
Negat ive Polarity Licensing at the Syntax-Semant ics Interface

J o h n Fry
Stanford University and Xerox P A R C

D ep t . of L ingu i s t i c s

S t a n f o r d U n i v e r s i t y

S t a n f o r d , C A 94305-2150, U S A

fry@csli, stanford, edu

A b s t r a c t

Recent work on the syntax-semantics in-
terface (see e.g. (Dalrymple et al., 1994))
uses a fragment of linear logic as a
'glue language' for assembling meanings
compositionally. This paper presents
a glue language account of how nega-
tive polarity items (e.g. ever, any) get
licensed within the scope of negative
or downward-entailing contexts (Ladusaw,
1979), e.g. Nobody ever left. This treat-
ment of licensing operates precisely at the
syntax-semantics interface, since it is car-
ried out entirely within the interface glue
language (linear logic). In addition to t h e
account of negative polarity licensing, we
show in detail how linear-logic proof nets
(Girard, 1987; Gallier, 1992) can be used
for efficient meaning deduction within this
'glue language' framework.

1 B a c k g r o u n d

A recent strain of research on the interface between
syntax and semantics, starting with (Dalrymple et
al., 1993), uses a fragment of linear logic as a 'glue
language' for assembling the meaning of a sentence
compositionally. In this approach, meaning assem-
bly is guided not by a syntactic constituent tree but
rather by the flatter functional structure (the LFG
f-structure) of the sentence.

As a brief review of this approach, consider sen-
tence (1):

(1) Everyone left.

[PRED 'LEAVE' SUBJ []
g PR D 'EWRYONE']

Each word in the sentence is associated with a
'meaning constructor' template, specified in the lex-

icon; these meaning constructors are then instanti-
ated with values from the f-structure. For sentence
(1), this produces two premises of the linear logic
glue language:

e v e r y o n e :

left:
--o H"-*t every(person, S)

g~,',-% X --o fa"-*t leave(X)

In the e v e r y o n e premise the higher-order variable
S ranges over the possible scope meanings of the
quantifier, with lower-case x acting as a traditional
first-order variable "placeholder" within the scope.
H ranges over LFG structures corresponding to the
meaning of the entire generalized quantifier3

A meaning for (1) can be derived by applying
the linear version of modus ponens, during which
(unlike classical logic) the first premise e v e r y o n e
"consumes" the second premise left. This deduc-
tion, along with the substitutions H ~-~ f~, X ~-~ x
and S ~-~ Az.leave(x), produces the final mean-
ing f~"-*t every(person, Ax.leave(x)), which is in this
simple case the only reading for the sentence.

One advantage of this deductive style of meaning
assembly is that it provides an elegant account of
quantifier scoping: each possible scope has a cor-
responding proof, obviating the need for quantifier
storage.

2 Meaning deduction via proof nets
A proo] net (Girard, 1987) is an undirected, con-
nected graph whose node labels are propositions. A

1Here we have simplified the notation of Dalrymple
et al. somewhat, for example by stripping away the uni-
versa/ quantifier operators from the variables..In this
regard, note that the lower-case variables stand for ar-
bitrary constants rather than particular terms, and gen-
erally are given limited scope within the antecedent of
the premise. Upper-case variables are Prolog-like vari-
ables that become instantiated to specific terms within
the proof, and generally their scope is the entire premise.

144

f

lg_~,_"2*~x_)~ H".*tS_(z)_
((g~-,~, zF- ~ H~.~ s(z)) (H',-*t every(person, S)) ± g,,',~e - X ~
((g='~e x) ~ ~ H"-*t S(x)) ® (H',.** every(person, S)) J- g~-,~ X @ (.f~',~, leave(X)) ± .f,,"~t M

Figure 1: Proof net for Everyone left.

theorem of multiplicative linear logic corresponds to
only one proof net; thus the manipulation of proof
nets is more efficient than sequent deduction, in
which the same theorem might have different proofs
corresponding to different orderings of the inference
steps. A further advantage of proof nets for our pur-
poses is that an invalid meaning deduction, e.g. one
corresponding to some spurious scope reading of a
particular sentence, can be illustrated by exhibiting
its defective graph which demonstrates visually why
no proof exists for it. Proof net techniques have also
been exploited within the categorial grammar com-
munity, for example for reasons of efficiency (Mor-
rill, 1996) and in order to give logical descriptions of
certain syntactic phenomena (Lecomte and Retord,
1995).

