- 
nario keys, and P(E) is the proportion of times that the 
AVMs for the dialogues and the keys are expected to agree 

by chance. 7 When there is no agreement other than that 
which would be expected by chance, ~ = 0. When there is 
total agreement, ~ = 1. n is superior to other measures of 
success such as transaction success (Danieli and Gerbino, 
1995), concept accuracy (Simpson and Fraser, 1993), and 
percent agreement (Gale, Church, and Yarowsky, 1992) 
because n takes into account the inherent complexity of 
the task by correcting for chance expected agreement. 
Thus ~ provides a basis for comparisons across agents 
that are performing different tasks. 

When the prior distribution of the categories is un- 
known, P(E), the expected chance agreement between 
the data and the key, can be estimated from the distri- 
bution of the values in the keys. This can be calculated 
from confusion matrix M, since the columns represent 
the values in the keys. In particular: 

r~ 

P(E) = ~j--,ft_i ~2 
L . ~ ,  T ,  
i= l  

7~ h a s  b e e n  u s e d  to m e a s u r e  p a i r w i s e  a g r e e m e n t  a m o n g  

c o d e r s  m a k i n g  c a t e g o r y  j u d g m e n t s  (Car l e t t a ,  1 9 9 6 ;  K r i p p e n -  

d o f f ,  1 9 8 0 ;  S i ege l  a n d  Cas t e l l an ,  1988) .  T h u s ,  t he  o b s e r v e d  
u s e r / a g e n t  i n t e r a c t i o n s  a re  m o d e l e d  as  a c o d e r ,  a n d  t h e  i d e a l  

i n t e r a c t i o n s  as  a n  e x p e r t  coder .  
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where ti is the sum of the frequencies in column i of M, 
and T is the sum of the frequencies in M (tl  + • • • + tn) .  

P(A), the actual agreement between the data and the 
key, is always computed from the confusion matrix M: 

P ( A )  - ~'~i~=l M ( i ,  i) 
T 

Given the confusion matrices in Tables 3 and 4, P(E) 
= 0.079 for both agents, s For Agent A, P(A) = 0.795 
and • = 0.777, while for Agent B, P(A) = 0.59 and a = 
0.555, suggesting that Agent A is more successful than 
B in achieving the task goals. 

2.3 Measuring Dialogue Costs 

As shown in Figure 1, performance is also a function of a 
combination of  cost measures. Intuitively, cost measures 
should be calculated on the basis of any user or agent 
dialogue behaviors that should be minimized. A wide 
range of cost measures have been used in previous work; 
these include pure efficiency measures such as the num- 
ber of turns or elapsed time to complete the task (Abella, 
Brown, and Buntschuh, 1996; Hirschman et al., 1990; 
Smith and Gordon, 1997; Walker, 1996), as well as mea- 
sures of qualitative phenomena such as inappropriate or 
repair utterances (Danieli and Gerbino, 1995; Hirschman 
and Pao, 1993; Simpson and Fraser, 1993). 

PARADISE represents each cost measure as a function 
ci that can be applied to any (sub)dialogue. First, consider 
the simplest case of calculating efficiency measures over 
a whole dialogue. For example, let cl be the total number 
of  utterances. For the whole dialogue D1 in Figure 2, 
el(D1) is 23 utterances. For the whole dialogue D2 in 
Figure 3, cl (D2) is 10 utterances. 

To calculate costs over subdialogues and for some of 
the qualitative measures, it is necessary to be able to spec- 
ify which information goals each utterance contributes 
to. PARADISE uses its AVM representation to link the 
information goals of the task to any arbitrary dialogue 
behavior, by tagging the dialogue with the attributes for 
the task. 9 This makes it possible to evaluate any potential 
dialogue strategies for achieving the task, as well as to 
evaluate dialogue strategies that operate at the level of 
dialogue subtasks (subdialogues). 

