
An Algorithm For Generating Referential Descriptions 
With Flexible Interfaces 

Helmut Horacek 
Universit / i t  des  Saar landes  

FB 14 I n f o r m a t i k  
D-66041 Saarbr t icken,  Deu t sch land  

h o r a c e k @ c s . u n i - s b . d e  

Abstract 
Most algorithms dedicated to the generation of 
referential descriptions widely suffer from a 
fundamental problem: they make too strong 
assumptions about adjacent processing 
components, resulting in a limited coordination 
with their perceptive and linguistics data, that 
is, the provider for object descriptors and the 
lexical expression by which the chosen 
descriptors is ultimately realized. Motivated by 
this deficit, we present a new algorithm that (1) 
allows for a widely unconstrained, incremental, 
and goal-driven selection of descriptors, (2) 
integrates linguistic constraints to ensure the 
expressibility of the chosen descriptors, and (3) 
provides means to control the appearance of the 
created referring expression. Hence, the main 
achievement of our approach lies in providing a 
core algorithm that makes few assumptions 
about other processing components and 
improves the flow of control between modules. 

1 Introduction 

Generating referential descriptions I requires selecting a set 
of descriptors according to criteria which reflect humans 
preferences and verbalizing these descriptors while 
meeting natural language constraints. Over the last decade, 
(Dale, 1989, Dale, Haddock, 1991, Reiter, 1990b, Dale, 
Reiter, 1995), and others 2 have contributed to this issue 

The term 'referential description' is due to Donellan 
(Donellan, 1966). This notion signifies a referring 
expression that serves the purpose of letting the hearer 
identify a particular object out of a set of objects 
assumed to be in the current focus of attention. 
The approach undertaken by Appelt and Kronfeld 
(Appelt, 1985a, Appelt, 1985b, Kronfeld, 1986, 
Appelt, Kronfeld, 1987) is very elaborate but it suffers 
from very limited coverage, missing assessments of 
the relative benefit of alternatives, and notorious inef- 
ficiency. 

(see the systems NAOS (Novak, 1988), EPICURE (Dale, 
1988), FN (Reiter, 1990a), and IDAS (Reiter, Dale, 
1992)). Nevertheless, these approaches still suffer from 
some crucial deficits, including limited coverage (see 
(Horacek, 1995, Horacek, 1996) for an improved algo- 
rithm), and too strong assumptions about adjacent 
processing components, namely: 
• the instant availability of all descriptors for an object 

to be described, 
• the adequate expressibility of a chosen set of 

descriptors in terms of lexical items. 
Motivated by the resulting deficits, we develop a new 
algorithm that does not rely on these assumptions. It (1) 
allows for a widely unconstrained, incremental, and goal- 
driven selection of descriptors, (2) integrates linguistic 
constraints to ensure the expressibility of the chosen 
descriptors, and (3) provides means to control the appear- 
ance of the created referring expression. 

This paper is organized as follows. After having 
introduced some basic terminology, we elaborate interface 
deficits of existing algorithms, form which we derive desi- 
derata for an improved algorithm. Then we describe 
concepts to meet these desiderata, and we illustrate their 
operationalization in a schematic and in a detailed version. 
Finally, we demonstrate the increased functionality of the 
new algorithm, and we evaluate the achievements. 

2 Terminology Used 
In the scope of this paper, we adopt the terminology 
originally formulated in (Dale, 1988) and also used by 
several successor approaches. The referring expression to 
generate is required to be a distinguishing description, that 
is a description of the entity being referred to, but not to 
any other object in the current context  set. A context  set 
is defined as the set of entities the addressee is currently 
assumed to be attending to - this is similar to the set of 
entities in the focus spaces of the discourse focus stack in 
Grosz and Sidner's theory of discourse structure (Grosz, 
Sidner, 1986). Moreover, the contrast  set (or, the set of 
potent ial  dis tractors  (McDonald, 1981)), is defined to 
entail all elements of the context  set except the intended 

206 



referent. In the scope of some context set, an attribute or a 
relation applicable to the intended referent can be assigned 
its discriminatory power, 3 that is a measure similar to the 
number of potential distractors that can be removed from 
the contrast set with confidence, because this attribute or 
relation does not apply to them. 

