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A b s t r a c t  

Recent work on the syntax-semantics in- 
terface (see e.g. (Dalrymple et al., 1994)) 
uses a fragment of linear logic as a 
'glue language' for assembling meanings 
compositionally. This paper presents 
a glue language account of how nega- 
tive polarity items (e.g. ever, any) get 
licensed within the scope of negative 
or downward-entailing contexts (Ladusaw, 
1979), e.g. Nobody ever left. This treat- 
ment of licensing operates precisely at the 
syntax-semantics interface, since it is car- 
ried out entirely within the interface glue 
language (linear logic). In addition to t h e  
account of negative polarity licensing, we 
show in detail how linear-logic proof nets 
(Girard, 1987; Gallier, 1992) can be used 
for efficient meaning deduction within this 
'glue language' framework. 

1 B a c k g r o u n d  

A recent strain of research on the interface between 
syntax and semantics, starting with (Dalrymple et 
al., 1993), uses a fragment of linear logic as a 'glue 
language' for assembling the meaning of a sentence 
compositionally. In this approach, meaning assem- 
bly is guided not by a syntactic constituent tree but 
rather by the flatter functional structure (the LFG 
f-structure) of the sentence. 

As a brief review of this approach, consider sen- 
tence (1): 

(1) Everyone left. 

[ PRED 'LEAVE' SUBJ [ ] 
g PR D 'EWRYONE'] 

Each word in the sentence is associated with a 
'meaning constructor' template, specified in the lex- 

icon; these meaning constructors are then instanti- 
ated with values from the f-structure. For sentence 
(1), this produces two premises of the linear logic 
glue language: 

e v e r y o n e :  

left: 
--o H"-*t every(person, S) 

g~,',-% X --o fa"-*t leave(X) 

In the e v e r y o n e  premise the higher-order variable 
S ranges over the possible scope meanings of the 
quantifier, with lower-case x acting as a traditional 
first-order variable "placeholder" within the scope. 
H ranges over LFG structures corresponding to the 
meaning of the entire generalized quantifier3 

A meaning for (1) can be derived by applying 
the linear version of modus ponens, during which 
(unlike classical logic) the first premise e v e r y o n e  
"consumes" the second premise left. This deduc- 
tion, along with the substitutions H ~-~ f~, X ~-~ x 
and S ~-~ Az.leave(x), produces the final mean- 
ing f~"-*t every(person, Ax.leave(x)), which is in this 
simple case the only reading for the sentence. 

One advantage of this deductive style of meaning 
assembly is that it provides an elegant account of 
quantifier scoping: each possible scope has a cor- 
responding proof, obviating the need for quantifier 
storage. 

2 Meaning deduction via proof nets 
A proo] net (Girard, 1987) is an undirected, con- 
nected graph whose node labels are propositions. A 

1Here we have simplified the notation of Dalrymple 
et al. somewhat, for example by stripping away the uni- 
versa/ quantifier operators from the variables..In this 
regard, note that the lower-case variables stand for ar- 
bitrary constants rather than particular terms, and gen- 
erally are given limited scope within the antecedent of 
the premise. Upper-case variables are Prolog-like vari- 
ables that become instantiated to specific terms within 
the proof, and generally their scope is the entire premise. 

144 
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lg_~,_"2*~x_)~ H".*tS_(z)_ 
((g~-,~, zF- ~ H~.~ s(z)) ( H',-*t every(person, S) ) ± g,,',~e - X ~  
((g='~e x) ~ ~ H"-*t S(x)) ® (H',.** every(person, S)) J- g~-,~ X @ (.f~',~, leave(X)) ± .f,,"~t M 

Figure 1: Proof net for Everyone left. 

theorem of multiplicative linear logic corresponds to 
only one proof net; thus the manipulation of proof 
nets is more efficient than sequent deduction, in 
which the same theorem might have different proofs 
corresponding to different orderings of the inference 
steps. A further advantage of proof nets for our pur- 
poses is that an invalid meaning deduction, e.g. one 
corresponding to some spurious scope reading of a 
particular sentence, can be illustrated by exhibiting 
its defective graph which demonstrates visually why 
no proof exists for it. Proof net techniques have also 
been exploited within the categorial grammar com- 
munity, for example for reasons of efficiency (Mor- 
rill, 1996) and in order to give logical descriptions of 
certain syntactic phenomena (Lecomte and Retord, 
1995). 