Consider the longer versions of Dialogues 1 and 2 in 
Figures 2 and 3. Each utterance in Figures 2 and 3 has 
been tagged using one or more of the attribute abbrevia- 
tions in Table 1, according to the subtask(s) the utterance 
contributes to. As a convention of this type of tagging, 

SUsing a single confusion matrix for all attributes as in 
Tables 3 and 4 inflates n when there are few cross-attribute 
confusions by making P(E) smaller. In some cases it might 
be desirable to calculate ~; first for identification of attributes 
and then for values within attributes, or to average ~ for each 
attribute to produce an overall t¢ for the task. 

9This tagging can be hand generated, or system generated 
and hand corrected. Preliminary studies indicate that reliability 
for human tagging is higher for AVM attribute tagging than 
for other types of discourse segment tagging (Passonneau and 
Litman, 1997; Hirschberg and Nakatani, 1996). 

~:E.AC, DR, D 
~ : A I . . A 9  

SEG~cr: S3 S~Ml~Cr: S4 
G0~: I£ GOALS: AC 

o'rr~cES: A3...u5 0TI/~ES: A6...U6 

Figure 4: Task-defined discourse structure of Agent A 
dialogue interaction 

utterances that contribute to the success of the whole dia- 
logue, such as greetings, are tagged with all the attributes. 
Since the structure of a dialogue reflects the structure of 
the task (Carberry, 1989; Grosz and Sidner, 1986; Litman 
and Allen, 1990), the tagging of  a dialogue by the AVM 
attributes can be used to generate a hierarchical discourse 
structure such as that shown in Figure 4 for Dialogue 
1 (Figure 2). For example, segment (subdialogue) $2 
in Figure 4 is about both depart-city (DC) and arrival- 
city (AC). It contains segments $3 and $4 within it, and 
consists of utterances U 1 . . .  U6. 

Tagging by AVM attributes is required to calculate 
costs over subdialogues, since for any subdialogue, task 
attributes define the subdialogue. For subdialogue $4 
in Figure 4, which is about the attribute arrival-city and 
consists of utterances A6 and U6, ct(S4) is 2. 

Tagging by AVM attributes is also required to calculate 
the cost of some of the qualitative measures, such as 
number of repair utterances. (Note that to calculate such 
costs, each utterance in the corpus of dialogues must also 
be tagged with respect to the qualitative phenomenon in 
question, e.g. whether the utterance is a repair, l°) For 
example, let c2 be the number of repair utterances. The 
repair utterances in Figure 2 are A3 through U6, thus 
c2(D1) is 10 utterances and c2($4) is 2 utterances. The 
repair utterance in Figure 3 is U2, but note that according 
to the AVM task tagging, U2 simultaneously addresses 
the information goals for depart-range. In general, if 
an utterance U contributes to the information goals of N 
different attributes, each attribute accounts for 1/N of any 
costs derivable from U. Thus, c2(D2) is .5. 

Given a set of ci, it is necessary to combine the dif- 

mPrevious work has shown that this can be done with high 
reliability (Hirschman and Pao, 1993). 
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ferent cost measures in order to determine their relative 
contribution to performance. The next section explains 
how to combine ~ with a set of ci to yield an overall 
performance measure. 

2.4 Estimating a Performance Function 

Given the definition of success and costs above and the 
model in Figure 1, performance for any (sub)dialogue D 
is defined as follows: it 

n 

Performance = (o~ • .N'(t~)) - ~ wi  * .N'(ci) 
i = 1  

Here ~ is a weight on ~, the cost functions ci are weighted 
by wi, and At" is a Z score normalization function (Cohen, 
1995). 