3 Previous Algorithms and Deficits 

The existing algorithms attempt to identify the intended 
referent by determining a set of descriptors attributed to 
that referent or to another entity related to it, thereby 
keeping the set of  descriptors as small as possible. This 
minimization issue can be interpreted in different degrees 
of  specificity, which also has consequences on the asso- 
ciated computational complexity. Full brevity, the 
strongest interpretation, is underlying Dale's algorithm 
(Dale, 1989), which produces a description entailing the 
minimal number  of attributes possible, at the price of 
suffering NP-hard complexity. Two other interpretations, 
the Greedy heuristic interpretation (Dale, 1989) and the 
local brevity interpretation (Reiter, 1990a) lead to algo- 
rithms that have polynomial complexity in the same order 
of magnitude. The weakest interpretation, the incremental 
algorithm interpretation (Reiter, Dale, 1992), has still 
polynomial complexity but, unlike the last two interpre- 
tations, it is independent of the number of attributes avail- 
able for building a description. Applying this interpre- 
tation may lead to the inclusion of globally redundant 
attributes in the final description, but this is justified by 
various results of psychological experiments (see the 
summary in (Levelt 1989)). Because of these reasons, the 
incremental algorithm interpretation is generally consi- 
dered best now, and we adopt it for our algorithm, too. 

In the realization described in (Reiter, Dale, 1992), 
attributes are incrementally selected according to an a 
priori computed domain-dependent preference list, provided 
each attribute contributes to the exclusion of at least one 
potential distractor. However, there still remains the 
problem of meaningfully applying this criterion in the 
context of  nested descriptions, when the intended referent 
is to be described not only by attributes such as color and 
shape, but also in terms of  other referents related to it. 
Neither the psychological experiments nor the realization 
in (Reiter, Dale, 1992) can deal with this sort of recur- 
sion. In the generalization introduced in (Horacek, 1996), 
descriptors of  the referents are incrementally selected 
according to domain-dependent preference lists in a limited 
depth-first fashion, which leads to some sort of inflexibi- 
lity through restricting the set of  locally applicable 

3 A precise definition based on numerical values assigned 
to attribute-value pairs is given in (Dale, 1988). 

descriptors. Besides, the preference list needs to be fully 
instantiated for each referent to be described, which consti- 
tutes a significant overhead. 

An even more crucial problem lies in the fact that 
practically all algorithms proposed so far contend them- 
selves with producing a set of  descriptors rather than 
natural language expressions. They more or less impli- 
citly assume that the set of  descriptors represented as one- 
and two-place predicates can be expressed adequately in 
natural language terms. A few drastic examples should be 
sufficient to illustrate some of the problems that might 
occur due to ignoring these issues: 
(a) the bottle which is on a table on which there is a 

cup which is besides the bottle . . . .  
(a problem of organization) 

(b) the large, red, speedy, comfortable . . . . .  car 
(a problem of complexity) 

(c) the cup which is besides a bottle which is on a table 
which is left to another table and which is empty 
(a scoping problem, in addition) 

Altogether, two strong assumptions influence existing 
algorithms, namely the instant availability of all descrip- 
tors of a referent and the satisfactory expressibility of the 
chosen set of descriptors. They are responsible for three 
serious deficits negatively influencing the quality of the 
expression (the first one primarily causing inefficiency): 
1. Applicable processing strategies are restricted because 

all descriptors of some referent need to be evaluated 
before descriptors of other referents can be considered. 

2. The linguistic aspects are largely simplified and even 
neglected in parts. Because of the 'generation gap' 
(Meteer, 1992), there is no guarantee that the set of 
descriptors chosen can be expressed at all in the target 
language, not to say adequately. 

3. There is no control to assess the adequacy of a certain 
description, for instance, in terms of structural com- 
plexity, and no feedback from linguistic form 
production to property selection is provided. 