In this section we construct a proof net from the 
premises for sentence (1), showing how to apply 
higher-order unification to the meaning terms in the 
process. We then review the O(n 2) algorithm of 
Gallier (1992) for propositional (multiplicative) lin- 
ear logic which checks whether a given proof net is 
valid, i.e. corresponds to a proof. The complete pro- 
cess for assembling a meaning from its premises will 
be shown in four steps: (1) rewrite the premises in 
a normalized form, (2) assemble the premises into 
a graph, (3) connect together the positive ("pro- 
ducer") and negative ("consumer") meaning terms, 
unifying them in the process, and (4) test whether 
the resulting graph encodes a proof. 

2.1 Step 1: set up the  sequent 

Since our goal is to derive, from the premises of sen- 
tence (1), a meaning M for the f-structure f of the 
entire sentence, what we seek is a proof of the form 

everyone ® left I- fa-,-q M. 

Glue language semantics has so far been restricted 
to the multiplicative fragment of linear logic, which 
uses only the multiplicative conjunction operator 
® (tensor) and the linear implication operator --o. 
The same fragment is obtained by replacing --o 
with the operators ~ and ±, where ~ (par) is the 

multiplicative 'or '2 and ± is linear negation and 
(A --o B) - (A ± ~ B). Using the version with- 
out --% we normalize two sided sequents of the form 
A1, . . . , Am t- B1, . . . , B ,  into right-sided sequents 
of the form I- A ~ , . . . ,  A :  m, B1 , . . . ,  B , .  (In sequent 
representations of this style, the comma represents 
® on the left side of the sequent and ~ on the right 
side.) In our new format, then, the proof takes the 
form 

F ev e ry o n e  ±, left  ± , .f~',ot M.  

The proof net further requires that sequents be in 
negation normal form, in which negation is applied 
only to atomic terms. 3 Moving the negations in- 
ward (the usual double-negation and 'de Morgan' 
properties hold), and displaying the full premises, 
we obtain the normalized sequent 

}- ((g~-,.%x) ± ~ H~S(x)) 
®(H"~t every(person, S ) ) ±, 
g~"~e X ® (l~-,~t leave(X))' ,  
f~',~t M. 

2.2 Step 2: create the  graph 

The next step is to create a graph whose nodes con- 
sist of all the terms which occur in the sequent. That  
is, a node is created for each literal C and for each 
negated literal C ' ;  a node is created for each com- 
pound term A ® B or A ~ B; and nodes are also 
created for its subterms A and B. Then, for each 
node of the form A ~ B, we draw a soft edge in 
the form of a horizontal dashed line connecting it to 
nodes A and B. For each node of the form A ® B ,  we 
draw a hard edge (solid line) connecting it to nodes 
A and B. For the example at hand, this produces 
the graph in Figure 1 (ignoring the curved edges at 
the top). 

2This notation is Gallier's (1992). 
3Note that we refer to noncompound terms as 'literal' 

or 'atomic' terms because they are atomic from the point 
of view of the glue language, even though these terms 
are in fact of the form S',~ M, where S is an expression 
over LFG structures and M is a type-r expression in the 
meaning language. 
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2.3 Step 3: connect the Uterals  

The final step in assembling the proof net is to con- 
nect together the literal nodes at the top of the 
graph. It is at this stage that  unification is applied 
to the variables in order to assign them the values 
they will assume in the final meaning. Each differ- 
ent way of connecting the literals and instantiating 
their variables corresponds to a different reading for 
the sentence. 

For each literal, we draw an edge connecting it to 
a matching literal of opposite sign; i.e. each literal A 
is connected to a literal B "  where A unifies with B. 
Every literal in the graph must be connected in this 
way. If for some literal A there exists no matching 
literal B of opposite sign then the graph does not 
encode a proof and the algorithm fails. 

In this process the unifications apply to whole ex- 
pressions of the form S - ~  M, including both vari- 
ables over LFG structures and variables over mean- 
ing terms. For the meaning terms, this requires 
a limited higher-order unification scheme that  pro- 
duces the unifier ~x.p (x) from a second-order term T 
and a first-order term p(z). As noted by Dalrymple 
et al. (to appear), all the apparatus that  is required 
for their simple intensional meaning language falls 
within the decidable l)~ fragment of Miller (1990), 
and therefore can be implemented as an extension 
of a first-order unification scheme such as that  of 
Prolog. 

For the example at hand, there is only one way to 
connect the literals (and hence at most one read- 
ing for the sentence), as shown in Figure 1. At 
this stage, the unifications would bind the vari- 
ables in Figure 1 as follows: X ~-~ x, H ~-~ f~, 
S ,-+ )~x.leave(x), M ~+ every(person, )~x.leaue(x)). 