In this section we construct a proof net from the
premises for sentence (1), showing how to apply
higher-order unification to the meaning terms in the
process. We then review the O(n 2) algorithm of
Gallier (1992) for propositional (multiplicative) lin-
ear logic which checks whether a given proof net is
valid, i.e. corresponds to a proof. The complete pro-
cess for assembling a meaning from its premises will
be shown in four steps: (1) rewrite the premises in
a normalized form, (2) assemble the premises into
a graph, (3) connect together the positive ("pro-
ducer") and negative ("consumer") meaning terms,
unifying them in the process, and (4) test whether
the resulting graph encodes a proof.

2.1 Step 1: set up the sequent

Since our goal is to derive, from the premises of sen-
tence (1), a meaning M for the f-structure f of the
entire sentence, what we seek is a proof of the form

everyone ® left I- fa-,-q M.

Glue language semantics has so far been restricted
to the multiplicative fragment of linear logic, which
uses only the multiplicative conjunction operator
® (tensor) and the linear implication operator --o.
The same fragment is obtained by replacing --o
with the operators ~ and ±, where ~ (par) is the

multiplicative 'or '2 and ± is linear negation and
(A --o B) - (A ± ~ B). Using the version with-
out --% we normalize two sided sequents of the form
A1, . . . , Am t- B1, . . . , B , into right-sided sequents
of the form I- A ~ , . . . , A : m, B1 , . . . , B , . (In sequent
representations of this style, the comma represents
® on the left side of the sequent and ~ on the right
side.) In our new format, then, the proof takes the
form

F ev e ry o n e ±, left ± , .f~',ot M.

The proof net further requires that sequents be in
negation normal form, in which negation is applied
only to atomic terms. 3 Moving the negations in-
ward (the usual double-negation and 'de Morgan'
properties hold), and displaying the full premises,
we obtain the normalized sequent

}- ((g~-,.%x) ± ~ H~S(x))
®(H"~t every(person, S)) ±,
g~"~e X ® (l~-,~t leave(X))' ,
f~',~t M.

2.2 Step 2: create the graph

The next step is to create a graph whose nodes con-
sist of all the terms which occur in the sequent. That
is, a node is created for each literal C and for each
negated literal C ' ; a node is created for each com-
pound term A ® B or A ~ B; and nodes are also
created for its subterms A and B. Then, for each
node of the form A ~ B, we draw a soft edge in
the form of a horizontal dashed line connecting it to
nodes A and B. For each node of the form A ® B , we
draw a hard edge (solid line) connecting it to nodes
A and B. For the example at hand, this produces
the graph in Figure 1 (ignoring the curved edges at
the top).

2This notation is Gallier's (1992).
3Note that we refer to noncompound terms as 'literal'

or 'atomic' terms because they are atomic from the point
of view of the glue language, even though these terms
are in fact of the form S',~ M, where S is an expression
over LFG structures and M is a type-r expression in the
meaning language.

145

2.3 Step 3: connect the Uterals

The final step in assembling the proof net is to con-
nect together the literal nodes at the top of the
graph. It is at this stage that unification is applied
to the variables in order to assign them the values
they will assume in the final meaning. Each differ-
ent way of connecting the literals and instantiating
their variables corresponds to a different reading for
the sentence.

For each literal, we draw an edge connecting it to
a matching literal of opposite sign; i.e. each literal A
is connected to a literal B " where A unifies with B.
Every literal in the graph must be connected in this
way. If for some literal A there exists no matching
literal B of opposite sign then the graph does not
encode a proof and the algorithm fails.

In this process the unifications apply to whole ex-
pressions of the form S - ~ M, including both vari-
ables over LFG structures and variables over mean-
ing terms. For the meaning terms, this requires
a limited higher-order unification scheme that pro-
duces the unifier ~x.p (x) from a second-order term T
and a first-order term p(z). As noted by Dalrymple
et al. (to appear), all the apparatus that is required
for their simple intensional meaning language falls
within the decidable l)~ fragment of Miller (1990),
and therefore can be implemented as an extension
of a first-order unification scheme such as that of
Prolog.