The normalization function is used to overcome the 
problem that the values of  ci are not on the same scale as 
x, and that the cost measures ci may also be calculated 
over widely varying scales (e.g. response delay could 
be measured using seconds while, in the example, costs 
were calculated in terms of  number of  utterances). This 
problem is easily solved by normalizing each factor x to 
its Z score: 

N ' ( x )  = 
O'.:t: 

where ~r= is the standard deviation for x. 

user agent US ~ el (#utt) e2 (#rep) 
1 A 1 1 46 30 
2 A 2 1 50 30 
3 A 2 I 52 30 
4 A 3 1 40 20 
5 A 4 1 23 10 
6 A 2 1 50 36 
7 A 1 0.46 75 30 
8 A 1 0.19 60 30 
9 B 6 I 8 0 

10 B 5 1 15 1 
11 B 6 I 10 0.5 
12 B 5 1 20 3 
13 B 1 0.L9 45 18 
14 B 1 0.46 50 22 
15 B 2 0.19 34 18 
16 B 2 0.46 40 18 

Mean(A) A 2 0.83 49.5 27 
Mean(B) B 3.5 0.66 27.8 10,1 

Mean NA 2.75 0.75 38,6 18,5 

Table 5: Hypothetical performance data from users of 
Agents A and B 

To illustrate the method for estimating'a performance 
function, we will use a subset of the data from Tables 3 
and 4, shown in Table 5. Table 5 represents the results 

tZWe assume an additive performance (utility) function be- 
cause it appears that n and the various cost factors ci are util- 
ity independent and additive independent (Keeney and Raiffa, 
1976). It is possible however that user satisfaction data col- 
lected in future experiments (or other data such as willingness 
to pay or use) would indicate otherwise. If so, continuing use of 
an additive function might require a transformation of the data, 
a reworking of the model shown in Figure 1, or the inclusion of 
interaction terms in the model (Cohen, 1995). 

from a hypothetical experiment in which eight users were 
randomly assigned to communicate with Agent A and 
eight users were randomly assigned to communicate with 
Agent B. Table 5 shows user satisfaction (US) ratings 
(discussed below), ~, number of utterances (#utt) and 
number of repair utterances (#rep) for each of these users. 
Users 5 and 11 correspond to the dialogues in Figures 
2 and 3 respectively. To normalize ct for user 5, we 
determine that ~ is 38.6 and crc~ is 18.9. Thus, .N'(cl) is 
-0.83. Similarly A/'(cl) for user 11 is -1.51. 

To estimate the performance function, the weights 
and wi must be solved for. Recall that the claim implicit in 
Figure 1 was that the relative contribution of task success 
and dialogue costs to performance should be calculated by 
considering their contribution to user satisfaction. User 
satisfaction is typically calculated with surveys that ask 
users to specify the degree to which they agree with one 
or more statements about the behavior or the performance 
of the system. A single user satisfaction measure can be 
calculated from a single question, or as the mean of a 
set of ratings. The hypothetical user satisfaction ratings 
shown in Table 5 range from a high of 6 to a low of 1. 

Given a set of dialogues for which user satisfaction 
(US), ~ and the set of ci have been collected experimen- 
tally, the weights ~ and w i  can be solved for using multi- 
ple linear regression. Multiple linear regression produces 
a set of coefficients (weights) describing the relative con- 
tribution of each predictor factor in accounting for the 
variance in a predicted factor. In this case, on the basis 
of the model in Figure 1, US is treated as the predicted 
factor. Normalization of the predictor factors (~ and ci) 
to their Z scores guarantees that the relative magnitude 
of the coefficients directly indicates the relative contribu- 
tion of each factor. Regression on the Table 5 data for 
both sets of users tests which factors ~, #utt, #rep most 
strongly predicts US. 

In this illustrative example, the results of the regression 
with all factors included shows that only ~ and #rep are 
significant (p < .02). In order to develop a performance 
function estimate that includes only significant factors 
and eliminates redundancies, a second regression includ- 
ing only significant factors must then be done. In this 
case, a second regression yields the predictive equation: 

Performance = .40.N'(~) - .78.N'(c2) 

i.e., c~ is .40 and w2 is .78. The results also show ~ is 
significant at p < .0003, #rep significant at p < .0001, 
and the combination of ~ and #rep account for 92% of 
the variance in US, the external validation criterion. The 
factor #utt was not a significant predictor of performance, 
in part because #utt and #rep are highly redundant. (The 
correlation between #utt and #rep is 0.91). 