2.4 S t e p  4: test the g r a p h  for  va l id i ty  

Finally, we apply Gallier's (1992) algorithm to the 
connected graph in order to check that  it corre- 
sponds to a proof. This algorithm recursively de- 
composes the graph from the bot tom up while check- 
ing for cycles. Here we present the algorithm infor- 
mally; for proofs of its correctness and O(n 2) time 
complexity see (Gallier, 1992). 

Base case: If the graph consists of a single link be- 
tween literals A and A -L, the algorithm succeeds and 
the graph corresponds to a proof. 

Recursive case 1: Begin the decomposition by 
deleting the bottom-level par nodes. If there is some 
terminal node A ~ B connected to higher nodes A 
and B, delete A l~ B. This of course eliminates the 
dashed edge from A ~ B to A and to B, but does not 

remove nodes A and B. Then run the algorithm on 
the resulting smaller (possibly unconnected) graph. 

Recursive case 2: Otherwise, if no terminal par 
node is available, find a terminal tensor node to 
delete. This case is more complicated because not 
every way of deleting a tensor node necessarily leads 
to success, even for a valid proof net. Just choose 
some terminal tensor node A ® B. If deleting that  
node results in a single, connected (i.e. cyclic) graph, 
then that  node was not a valid splitting tensor and 
a different one must be chosen instead, or else halt 
with failure if none is available. Otherwise, delete 
A ® B, which leaves nodes A and B belonging to 
two unconnected graphs G1 and G2. Then run the 
algorithm on G1 and G2. 

This process will be demonstrated in the examples 
which follow. 

3 A g l u e  l a n g u a g e  t r e a t m e n t  o f  N P I  
l i c e n s i n g  

Ladusaw (1979) established what is now a well- 
known generalization in semantics, namely that  neg- 
ative polarity lexical items (NPI's,  e.g. any, ever) 
are licensed within the scope of downward-entailing 
operators (e.g. no, few). For example, the NPI ever 
occurs felicitously in a context like No one ever left 
but not in *John ever left3 Ladusaw showed that  
the status of a lexical item as a NPI  or licenser de- 
pends on its meaning; i.e. on semantic rather than 
syntactic or lexical properties. On the other hand, 
the requirement that  NPI 's  be licensed in order to 
appear felicitously in a sentence is a constraint on 
surface syntactic form. So the domain of NPI li- 
censing is really the inter/ace between syntax and 
semantics, where meanings are composed under syn- 
tactic guidance. 

This section gives an implementation of NPI li- 
censing at the syntax-semantics interface using glue 
language. No separate proof or interpretation appa- 
ratus is required, only modification of the relevant 
meaning constructors specified in the lexicon. 

3.1 Meaning constructors for  N P I ' s  

There is a resource-based interpretation of the NPI 
licensing problem: the negative or decreasing licens- 
ing operator must make available a resource, call it e, 
which will license the NPI's,  if any, within its scope. 
If no such resource is made available the NPI 's  are 
unlicensed and the sentence is rejected. 

4Here we consider only 'rightward' licensing (within 
the scope of the quantifier), but this approach ap- 
plies equally well to 'leftward' licensing (within the 
restriction). 
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~ t  
( f~-,-*t s ing(Y))  ± f~,",.*t 

(go"*, At) ± g~ "*e Y ® (f~"*t s ing(Y))  ± (re,".*, P ® l) @ ((/~"-*, yet(P))  ± ~ l J- ) ]~"-*t M 

Figure 2: Invalid proof net of *AI sang yet. 

The NPI 's  must be made to require the l resource. 
The way one implements such a requirement in lin- 
ear logic is to put the required resource on the left 
side of the implication operator --o. This is precisely 
our approach. However, since the NPI is just 'bor- 
rowing' the license, not consuming it (after all, more 
than one NPI may be licensed, as in No one ever 
saw anyone), we also add the resource to the right 
hand side of the implication. That  is, for a mean- 
ing constructor of the form A --o B, we can make a 
corresponding NPI meaning constructor of the form 

(A ® £) --o (B ® e). 

For example, the meaning constructor proposed in 
(Dalrymple et al., 1993) for the sentential modifier 
obviously is 

obvious ly :  f~,,,z t P ---o fa"~t obviously(P). 

Under this analysis of sentential modification, NPI  
adverbs such as yet or ever would take the same 
form, but with the licensing apparatus added: 

ever:  (fa.,~t P ® £) --o ( fa"*t  ever(P) ® g). 