The first deficit restricts feasible architectures of a gener- 
ation system in which such an algorithm can reasonably 
be embedded because flexibility and incrementality of the 
descriptor selection task are limited. Moreover, the under- 
lying assumption is unrealistic in cognitive as well as in 
technical terms. From the perspective of  human behavior, 
it would simply be unnecessary to determine all descrip- 
tors of  a referent to be described beforehand without even 
attempting to generate a description; usually, just a few 
descriptors are sufficient for this purpose. The same consi- 
derations apply to the machine-oriented perspective: 
neither for a vision system nor for a knowledge-based 
system is it without costs to determine all descriptors of a 
certain object - especially for the vision system, the 
computational effort may be considerable. 
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The second deficit results from ignoring that the ulti- 
mate goal envisioned consists in producing a natural 
language expression that satisfies the discourse goal and 
not merely in choosing a set of descriptors by which this 
goal can in principle be achieved. In general, there is no 
guarantee that the set of descriptors chosen can be ade- 
quately expressed in the target language, given some 
repertoire of lexical operators: conceptual predicates 
cannot always be mapped straightforwardly onto lexemes 
and grammatical features so that the anticipation of their 
composability is limited. Even more importantly, matters 
of grammaticality are not taken into account at all by 
previous algorithms. Simple cases are not problematic, 
for instance, when two descriptors achieve unique identifi- 
cation and can be expressed by a simple noun phrase 
consisting of a head noun and an adjective. In more 
complex cases, however, considerations of grammaticality 
such as overloading and even interference due to scoping 
ambiguity may become a serious concern. 

The third deficit concerns the lack of control that these 
algorithms suffer from when assessing the structural 
complexity of a certain description is required, which 
certainly influences its communicative adequacy, too. The 
lack of control over the appearance of the expression to be 
generated is further augmented by the fact that any kind of 
feed-back is missing that puts the property selection 
facility in a position to take the needs of ultimately 
building a referring expression into account. Particular 
difficulties can be expected when a referential description 
needs to be produced in an incremental style, that is, 
portions of a surface expression are built and uttered once 
a further descriptor is selected, that is, prior to completion 
of the entire descriptor selection task. 

4 C o n c e p t i o n  o f  a N e w  A l g o r i t h m  

Besides the primary goal of producing a distinguishing 
and cognitively adequate description of the intended refer- 
ent, there are also the inherent secondary goals of verbally 
expressing the chosen descriptors in a natural way, and of 
applying a suitable processing strategy. In order to pursue 
these goals, we state the following desiderata: 
1. The requirements on the descriptor providing 

component should widely be unconstrained, allowing 
for incremental and goal-driven processing. 

2. A component that takes care of the expressibility of 
conceptual descriptors in terms of natural language 
expressions should be interfaced. 

3. Adequate control should be provided over the comple- 
xity and components of the referring expression. 

Several concepts are intended to meet these desiderata: 
I. In the predecessor algorithms, attributes are taken 

from an a priori computed domain-dependent prefer- 
ence list in the indicated order, provided each attribute 

contributes to the exclusion of at least one potential 
distractor. Instead, we simply allow the responsible 
component to produce descriptors incrementally, even 
from varying referents, provided the selected descriptor 
is directly related to some referent already included in 
the expression built so far. While the precise form of 
this restriction is technically motivated - it guaran- 
tees that a description built this way is always 
connected - we believe that it is also cognitively 
plausible. In order to pursue the identification goal, 
the perception facilities preferably look for salient 
places in the vicinity of the object to be identified, 
rather than to distant places. The pre-selection obtain- 
ed this way can be based on salience, eventually 
combined with some measure of computational effort. 
By applying this strategy, a best-first behavior is 
achieved instead of pure breadth-first (Reiter, Dale, 
1992), depth-first (Dale, Haddock, 1991), and iterative 
deepening (Horacek, 1995, Horacek, 1996) strategies. 

2. The algorithm interfaces a subprocess that incremen- 
tally attempts to build natural language expressions 
out of the descriptors selected. Through taking gram- 
matical and lexical constraints into account, this pro- 
cess is capable of exposing expressibility problems 
early: expressing a proposed descriptor may require 
refilling an already filled slot, or integrating the map- 
ping result of a newly inserted descriptor may lead to 
a global conflict such as unintended scope relations. 
A goal-driven aspect is added by encouraging the 
selection of descriptors whose images are candidates 
of filling empty slots in the expression built so far. 

3. The algorithm enables one to control the processing 
aspect of building the referential description and its 
complexity. A parameter is provided to specify the 
appearance of that expression in terms of slots that 
are allowed to be filled. In an incremental style, where 
parts of the referential description are uttered prior to 
its completion, the slots that can be filled by the des- 
criptor selected are substantially influenced by prece- 
dence relations (in the ordinary compositional style, 
this is simply identical to the set of yet empty slots). 