Given these predictions about the relative contribution 
of  different factors to performance, it is then possible 
to return to the problem first introduced in Section 1: 
given potentially conflicting performance criteria such as 
robustness and efficiency, how can the performance of 
Agent A and Agent B be compared? Given values for 

and wi, performance can be calculated for both agents 
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using the equation above. The mean performance of A 
is -.44 and the mean performance of B is .44, suggesting 
that Agent B may perform better than Agent A overall. 

The evaluator must then however test these perfor- 
mance differences for statistical significance. In this case, 
a t test shows that differences are only significant at the p 
< .07 level, indicating a trend only. In this case, an eval- 
uation over a larger subset of the user population would 
probably show significant differences. 

2.5 Application to Subdialogues 

Since both ~ and ei can be calculated over subdialogues, 
performance can also be calculated at the subdialogue 
level by using the values for c~ and w i  as  solved for above. 
This assumes that the factors that are predictive of global 
performance, based on US, generalize as predictors of 
local performance, i.e. within subdialogues defined by 
subtasks, as defined by the attribute tagging. 12 

Consider calculating the performance of the dialogue 
strategies used by train timetable Agents A and B, over 
the subdialogues that repair the value of depart-city. Seg- 
ment $3 (Figure 4) is an example of such a subdialogue 
with Agent A. As in the initial estimation of a perfor- 
mance function, our analysis requires experimental data, 
namely a set of values for ~ and el, and the application of 
the Z score normalization function to this data. However, 
the values for ~ and ci are now calculated at the subdia- 
Iogue rather than the whole dialogue level. In addition, 
only data from comparable strategies can be used to cal- 
culate the mean and standard deviation for normalization. 
Informally, a comparable strategy is one which applies in 
the same state and has the same effects. 

For example, to calculate ~ for Agent A over the sub- 
dialogues that repair depart-city, P(A) and P(E) are com- 
puted using only the subpart of Table 3 concerned with 
depart-city. For Agent A, P(A) = .78, P(E) = .265, and 
= .70. Then, this value of~ is normalized using data from 
comparable subdialogues with both Agent A and Agent 
B. Based on the data in Tables 3 and 4, the mean ~ is .515 
and ~r is .261, so that.M(~c) for Agent A is .71. 

To calculate c2 for Agent A, assume that the average 
number of repair utterances for Agent A's subdialogues 
that repair depart-city is 6, that the mean over all compa- 
rable repair subdialogues is 4, and the standard deviation 
is 2.79. Then A/'(cz) is .72. 

Let Agent A's repair dialogue strategy for subdialogues 
repairing depart-city be RA and Agent B's repair strat- 
egy for depart-city be RB. Then using the performance 
equation above, predicted performance for RA is: 

Performance(Ra) = .40 • .71 -- .78 • .72 = --0.28 

For Agent B, using the appropriate subpart of Table 
4 to calculate ~, assuming that the average number of 
depart-city repair utterances is 1.38, and using similar 

12This assumption has a sound basis in theories of dialogue 
structure (Carberry, 1989; Grosz and Sidner, 1986; Litman and 
Allen, 1990), but should be tested empirically. 

calculations, yields 

Performance(RB) = .40.  - .71 - .78 • - . 9 4  = 0.45 

Thus the results of these experiments predict that when 
an agent needs to choose between the repair strategy that 
Agent B uses and the repair strategy that Agent A uses 
for repairing depart-city, it should use Agent B's strategy 
RB, since the performance(RB) is predicted to be greater 
than the performance(Ra). 

Note that the ability to calculate performance over sub- 
dialogues allows us to conduct experiments that simulta- 
neously test multiple dialogue strategies. For example, 
suppose Agents A and B had different strategies for pre- 
senting the value of depart-time (in addition to different 
confirmation strategies). Without the ability to calculate 
performance over subdialogues, it would be impossible 
to test the effect of the different presentation strategies 
independently of the different confirmation strategies. 