For the example at hand, there is only one way to
connect the literals (and hence at most one read-
ing for the sentence), as shown in Figure 1. At
this stage, the unifications would bind the vari-
ables in Figure 1 as follows: X ~-~ x, H ~-~ f~,
S ,-+)~x.leave(x), M ~+ every(person,)~x.leaue(x)).

2.4 S t e p 4: test the g r a p h for va l id i ty

Finally, we apply Gallier's (1992) algorithm to the
connected graph in order to check that it corre-
sponds to a proof. This algorithm recursively de-
composes the graph from the bot tom up while check-
ing for cycles. Here we present the algorithm infor-
mally; for proofs of its correctness and O(n 2) time
complexity see (Gallier, 1992).

Base case: If the graph consists of a single link be-
tween literals A and A -L, the algorithm succeeds and
the graph corresponds to a proof.

Recursive case 1: Begin the decomposition by
deleting the bottom-level par nodes. If there is some
terminal node A ~ B connected to higher nodes A
and B, delete A l~ B. This of course eliminates the
dashed edge from A ~ B to A and to B, but does not

remove nodes A and B. Then run the algorithm on
the resulting smaller (possibly unconnected) graph.

Recursive case 2: Otherwise, if no terminal par
node is available, find a terminal tensor node to
delete. This case is more complicated because not
every way of deleting a tensor node necessarily leads
to success, even for a valid proof net. Just choose
some terminal tensor node A ® B. If deleting that
node results in a single, connected (i.e. cyclic) graph,
then that node was not a valid splitting tensor and
a different one must be chosen instead, or else halt
with failure if none is available. Otherwise, delete
A ® B, which leaves nodes A and B belonging to
two unconnected graphs G1 and G2. Then run the
algorithm on G1 and G2.

This process will be demonstrated in the examples
which follow.

3 A g l u e l a n g u a g e t r e a t m e n t o f N P I
l i c e n s i n g

Ladusaw (1979) established what is now a well-
known generalization in semantics, namely that neg-
ative polarity lexical items (NPI's, e.g. any, ever)
are licensed within the scope of downward-entailing
operators (e.g. no, few). For example, the NPI ever
occurs felicitously in a context like No one ever left
but not in *John ever left3 Ladusaw showed that
the status of a lexical item as a NPI or licenser de-
pends on its meaning; i.e. on semantic rather than
syntactic or lexical properties. On the other hand,
the requirement that NPI 's be licensed in order to
appear felicitously in a sentence is a constraint on
surface syntactic form. So the domain of NPI li-
censing is really the inter/ace between syntax and
semantics, where meanings are composed under syn-
tactic guidance.

This section gives an implementation of NPI li-
censing at the syntax-semantics interface using glue
language. No separate proof or interpretation appa-
ratus is required, only modification of the relevant
meaning constructors specified in the lexicon.

3.1 Meaning constructors for N P I ' s

There is a resource-based interpretation of the NPI
licensing problem: the negative or decreasing licens-
ing operator must make available a resource, call it e,
which will license the NPI's, if any, within its scope.
If no such resource is made available the NPI 's are
unlicensed and the sentence is rejected.

4Here we consider only 'rightward' licensing (within
the scope of the quantifier), but this approach ap-
plies equally well to 'leftward' licensing (within the
restriction).

146

~ t
(f~-,-*t s ing(Y)) ± f~,",.*t

(go"*, At) ± g~ "*e Y ® (f~"*t s ing(Y)) ± (re,".*, P ® l) @ ((/~"-*, yet(P)) ± ~ l J-)]~"-*t M

Figure 2: Invalid proof net of *AI sang yet.

The NPI 's must be made to require the l resource.
The way one implements such a requirement in lin-
ear logic is to put the required resource on the left
side of the implication operator --o. This is precisely
our approach. However, since the NPI is just 'bor-
rowing' the license, not consuming it (after all, more
than one NPI may be licensed, as in No one ever
saw anyone), we also add the resource to the right
hand side of the implication. That is, for a mean-
ing constructor of the form A --o B, we can make a
corresponding NPI meaning constructor of the form

(A ® £) --o (B ® e).