5 O p e r a t i o n a l i z a t i o n  in  t h e  A l g o r i t h m  

The new algorithm designed to incorporate these concepts 
is built on the basis of some predecessor algorithms 
(Dale, Haddock, 1991, Reiter, Dale 1992, Horacek, 1995, 
Horacek, 1996), from which we also adopt the notation. 
The algorithm is shown in two different degrees of preci- 
sion. An informal, schematic view in Figure 1 that 
abstracts from technical details is complemented by a 
detailed pseudo-code version in Figure 2. In both versions, 
the lines are marked, by IS#] in the schematic view and 
by [C#] in the pseudo-code version to ease references from 
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Check Success 

if <the intended referent is identified uniquely> 
then <exit with an identifying description> 

if <the complexity limit of the expression is reached> 
then <exit with a non-identifying description> 

Choose property 

if <no further descriptors are available> 
then <exit with a non-identifying description> 
else <call the descriptor selection component to propose the next property> 

if <the descriptor does not reduce the set of potential distactors> or 
<the referent further described is already identified uniquely> or 
<the descriptor is inferable from the description generated so far> or 
<the descriptor cannot be lexicalized with the given linguistic resources> or 
<lexicalizing the descriptor would cause a scoping problem> 
then <reject the proposed property> and goto 2 

Extend description 

<update the linguistic resources used> 
<determine properties which, when being lexicalized, are likely to fill yet empty slots> 
<update the constraints holding between referents and partial descriptions> 
goto 1 

[SI] 

[$2] 
[s3] 
[s4] 
[ss] 

[$61 

[$7] 
[s81 
[s9] 

is10] 
[Sl~l 
[sl2] 
[S13] 
IS ~4] 
[sis]  

[S16] 

[S17] 
[S18] 
[S19] 
[$20] 

Figure 1 : Schematic presentation of the algorithm, as 

the text. In addition, the identifiers used in the pseudo- 
code version are explained in Table 1 (the variables) and in 
Table 2 (the functions). 

We first illustrate the basic structure of  the procedure 
from some sort of a bird's eyes view. The algorithm 
consists of three major parts: Check success IS 1 ], Choose 
property [$6], and Extend description [S16]; this organi- 
zation stems from (Dale, Haddock, 1991) and is extended 
here. Basically, these parts are evaluated in sequence, 
which is repeated iteratively [$20]. The first part merely 
comprises two of  the algorithm's termination criteria: 
[$2], which constitutes the successful accomplishment of  
the whole task, and [$4], which reports the failure to do 
this within the given limits of  the linguistic resources, 
and corresponding return statements [$3] and [$5]. [$4] 
and [$5] constitute an extension to previous approaches. 
The second part entails a call to an external descriptor 
selection component [$9]. In the unlikely case that no 
further descriptors are available [$7] the algorithm termi- 
nates without complete success [$8]. Various tests check 
the suitability of  the descriptor proposed in the global 
context: the descriptor does not contribute further to the 
identification task (it must be an attribute) [S 10], the need 
of  further elaborating the description of that referent to 
which the proposed descriptor adds information [SI 1 ], the 
descriptor's effective contribution to the identification 
task, which may be nullified due to contextual effects 
[S12], unavailability of  lexical material to express the 

an abstraction from the detailed pseudo-code in Figure 2 

proposed descriptor as an extension to the referring expres- 
sion composed s.o far [S13], and scoping problems in the 
attempt in extending the referring expression composed so 
far [S 14]. The last two criteria are additions introduced in 
the new algorithm. In the third part, some sort of book 
keeping is carried out: evidence about the used lexical 
resources is updated IS 17], descriptors that are likely to be 
expressible by yet empty slots are determined IS 18], and 
relations between the context sets of  all referents consid- 
ered and partial descriptions are maintained [S19]. 

After this overview, we explain the algorithm in detail. 
We describe the data structure that helps controlling to 
whether or not a referent is identified and which the poten- 
tial distractors are. Next, we illustrate the interfaces to the 
two major external modules. We conclude this presen- 
tation by explaining the pseudo code, thereby pointing to 
the corresponding parts in the schematic overview. In 
companion with the variables and functions explained in 
separated tables, this description should enable the reader 
to understand the functionality of the algorithm. 