2.6 Summary 
We have presented the PARADISE framework, and have 
used it to evaluate two hypothetical dialogue agents in a 
simplified train timetable task domain. We used PAR- 
ADISE to derive a performance function for this task, by 
estimating the relative contribution of a set of potential 
predictors to user satisfaction. The PARADISE method- 
ology consists of the following steps: 

• definition of a task and a set of scenarios; 

• specification of the AVM task representation; 

• experiments with alternate dialogue agents for the 
task; 

• calculation of user satisfaction using surveys; 

• calculation of task success using ~; 

• calculation of dialogue cost using efficiency and 
qualitative measures; 

• estimation of a performance function using linear 
regression and values for user satisfaction, K and 
dialogue costs; 

• comparison with other agents/tasks to determine 
which factors generalize; 

• refinement of the performance model. 
Note that all of these steps are required to develop 

the performance function. However once the weights 
in the performance function have been solved for, user 
satisfaction ratings no longer need to be collected. In- 
stead, predictions about user satisfaction can be made on 
the basis of the predictor variables, as illustrated in the 
application of PARADISE to subdialogues. 

Given the current state of knowledge, it is important to 
emphasize that researchers should be cautious about gen- 
eralizing a derived performance function to other agents. 
or tasks. Performance function estimation should be done 
iteratively over many different tasks and dialogue strate- 
gies to see which factors generalize. In this way, the 
field can make progress on identifying the relationship 
between various factors and can move towards more pre- 
dictive models of spoken dialogue agent performance. 
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3 G e n e r a l i t y  

In the previous section we used PARADISE to evalu- 
ate two confirmation strategies, using as examples fairly 
simple information access dialogues in the train timetable 
domain. In this section we demonstrate that PARADISE 
is applicable to a range of tasks, domains, and dialogues, 
by presenting AVMs for two tasks involving more than 
information access, and showing how additional dialogue 
phenomena can be tagged using AVM attributes. 

depart-city (DC) 
arrival-city (AC) 
depart-range (DR) 
depart-time (DT) 
request-type (R'r) 

possible values information flow 
Milano, Roma, Torino, Trento to agent 
Milano, Roma, Torino, Trento to agent 
morning,evening to agent 
6am,Sam,6pm,8pm to user 
reserve, purchase to agent I 

Table 6: Attribute value matrix, train timetable domain 
with requests 

First, consider an extension of the train timetable task, 
where an agent can handle requests to reserve a seat or 
purchase a ticket. This task could be represented using 
the AVM in Table 6 (an extension of Table 1), where 
the agent must now acquire the value of the attribute 
request-type, in order to know what to do with the other 
information it has acquired. 

U 1: I want to go from Torino to Roma DC,AC 
C 1: Approximately what time of  day would you like to travel? DR 
U2: What are the options? DR 
C2: Morning or evening. DR 
U3: Are those departure times? DR 
C3: Yes. DR 
U4: I'd like to leave in the morning. DR 
C4: Train 702 leaves Torino Porto at 8 a.m. DT 
U5: Please reserve me a seat on that train. RT 

Figure 5: Hypothetical Agent C dialogue interaction 

Figure 5 presents a hypothetical dialogue in this ex- 
tended task domain, and illustrates user utterance types 
and an agent dialogue strategy that are very different from 
those in Figures 2 and 3. First, Agent C in Figure 5 uses 
a "no confirmation" dialogue strategy, in contrast to the 
explicit and implicit confirmation strategies used in Fig- 
ures 2 and 3. Second, Figure 5 illustrates new types of 
u s e r  utterances that do not directly further the informa- 
tional goals of the task. In U2, the user asks the agent 
a wh-question about the DR attribute itself, rather than 
providing information about that attribute's value. Since 
U2 satisfies a knowledge precondition related to answer- 
ing C l, U2 contributes to the DR goal and is tagged 
as such. In U3, the user similarly asks a yes-no question 
that addresses a subgoal related to answering C1. Finally, 
U5 illustrates a user request for an agent action, and is 
tagged with the RT attribute. The value of RT in the AVM 
instantiation for the dialogue would be "reserve" 

Second, consider the very different domain and task 
of diagnosing a fault and repairing a circuit (Smith and 

Gordon, 1997). Figure 6 presents one dialogue from this 
domain. 