For example, the meaning constructor proposed in
(Dalrymple et al., 1993) for the sentential modifier
obviously is

obvious ly : f~,,,z t P ---o fa"~t obviously(P).

Under this analysis of sentential modification, NPI
adverbs such as yet or ever would take the same
form, but with the licensing apparatus added:

ever: (fa.,~t P ® £) --o (fa"*t ever(P) ® g).

This technique can be readily applied to the other
categories of NPI as well. In the case of the NPI
quantifier phrase anyone 5 the licensing apparatus is
added to the earlier template for everyone to pro-
duce the meaning constructor

a n y o n e : (ga".~e X ---o H"*t S(x) @ £)
---o (H"-*t any(person, S) ® £).

The only function of the £ --o £ pattern inside an
NPI is to consume the resource ~ and then produce
it again. However, for this to happen, the resource
£ will have to be generated by some licenser whose
scope includes the NPI, as we show below. If no
outside £ resource is made available, then the extra-
neous, unconsumed g material in the NPI guarantees
that no proof will be generated. In proof net terms,

5Any also has another, so-called 'free choice' inter-
pretation (as in e.g. Anyone will do) (Ladusaw, 1979;
Kadmon and Landman, 1993), which we ignore here.

the output £ cannot feed back into the input l with-
out producing a cycle.

We now demonstrate how the deduction is blocked
for a sentence containing an unlicensed NPI such as
(2).

(2) ,AI sang yet.

{[PR .o
The relevant premises are

AI: g~"* e AI
sang: g~'~e Y ---o f, ,"*t s ing(Y)
yet: (fa,~,t p ® £) --o (fa,x,+t ye t (P) ® £)

The graph of (2), shown in Figure 2, does not encode
a proof. The reason is shown in Figure 3. At this
point in the algorithm, we have deleted the leftmost
terminal tensor node. However, the only remaining
terminal tensor node cannot be deleted, since doing
so would produce a single connected subgraph; the
cycle is in the edge from £ to £±. At this point the
algorithm fails and no meaning is derived.

3.2 M e a n i n g c o n s t r u c t o r s for N P I l icensers

It is clear from the proposal so far that lexical items
which license NPI 's must make available a £ resource
within their scope which can be consumed by the
NPI. However, that is not enough; a licenser can
still occur inside a sentence without an NPI, as in
e.g. No one left. The resource accounting of linear
logic requires t h a t w e 'clean up' by consuming any
excess £ resources in order for the meaning deduction
to go through.

Fortunately, we can solve this problem within the
licenser's meaning constructor itself. For a lexical
category whose meaning constructor is of the form
A--®B, we assign to the NPI licensers of that cate-
gory the meaning constructor

(e -o (A ® t)) --o B.

By its logical structure, being embedded inside an-
other implication, the inner implication here serves

147

~ . Y
(9.~., At) ± (].~-'t P @ t) @ ((.f~-., ye t (P)) x ~ l ~) J.~-*, M

Figure 3: Point of failure. Bot tom tensor node cannot be deleted.

to introduce 'hypothetical ' material. All of the NPI
licensing occurs within the hypothetical (left) side
of the outermost implication. Since the l resource
is made available to the NPI only within this hypo-
thetical, it is guaranteed that the NPI is assembled
within, and therefore falls under, the scope of the li-
censer. Furthermore, the formula is 'self cleaning', in
that the £ resource, even if not used by an NPI, does
not survive the hypothetical and so cannot affect the
meaning of the licenser in some other way. That is,
the licensing constructor (£ --o (A ® l)) --o B can
derive all of the same meanings as the nonlicensing
version A --o B.

Fact 1 (g-o(A ® l))--oB F- A--oB

Proof We construct the proof net of the equivalent
right-sided sequent

I- (g~ I~ (A ® g)) ® B ±, A ± , B

and then test that it is valid.