Throughout processing, the algorithm maintains a 
constraint network N which is a pair relating (a) a set of 
constraints, which correspond to predications over vari- 
ables (properties abstracted from the individuals they 
apply to) to (b) sets of  variables each of which fulfill 
these constraints in view of a given knowledge base (the 
context sets). The notation N ~ p is used to signify the 
result of  adding the constraint p to the network N. In 
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Variable Description 

r, gr,v, gv 
R 
C 

N 
C 
L 

FD 
DD 

List 
<p,r> 

refs 
P-props 
excluded 

local (r) and global referents (gr) and variables (v and gv) associated with them 
a specification of slots which the target referring expression may entail 
(contextually-motivated) expected category of the intended referent 

constraint network, a pair relating a set of constraints to sets of variables fulfilled by them 
context set, indexed by variables associated with referents (e.g., C v, Cg v) 

list of attribute-value pairs which corresponds to the constraint part of N 
functional description that is an appropriate lexical description expressing L 
distinguishing description, appearing as a pair <L,FD> 

communicative goals to pursue, expressed by Describe(r,v) 
property p ascribed to referent r 
referents already processed 
properties whose images on the lexical level are likely to fill empty slots in FD 
property-referent combinations that cannot be verbalized in the given context 

Table 1: Variables used in the algorithm 

addition, the notation [r~v]p is used to signify the result of 
replacing every occurrence of  the constant r in p by 
variable v (for an algorithm to maintain consistency see 
AC-3 (Mackworth, 1977), as used in (Haddock, 1991)). 

According to our desiderata, the new algorithm inter- 
faces two major external modules whose precise function- 
ality is outside the scope of  this paper: Next-Property and 
Insert-Unify. Next-Property [C19], [$9] selects a cogni- 
t ively-motivated candidate property to be included next. 
Generally applicable psychological preferences, such as 
basic level categories, as well as special criteria, such as 
degrees of applicability of  local relations [Gapp 1995], 
may guide this selection. It is additionally influenced by 
two parameters: refs, which specifies those referent which 
must be directly related to the chosen descriptor, and P- 

props, which entails a list of properties whose lexical 
images are likely to fill yet empty slots. 

Insert-Unify updates the data structure FD by incre- 
mentally inserting mappings of  selected descriptors [C43], 
[S13], unless Check-Scope  detects a global problem 
[C44], [S 14]. This language-dependent procedure analyzes 
the functional description created so far for potential mis- 
interpretations and scope ambiguities, which may occur in 
connection with nested postnominal modifiers or relative 
clauses that depend on an NP with a postnominal modi- 
fier. Examining these structures is much less expensive 
than a global anticipation-feedback loop, but it requires 
specialized grammatical knowledge. Whether the intended 
reading is also the preferred one depends on selectional re- 
strictions, preference criteria, and morphological features. 

Function Description 

Next-Property(refs, ps) 
A(p) 

find-best-value(A(p),V) 
basic-level-value(r,A(p)) 

rules-out(<A(p),V>) 

Assoc-var(r) 
Prototypical(p, r) 

Descriptors(r) 

Map-to(Empty-Slots(FD)) 
lnsert-Unify( FD,<v,p> ) 

Check-Scope(FD) 
Slots-of(mappings(p)) 

Rel(A(p) ) 
Salient(A(p)) 

selects a property, influenced by the connection to referents refs and by properties ps 
functor to provide access to the predicate of predication p 
procedure to determine the value of property p that describes r according to (Dale, Reiter, 1992) 
yields the basic level value of property p for referent r 
yields the set of referents that are ruled out as distractors due to the value V of property A(p) 

function to get access to the variable associated with referent r 
yields true if property p is prototypical for referent r and false otherwise 
yields the set of predicates entailed in N and holding for referent r 

yields properties which map onto the set of uninstantiated slots in FD 
inserts a lexical description of property p of the referent associated with variable v into FD 
yields true if no scope problems are expected to occur and false otherwise 
yields the slots of the set of lexical items by which predicate p can be expressed 

yields true if descriptor p is a relation and false otherwise 
yields true if salience is assigned to property p and false otherwise 

Table 2: Functions used in the algorithm 
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D_.e..~.(lh~ ( r, v, N, R, c ) 

DD ~ nil, FD ~ nil [CI] 
unique ~ false [C2] 
gr ~-- r, gv 6-- v [C3] 
excluded ~-- nil, P-props ~-- nil [C4] 
rel:~ ~ {r} [C5l 
C v ~  Cvn {x I c(x)} [C6] 
List +-- [Describe(r,v)] [C7] 

1 Check Success [C8] 
if ICxvl = 1 then [C9] 

• unique +--- true [CI0] 
return <L,FD> (as a distinguishing description) [CI I] 
endif  [C 12] 
if  IRI = 0 then [C13] 

return <L,FD> [C 14] 
(as a non-distinguishing description) [C 15] 

endif [C 16] 