This technique can be readily applied to the other 
categories of NPI as well. In the case of the NPI 
quantifier phrase anyone 5 the licensing apparatus is 
added to the earlier template for everyone to pro- 
duce the meaning constructor 

a n y o n e :  (ga".~e X ---o H"*t  S(x)  @ £) 
---o (H"-*t any(person, S) ® £). 

The only function of the £ --o £ pattern inside an 
NPI  is to consume the resource ~ and then produce 
it again. However, for this to happen, the resource 
£ will have to be generated by some licenser whose 
scope includes the NPI, as we show below. If no 
outside £ resource is made available, then the extra- 
neous, unconsumed g material in the NPI guarantees 
that  no proof will be generated. In proof net terms, 

5Any also has another, so-called 'free choice' inter- 
pretation (as in e.g. Anyone will do) (Ladusaw, 1979; 
Kadmon and Landman, 1993), which we ignore here. 

the output £ cannot feed back into the input l with- 
out producing a cycle. 

We now demonstrate how the deduction is blocked 
for a sentence containing an unlicensed NPI such as 
(2). 

(2) ,AI sang yet. 

{[PR .o 
The relevant premises are 

AI: g~"* e AI 
sang: g~'~e Y ---o f, ,"*t s ing(Y)  
yet:  (fa,~,t p ® £) --o (fa,x,+t ye t (P)  ® £) 

The graph of (2), shown in Figure 2, does not encode 
a proof. The reason is shown in Figure 3. At this 
point in the algorithm, we have deleted the leftmost 
terminal tensor node. However, the only remaining 
terminal tensor node cannot be deleted, since doing 
so would produce a single connected subgraph; the 
cycle is in the edge from £ to £±. At this point the 
algorithm fails and no meaning is derived. 

3.2 M e a n i n g  c o n s t r u c t o r s  for  N P I  l icensers  

It is clear from the proposal so far that  lexical items 
which license NPI 's  must make available a £ resource 
within their scope which can be consumed by the 
NPI. However, that  is not enough; a licenser can 
still occur inside a sentence without an NPI, as in 
e.g. No one left. The resource accounting of linear 
logic requires t h a t w e  'clean up' by consuming any 
excess £ resources in order for the meaning deduction 
to go through. 

Fortunately, we can solve this problem within the 
licenser's meaning constructor itself. For a lexical 
category whose meaning constructor is of the form 
A--®B, we assign to the NPI licensers of that  cate- 
gory the meaning constructor 

(e -o  (A ® t)) --o B. 

By its logical structure, being embedded inside an- 
other implication, the inner implication here serves 
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~ . Y  
(9.~., At) ± (].~-'t P @ t) @ ((.f~-., ye t (P) )  x ~ l ~) J.~-*, M 

Figure 3: Point of failure. Bot tom tensor node cannot be deleted. 

to introduce 'hypothetical '  material. All of the NPI 
licensing occurs within the hypothetical (left) side 
of the outermost implication. Since the l resource 
is made available to the NPI only within this hypo- 
thetical, it is guaranteed that  the NPI is assembled 
within, and therefore falls under, the scope of the li- 
censer. Furthermore, the formula is 'self cleaning', in 
that  the £ resource, even if not used by an NPI, does 
not survive the hypothetical and so cannot affect the 
meaning of the licenser in some other way. That  is, 
the licensing constructor (£ --o (A ® l)) --o B can 
derive all of the same meanings as the nonlicensing 
version A --o B. 

Fact  1 (g-o(A ® l))--oB F- A--oB 

Proof We construct the proof net of the equivalent 
right-sided sequent 

I- (g~ I~ (A ® g)) ® B ±, A ± , B 

and then test that it is valid. 

( £ ~ I ~ ( A ® £ ) ) ® B  ± A 1 B  

==~ 

A ± B 

::=$ 

£± A®~ A ± ~zg AA ± [] 

This self-cleaning property means that  a licensing 
resource £ is exactly t h a t - - a  license. Within the 

scope of the licenser, the g is available to be used 
once, several times (in a "chain" of NPI ' s  which pass 
it along), or not at all, as required. 6 

A simple example is provided by the NPIAicensing 
adverb rarely. We modify our sentential adverb 
template to create a meaning constructor for rarely 
which licenses an NPI within the sentence it modi- 
fies. 

r a re ly :  (£ -.-o (fa,~t p ® £)) --.o fa,,~t rarely(P) 

The case of licensing quantifier phrases such as 
nobody and Jew students follows the same pattern.  
For example, nobody takes the form 

n o b o d y :  ((g#"*e x ® £) -o  (H"-*t S(x)  ® £)) 
--o H"~t no(person, S). 

We can now derive a meaning for sentence (3), in 
which nobody and anyone play the roles of licenser 
and NPI, respectively. 