(£ ~ I ~ (A ® £)) ® B ± A 1 B

==~

A ± B

::=$

£± A®~ A ± ~zg AA ± []

This self-cleaning property means that a licensing
resource £ is exactly t h a t - - a license. Within the

scope of the licenser, the g is available to be used
once, several times (in a "chain" of NPI ' s which pass
it along), or not at all, as required. 6

A simple example is provided by the NPIAicensing
adverb rarely. We modify our sentential adverb
template to create a meaning constructor for rarely
which licenses an NPI within the sentence it modi-
fies.

r a re ly : (£ -.-o (fa,~t p ® £)) --.o fa,,~t rarely(P)

The case of licensing quantifier phrases such as
nobody and Jew students follows the same pattern.
For example, nobody takes the form

n o b o d y : ((g#"*e x ® £) -o (H"-*t S(x) ® £))
--o H"~t no(person, S).

We can now derive a meaning for sentence (3), in
which nobody and anyone play the roles of licenser
and NPI, respectively.

(3) Nobody saw anyone.

 :[PREo ' OBODY']
h:[PRED 'ANYONE']

Normally, a sentence with two quantifiers would
generate two different scope readings--in this case,
(4) and (5).

(4) f~"~t no(person, ~x.any(person, Ay.see(x, y)))

(5) f a"-* t any(person, Ay.no(person, Ax.see (x, y)))

However, Ladusaw's generalization is that NPI 's
are licensed within the scope of their licensers. In
fact, the semantics of any prevent it from taking
wide scope in such a case (Kadmon and Landman,
1993; Ladusaw, 1979, p. 96-101). Our analysis, then,
should derive (4) but block (5).

6This multiple-use effect can be achieved more di-
rectly using the exponential operator !; however this un-
necessary step would take us outside of the multiplica-
live fragment of linear logic and preclude the proof net
techniques described earlier.

148

~2

o

~o

~o

f~
o
~9

~D

~9

@

o

The premises are

n o b o d y :

s a w :

anyone:

((g,,"~ x ® £) .-o (H".*t S(x) ® ~))
--o H~-*t no(person, S)

(ga',ze X ® ha'x~e Y) --o fa-,~t see(X, Y)
(h~.% y --o I~.*, T(y) ® i)
--o (I~.,t any(person, T) ® £)

The proof net for reading (4) is shown in Figure 4. T
As required, the net in Figure 4, corresponding to
wide scope for no, is valid. The first step in the proof
of Figure 4 is to delete the only available splitting
tensor, which is boxed in the figure. A second way
of linking the positive and negative literals in Fig-
ure 4 produces a net which corresponds to (5), the
spurious reading in which any has wide scope. In
that graph, however, all three of the available termi-
nal tensor nodes produce a single, connected (cyclic)
graph if deleted, so decomposition cannot even be-
gin and the algorithm fails. Once again, it is the
licensing resources which are enforcing the desired
constraint.

4 C a t e g o r i a l g r a m m a r a p p r o a c h e s

The £ atom used here is somewhat analogous to the
(negative) lexical 'monotonicity markers' proposed
by S~chez Valencia (1991; 1995) and Dowty (1994)
for categorial grammar. In these approaches, cate-
gories of the form A/B axe marked with monotonic-
ity properties, i.e. as A+/B +, A+/B -, A - / B +, or
A - / B - , and similarly for left-leaning categories of
the form A\B. Then monotonicity constraints can
be enforced using category assignments like the fol-
lowing from (Dowty, 1994):

no: { (S+/VP-) /CN-
(S-/VP+)/CN + }

any: (S - / V P -) / C N -
ever: V P - / V P -

S~chez Valencia and Dowty, however, are less
concerned with the distribution of NPI's than they
are with using monotonicity properties to character-
ize valid inference patterns, an issue which we have
ignored here. Hence their work emphasizes logical
polarity, where an odd number of negative marks
indicates negative polarity, and an even number of
negatives cancel each other to produce positive po-
larity. For example, the category of no above "flips"
the polarity of its argument. By contrast, our sys-
tem, like Ladusaw's (1979) original proposal, is what
Dowty (1994, p. 134-137) would call "intuitionistic":

~The subscripts have been stripped from the formulas
in order to save space in the diagram.