2 Choose Property [C17] 
repeat  [C18] 

<r,p> ~-- Next-Property(rely,P-props) [C19] 
if p = nil then [C20] 

return <L,FD> [C21] 
(as a non-distinguishing description) lC22] 

endif [C23] 
v ~ Assoc-var(r) [C24] 
if Prototypical(p,r) or  [C25] 

((Slots-of(Mappings(p)) n R) = O) [C26] 
then excluded ~ excluded u { <r,p> I [C27] 
elseif  (p in Taxonomic-Inferences [C28] 

(Descriptors(v))) or  (ICvl -- 1) then [C29] 
excluded ~- excluded u { <r,p> } [C30] 

endif [C31 ] 
endif [C32] 
if <r,p> e excluded then lC33] 

goto 2 [C34] 
endif [C35] 
V = find-best-value(A(p), [C36] 

basic-level-value(r,A(p)))  [C37] 
if  not (((rules-out(<A(p), V>) ~ nil) and (V ~ nil)) [C38] 

or  Rel(A(p))) or  Salient(A(p)) then [C39] 
excluded ~ excluded u {<r,p> } [C40] 
goto 2 [C41 ] 

endif [C42] 
FDH ~ Insert-Unify(FD, <v,p>) [C43] 
if not Check-Scope(FDH) then [C44] 

excluded ~ excluded u {<r,p>} [C45] 
goto 2 [C46] 

endif [C47] 

3 Extend Description [C48] 
FD ~ FDH [C49] 
R ~-- R \ slots(FD) [C50] 
P-props ~-- Map-to(Empty-slots(FD)) [C51] 
p ~ [r\vlp [C52] 
if Rel(A(p)) then [C53] 

for every other constant r' in p do [C54] 
if  Assoc-var(r') = nil then [C55] 

associate r' with a new, unique variable v' [C56] 
p ~-- [r'~vqp [C57] 
ref~ ~-- rel;~ u {r7 [C58] 
List ~ Append(Lis t ,  Describe(r'v')) [C59] 

endif [C60] 
next [C61 ] 
else set the value of  attribute p to V [C62] 

endif [C63] 
N ~- N @ p [C64] 
goto 1 [C65] 

Figure 2: Detailed pseudo-code of  the new algorithm 

The first part o f  the algorithm, 'Check Success',  
comprises the algorithm's termination criteria: 
1. A distinguishing description is completed [C9-C11], 

[$2-$4], the exit in case of  full success. 
2. No more descriptors are globally available [C19- 

C22], [$7-$8].  In the predecessor algorithms, this 
check is done for each referent separately. 

3. All available slots are filled [C13-C14], [$4-$5] - 
this is a new criterion. 

The second part, 'Choose Property', is dedicated to test the 
contextual suitability o f  the candidate property proposed 
by Next-Property,  which may be inappropriate for one of  
the following reasons (criteria 3. and 5. are new ones): 
1. The property can be inferred from the description 

generated so far, or it is prototypical for the object to 
be identified and may thus yield a false implicature 
[C25, C28], [S12]. 

2. The object is already identified uniquely [C29], [SI 1]. 
3. The descriptor chosen cannot be mapped onto a slot 

of  the description generated so far [C26], [S 13]. 
4. The descriptor is an attribute, and it does not further 

reduce the set o f  potential distractors [C38], [S 10]. 
5. Incorporating the descriptor into the functional 

description created so far leads to a global conflict 
[C43-C44], [S14]. 

The third part, 'Extend Description', takes care of  updating 
some control variables. The descriptor p is fed into N 
[C64] goals to describe new referents reached via the 
relation p are put into List  [C54-C60], [S19], all slots 
filled in FD are eliminated in R [C50], [S17], and the yet 
empty slots are fed into reversed lexicalization rules to 
yield properties collected in P-props [C51 ], [S 18]. 