(3) Nobody saw anyone. 

 :[PREo ' OBODY'] 
h:[PRED 'ANYONE'] 

Normally, a sentence with two quantifiers would 
generate two different scope readings--in this case, 
(4) and (5). 

(4) f~"~t no(person, ~x.any(person, Ay.see(x, y) ) ) 

(5) f a"-* t any(person, Ay.no(person, Ax.see ( x, y ) ) ) 

However, Ladusaw's generalization is that  NPI 's  
are licensed within the scope of their licensers. In 
fact, the semantics of any prevent it from taking 
wide scope in such a case (Kadmon and Landman, 
1993; Ladusaw, 1979, p. 96-101). Our analysis, then, 
should derive (4) but block (5). 

6This multiple-use effect can be achieved more di- 
rectly using the exponential operator !; however this un- 
necessary step would take us outside of the multiplica- 
live fragment of linear logic and preclude the proof net 
techniques described earlier. 
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The premises are 

n o b o d y :  

s a w :  

anyone:  

((g,,"~ x ® £) .-o (H".*t S(x) ® ~)) 
--o H~-*t no(person, S) 

(ga',ze X ® ha'x~e Y) --o fa-,~t see(X, Y) 
(h~.% y --o I~.*, T(y) ® i) 
--o (I~.,t any(person, T) ® £) 

The proof net for reading (4) is shown in Figure 4. T 
As required, the net in Figure 4, corresponding to 
wide scope for no, is valid. The first step in the proof 
of Figure 4 is to delete the only available splitting 
tensor, which is boxed in the figure. A second way 
of linking the positive and negative literals in Fig- 
ure 4 produces a net which corresponds to (5), the 
spurious reading in which any has wide scope. In 
that graph, however, all three of the available termi- 
nal tensor nodes produce a single, connected (cyclic) 
graph if deleted, so decomposition cannot even be- 
gin and the algorithm fails. Once again, it is the 
licensing resources which are enforcing the desired 
constraint. 

4 C a t e g o r i a l  g r a m m a r  a p p r o a c h e s  

The £ atom used here is somewhat analogous to the 
(negative) lexical 'monotonicity markers' proposed 
by S~chez Valencia (1991; 1995) and Dowty (1994) 
for categorial grammar. In these approaches, cate- 
gories of the form A/B axe marked with monotonic- 
ity properties, i.e. as A+/B +, A+/B -, A - / B  +, or 
A - / B - ,  and similarly for left-leaning categories of 
the form A\B. Then monotonicity constraints can 
be enforced using category assignments like the fol- 
lowing from (Dowty, 1994): 

no: { (S+/VP-) /CN- 
(S-/VP+)/CN + } 

any:  ( S - / V P - ) / C N -  
ever: V P - / V P -  

S~chez Valencia and Dowty, however, are less 
concerned with the distribution of NPI's than they 
are with using monotonicity properties to character- 
ize valid inference patterns, an issue which we have 
ignored here. Hence their work emphasizes logical 
polarity, where an odd number of negative marks 
indicates negative polarity, and an even number of 
negatives cancel each other to produce positive po- 
larity. For example, the category of no above "flips" 
the polarity of its argument. By contrast, our sys- 
tem, like Ladusaw's (1979) original proposal, is what 
Dowty (1994, p. 134-137) would call "intuitionistic": 

~The subscripts have been stripped from the formulas 
in order to save space in the diagram. 
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since multiple negative contexts do not cancel each 
other out, we permit doubly-licensed NPI's as in 
Nobody rarely sees anyone. To handle such cases, 
while at the same time accounting for monotonic in- 
ference properties, Dowty (1994) proposes a double- 
marking framework whereby categories like A - / B  + 
are marked for both logical polarity and syntactic 
polarity. 

5 C o n c l u s i o n  

We have elaborated on and extended slightly the 
'glue language' approach to semantics of Dalrymple 
et al. It was shown how linear logic proof nets can 
be used for efficient natural-language meaning de- 
ductions in this framework. We then presented a 
glue language treatment of negative polarity licens- 
ing which ensures that NPI's are licensed within the 
semantic scope of their licensers, following (Ladu- 
saw, 1979). This system uses no new global rules 
or features, nor ambiguous lexical entries, but only 
the addition of Cs to the relevant items within the 
lexicon. The licensing takes place precisely at the 
syntax-semantics interface, since it is implemented 
entirely in the interface glue language. Finally, we 
noted briefly some similarities and differences be- 
tween this system and categorial grammar 'mono- 
tonicity marking' approaches. 
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