149

since multiple negative contexts do not cancel each
other out, we permit doubly-licensed NPI's as in
Nobody rarely sees anyone. To handle such cases,
while at the same time accounting for monotonic in-
ference properties, Dowty (1994) proposes a double-
marking framework whereby categories like A - / B +
are marked for both logical polarity and syntactic
polarity.

5 C o n c l u s i o n

We have elaborated on and extended slightly the
'glue language' approach to semantics of Dalrymple
et al. It was shown how linear logic proof nets can
be used for efficient natural-language meaning de-
ductions in this framework. We then presented a
glue language treatment of negative polarity licens-
ing which ensures that NPI's are licensed within the
semantic scope of their licensers, following (Ladu-
saw, 1979). This system uses no new global rules
or features, nor ambiguous lexical entries, but only
the addition of Cs to the relevant items within the
lexicon. The licensing takes place precisely at the
syntax-semantics interface, since it is implemented
entirely in the interface glue language. Finally, we
noted briefly some similarities and differences be-
tween this system and categorial grammar 'mono-
tonicity marking' approaches.

6 A c k n o w l e d g e m e n t s

I'm grateful to Mary Dalrymple, John Lamping and
Stanley Peters for very helpful discussions of this
material. Vineet Gupta, Martin Kay, Fernando
Pereira and four anonymous reviewers also provided
helpful comments on several points. All remaining
errors are naturally my own.

R e f e r e n c e s

Mary Dalrymple, John Lamping, and Vijay
Saraswat. 1993. LFG semantics via constraints.
In Proceedings of the 6th Meeting of the European
Association for Computational Linguistics, Uni-
versity of Utrecht, April.

Mary Dalrymple, John Lamping, Fernando Pereira,
and Vijay Saraswat. 1994. A deductive account
of quantification in LFG. In Makoto Kanazawa,
Christopher J. Pifi6n, and Henriette de Swart, ed-
itors, QuantiJ~ers, Deduction, and Context. CSLI
Publications, Stanford, CA.

Mary Dalrymple, John Lamping, Fernando Pereira,
and Vijay Saraswat. To appear. Quantifiers,
anaphora, and intensionality. Journal of Logic,
Language and Information.

David Dowty. 1994. The role of negative polar-
ity and concord marking in natural language rea-
soning. In Mandy Harvey and Lynn Santelmann,
editors, Proceedings of SALT IV, pages 114-144,
Ithaca, NY. Cornell University.

Jean Gallier. 1992. Constructive logics. Part II:
Linear logic and proof nets. MS, Department of
Computer and Information Science, University of
Pennsylvania.

Jean-Yves Girard. 1987. Linear logic. Theoretical
Computer Science, 50.

Nirit Kadmon and Fred Landman. 1993. Any. Lin-
guistics and Philosophy 16, pages 353-422.

William A. Ladusaw. 1979. Polarity Sensitivity as
Inherent Scope Relations. Ph.D. thesis, University
of Texas, Austin. Reprinted in Jorge Hankamer,
editor, Outstanding Dissertations in Linguistics.
Garland, 1980.

Alain Lecomte and Christian Retor6. 1995. Pom-
set logic as an alternative categorial grammar. In
Glyn V. Morrill and Richard T. Oehrle, editors,
Formal Grammar. Proceedings of the Conference
of the European Summer School in Logic, Lan-
guage, and Information, Barcelona.

Dale A. Miller. 1990. A logic programming language
with lambda abstraction, function variables and
simple unification. In Peter Schroeder-Heister, ed-
itor, Extensions of Logic Programming, Lecture
Notes in Artificial Intelligence. Springer-Verlag.

Glyn V. Morrill. 1996. Memoisation of categorial
proof nets: parallelism in categorial processing. In
V. Michele Abrusci and Claudia Casadio, editors,
Proceedings of the Roma Workshop on Proofs and
Linguistic Categories, Rome.

Victor Shnchez Valencia. 1991. Studies on Natu-
ral Logic and Categorial Grammar. Ph.D. thesis,
University of Amsterdam.

Victor Shnchez Valencia. 1995. Parsing-driven in-
ference: natural logic. Linguistic Analysis, 25(3-
4):258-285.

150