I. C: This is the circuit fix it shop. 
How may I help you? 

2. U: I want to fix a circuit. 
3. C: What is the ID of the circuit? 
4. U: Rsl l  1. 
5. C: I am familiar with that circuit. 

The LED is supposed to be displaying 
alternately flashing one and seven. CB 

6. U: The LED is off. RB 
7. C: What is the switch at when the LED is off?. RB 
8, U: The switch is down. RB 
9. C: Put the switch up. RB 

10. U: Okay. RB 
11. C: Put the knob to one zero. RB 
12. U: Okay. RB 
13. C: What is the LED displaying? RB 
14. U: LED is displaying only a flashing seven. RB 
15. C: Is there a wire between connector eight four 

and connector nine nine? FT 
16. U: No. FT 
17. C: Add a wire between connector eight four 

and connector nine nine. FC 
18. U: Done. FC 
19. C: What is the LED displaying? T 
20. U: Alternately flashing one and seven. T 
2 I. C: Is the one on the LED displaying for 

a longer period of  time? T 
22. U: No. T 
23. C: Is the seven on the LED displaying 

for a longer period of time? T 
24. U: No. T 
25. C: Put the knob to zero. T 
26. U: Okay. T 
27. C: What is the LED displaying? T 
28. U: Alternately displaying one and seven. T 
29. C: Is the one on the LED displaying 

for a longer period of  time? T 
30. U: Yes. T 
31. C: Put the switch down. T 
32. U: The switch is down. T 
33. C: What is the LED displaying? T 
34. U: Nothing. T 
35. C: The circuit is working correctly. Good-bye. T 

ID,CB,RB,FT, FC,T 
ID,CB,RB,FT, FC,T 
ID,CB,RB,FT, FC,T 
ID 
ID 
CB 

Figure 6: A circuit domain dialogue (Smith and Gordon, 
1997), with AVM tagging 

Smith and Gordon collected 144 dialogues for this task, 
in which agent initiative was varied by using different 
dialogue strategies, and tagged each dialogue according 
to the following subtask structure: 13 

• Introduction (I)--establish the purpose of the task 

. Assessment (A)--establish the current behavior 

• Diagnosis (D)---establish the cause for the errant 
behavior 

• Repair (R)---establish that the correction for the er- 
rant behavior has been made 

• Test (T)---establish that the behavior is now correct 

Our informational analysis of this task results in the AVM 
shown in Table 7. Note that the attributes are almost 
identical to Smith and Gordon's list of subtasks. Circuit- 
ID corresponds to Introduction, Correct-Circuit-Behavior 
and Current-Circuit-Behavior correspond to Assessment, 

t3They report a ~ of.82 for reliability of their tagging scheme. 
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Fault-Type corresponds to Diagnosis, Fault-Correction 
corresponds to Repair, and Test corresponds to Test. The 
attribute names emphasize information exchange, while 
the subtask names emphasize function. 

attribute possible values 
Circuit-ID (ID) RSI 11, RS112 .... 
Correct-Circuit-Behavior (CB) Flash- 1-7, Flash- 1 .... 
Current-Circuit-Behavior (RB) Flash-7 
Fault-Type (P-'q') MissingWire84-99, MissingWire88-99 .... 
Fault-Correction (FC) yes, no 
Test (T) yes, no 

Table 7: Attribute value matrix, circuit domain 

Figure 6 is tagged with the attributes from Table 7. 
Smith and Gordon's tagging of this dialogue according 
to their subtask representation was as follows: turns 1- 
4 were I, turns 5-14 were A, turns 15-16 were D, turns 
17-18 were R, and turns 19-35 were T. Note that there 
are only two differences between the dialogue structures 
yielded by the two tagging schemes. First, in our scheme 
(Figure 6), the greetings (turns 1 and 2) are tagged with 
all the attributes. Second, Smith and Gordon's single 
tag A corresponds to two attribute tags in Table 7, which 
in our scheme defines an extra level of structure within 
assessment subdialogues. 