6 E f f e c t s  t h e  A l g o r i t h m  C a n  H a n d l e  

Space restrictions do not permit a detailed presentation of  
the new algorithm at work. Therefore, we have confined 
ourselves to a sketchy description of  the algorithm's 
behavior in a moderately complex  situation. Let us 
assume an environment consisting of  four tables ( t  I t o  

t4), roughly placed in a row, as depicted in Figure 2. The 
communicative goal is to distinguish one of  the tables 
uniquely from the other three, by a referring expression 
entailing an adjective (a prenominal modifier), a category, 
an attribute (a postnominal modifier),  and a relative 
clause, at most. The situation permits building a large 
variety of  expressions for accomplishing this purpose. 
Some interesting cases are: 

1) achieving global rather than local goal satisfaction: 
If t 3 is the intended referent, and on(bl, o )  is the descriptor 
selected next, adding the category of  the entities on top of  
t3 (here, books) is sufficient to identify t3 uniquely. Some 
predecessor algorithms, for instance (Dale, Haddock 
1991), would still attempt to distinguish b I from b2. 
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~ bt~ b2 13 ~/~"g' 
1 I I112 

12 12 t 2 

Figure 3: A scenery with tables, cups, glasses, and books 

2) producing flat expressions instead of embedded ones 
If  t 2 is the intended referent, and on(gt,t2) is the descriptor 
selected next, another descriptor must be selected to distin- 
guish t2 from t4. The descriptor selection component is 
free to choose on(c3 , t2) ,  to yield the natural, flat 
expression 'the table on which there are a glass and a cup'. 
In (Horacek 1996), the same result can be obtained 
through an adequate selection of  search parameters. The 
algorithm in (Dale, Haddock 1991) would produce the less 
natural, embedded expression 'the table on which there is a 
glass besides which there is a cup' instead. 

3) rejection of a descriptor because it can be inferred 
If tl is the intended referent, and size(tl,low) is the des- 
criptor selected this time, another descriptor must be 
added, since t 3 is also subsumed by this description. If  
part-of(t1,//) is chosen for that purpose (l I being the legs 
of tl), the descriptor size(lvshort) to describe 11 further is 
rejected because it can be inferred from {size(tl, lOw),part- 
of( t l , l l )} .  

4) Rejection of a descriptor because of a clash 
Let t 2 be the intended referent, and the descriptors left- 
of(t3,t2) and type(t3,table ) expressed by 'the one which is 
to the left of a table'. If  o n ( g l , t 2 )  is selected next, the 
only way to link it to the partial expression generated so 
far is via a relative clause, but this slot is already filled. 

5) Rejection of a descriptor because of a scope problem 
However, if the local relation in the previous example is 
expressed by 'the one to the left of a table', adding a 
relative clause expressing the objects on t3 would still 
work badly because the addressee would interpret these 
objects to be placed on t2 - Check-Scope  should recognize 
this reference problem. 

7 Evaluating the Algorithm 

The examples discussed in the previous section demon- 
strate that our procedure avoids many of the deficits pre- 
vious algorithms suffer from. Therefore, it provides excel- 

lent prerequisites for producing natural referring expres- 
sions in terms of both, descriptors selected and structural 
appearance. Whether this is actually the case depends pri- 
marily on the quality of  the external components, the des- 
criptor selection and the lexicalization component and, to 
some minor extent, on the parameterization of  the struc- 
tural appearance of the referring expression to be produced. 

As far as its complexity is concerned, the algorithm is 
in some sense even more efficient than its predecessors, 
because it does not require complete lists of descriptors to 
be produced for each referent. However, this saving is 
partially nullified by the additional operations incorpor- 
ated, especially by the application of  lexicalization 
operators and scoping verifications. Nevertheless, an 
overall analysis of  the algorithm's complexity is hardly 
possible in a general sense because 
• the operations in this algorithm are rather hetero- 

geneous, and their relative costs are far from clear, 
• the costs of  individual operations, such as descriptor 

computation in the descriptor selection component and 
constraint network maintenance, may vary signifi- 
cantly in dependency of the underlying representation, 
especially if the primary representation is a pictorial 
rather than a propositional one. 

8 Conclusion 

In this paper, we have presented a new algorithm for 
generating referential descriptions which exhibits some 
extraordinary capabilities: 
• Descriptors can be selected in a goal-driven and incre- 

mental fashion, with contributions from varying 
referents interleaving with one another. 

• A component is interfaced which attempts to express 
the descriptors chosen on the lexical representation 
level to encounter expressibility problems. 

• The structural appearance of  the resulting referential 
description can be controlled. 
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Major problems for the future are an even tighter inte- 
gration of the algorithm in the generation process as a 
whole and finding adequate concepts for dealing with 
negation and sets. 
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