4 Discussion 

This paper presented the PARADISE framework for eval- 
uating spoken dialogue agents. PARADISE is a gen- 
eral framework for evaluating spoken dialogue agents 
that integrates and enhances previous work. PARADISE 
supports comparisons among dialogue strategies with a 
task representation that decouples what an agent needs 
to achieve in terms of the task requirements from how 
the agent carries out the task via dialogue. Furthermore, 
this task representation supports the calculation of perfor- 
mance over subdialogues as well as whole dialogues. In 
addition, because PARADISE's success measure normal- 
izes for task complexity, it provides a basis for comparing 
agents performing different tasks. 

The PARADISE performance measure is a function of 
both task success (~) and dialogue costs (ci), and has 
a number of advantages. First, it allows us to evaluate 
performance at any level of a dialogue, since n and ci 
can be calculated for any dialogue subtask. Since per- 
formance can be measured over any subtask, and since 
dialogue strategies can range over subdialogues or the 
whole dialogue, we can associate performance with indi- 
vidual dialogue strategies. Second, because our success 
measure n takes into account the complexity of the task, 
comparisons can be made across dialogue tasks. Third, 
~; allows us to measure partial success at achieving the 
task. Fourth, performance can combine both objective 
and subjective cost measures, and specifies how to eval- 
uate the relative contributions of those costs factors to 
overall performance. Finally, to our knowledge, we are 
the first to propose using user satisfaction to determine 

weights on factors related to performance. 
In addition, this approach is broadly integrative, in- 

corporating aspects of transaction success, concept accu- 
racy, multiple cost measures, and user satisfaction. In our 
framework, transaction success is reflected in ~;, corre- 
sponding to dialogues with a P(A) of 1. Our performance 
measure also captures information similar to concept ac- 
curacy, where low concept accuracy scores translate into 
either higher costs for acquiring information from the 
user, or lower ~ scores. 

One limitation of the PARADISE approach is that the 
task-based success measure does not reflect that some 
solutions might be better than others. For example, in the 
train timetable domain, we might like our task-based suc- 
cess measure to give higher ratings to agents that suggest 
express over local trains, or that provide helpful infor- 
mation that was not explicitly requested, especially since 
the better solutions might occur in dialogues with higher 
costs. It might be possible to address this limitation 
by using the interval scaled data version of n (Krippen- 
dorf, 1980). Another possibility is to simply substitut*. 
a domain-specific task-based success measure in the per- 
formance model for n. 

The evaluation model presented here has many applica- 
tions in apoken dialogue processing. We believe that the 
framework is also applicable to other dialogue modal- 
ities, and to human-human task-oriented dialogues. In 
addition, while there are many proposals in the litera- 
ture for algorithms for dialogue strategies that are co- 
operative, collaborative or helpful to the user (Webber 
and Joshi, 1982; Pollack, Hirschberg, and Webber, 1982; 
Joshi, Webber, and Weischedel, 1984; Chu-Carrol and 
Carberry, 1995), very few of these strategies have been 
evaluated as to whether they improve any measurable as- 
pect of a dialogue interaction. As we have demonstrated 
here, any dialogue strategy can be evaluated, so it should 
be possible to show that a cooperative response, or other 
cooperative strategy, actually improves task performance 
by reducing costs or increasing task success. We hope 
that this framework will be broadly applied in future di- 
alogue research. 
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