
Fast Context-Free Parsing Requires Fast Boolean Matrix
Multiplication

L i l l i an L e e
Division of Engineer ing and Applied Sciences

Harvard Universi ty
33 Oxford Street

Cambridge, MA 012138
llee~eecs, harvard, edu

A b s t r a c t

Valiant showed that Boolean matrix
multiplication (BMM) can be used for
CFG parsing. We prove a dual re-
sult: CFG parsers running in time
O([Gl[w[3-e) on a grammar G and a
string w can be used to multiply m x m
Boolean matrices in time O(m3-e/3).
In the process we also provide a formal
definition of parsing motivated by an
informal notion due to Lang. Our re-
sult establishes one of the first limita-
tions on general CFG parsing: a fast,
practical CFG parser would yield a
fast, practical BMM algorithm, which
is not believed to exist.

1 I n t r o d u c t i o n

The context-free grammar (CFG) formalism
was developed during the birth of the field of
computational linguistics. The standard meth-
ods for CFG parsing are the CKY algorithm
(Kasami, 1965; Younger, 1967) and Earley's al-
gorithm (Earley, 1970), both of which have a
worst-case running time of O(gN 3) for a CFG
(in Chomsky normal form) of size g and a string
of length N. Graham et al. (1980) give a vari-
ant of Earley's algorithm which runs in time
O(gN3/log N). Valiant's parsing method is the
asymptotically fastest known (Valiant, 1975).
It uses Boolean matrix multiplication (BMM)
to speed up the dynamic programming in the
CKY algorithm: its worst-case running time is
O(gM(N)), where M(rn) is the time it takes to
multiply two m x m Boolean matrices together.

The standard method for multiplying ma-
trices takes time O(m3). There exist matrix
multiplication algorithms with time complexity
O(m3-J); for instance, Strassen's has a worst-
case running time of O(m 2"sl) (Strassen, 1969),
and the fastest currently known has a worst-case
running time of O(m 2"376) (Coppersmith and
Winograd, 1990). Unfortunately, the constants
involved are so large that these fast algorithms
(with the possible exception of Strassen's) can-
not be used in practice. As matrix multi-
plication is a very well-studied problem (see
Strassen's historical account (Strassen, 1990,
section 10)), it is highly unlikely that simple,
practical fast matrix multiplication algorithms
exist. Since the best BMM algorithms all rely
on general matrix multiplication 1, it is widely
believed that there are no practical O(m 3-~)
BMM algorithms.

One might therefore hope to find a way
to speed up CFG parsing without relying on
matrix multiplication. However, we show in
this paper that fast CFG parsing requires
fast Boolean matrix multiplication in a precise
sense: any parser running in time O(gN 3-e)
that represents parse data in a retrieval-efficient
way can be converted with little computational
overhead into a O(m 3-e/3) BMM algorithm.
Since it is very improbable that practical fast
matrix multiplication algorithms exist, we thus
establish one of the first nontrivial limitations
on practical CFG parsing.

1The "four Russians" algorithm (Arlazarov et al.,
1970), the fastest BMM algorithm that does not sim-
ply use ordinary matrix multiplication, has worst-case
running time O(mS/log m).

Our technique, adapted from that used by
Sat ta (1994) for tree-adjoining grammar (TAG)
parsing, is to show that BMM can be efficiently
reduced to CFG parsing. Satta's result does not
apply to CFG parsing, since it explicitly relies
on the properties of TAGs that allow them to
generate non-context-free languages.

2 D e f i n i t i o n s

A Boolean matrix is a matrix with entries from
the set {0, 1}. A Boolean matrix multiplication
algorithm takes as input two m x m Boolean ma-
trices A and B and returns their Boolean prod-
uct A x B , which is the m × m Boolean matrix
C whose entries c~j are defined by

m

= V (a,k A bkj).
k = l

That is, c.ij = 1 if and only if there exists a
number k, 1 < k < m, such that aik = bkj = 1.

We use the usual definition of a context-free
grammar (CFG) as a 4-tuple G = (E, V, R, S),
where E is the set of terminals, V is the set
of nonterminals, R is the set of productions,
and S C V is the start symbol. Given a string
w ~ W l W 2 . . . W N over E*, where each wi is an
element of E, we use the notation ~ to denote
the substring wiwi+l " " " W j - l W j •

We will be concerned with the notion of
c-derivations, which are substring derivations
that are consistent with a derivation of an entire
string. Intuitively, A =~* w~i is a c-derivation if
it is consistent with at least one parse of w.

D e f i n i t i o n 1 Let G = (E, V, R, S) be a CFG,
and let w = w l w 2 . . . w N , wi E ~. A nontermi-

J hal A E V c-derives (consistently derives) w i i f
and only i f the following conditions hold:

• A ~ * w~, and

• S =::~* i - - l A N
'u] 1 1 4 w i t 1 .

(These conditions together imply that S ~ * w.)

We would like our results to apply to all
"practical" parsers, but what does it mean for
a parser to be practical? First, we would like
to be able to retrieve constituent information

for all possible parses of a string (after all,
the recovery of structural information is what
distinguishes parsing algorithms from recogni-
tion algorithms); such information is very use-
ful for applications like natural language under-
standing, where multiple interpretations for a
sentence may result from different constituent
structures. Therefore, practical parsers should
keep track of c-derivations. Secondly, a parser
should create an output structure from which
information about constituents can be retrieved
in an efficient way - - Satta (1994) points out an
observation of Lang to the effect that one can
consider the input string itself to be a retrieval-
inefficient representation of parse information.
In short, we require practical parsers to output
a representation of the parse forest for a string
that allows efficient retrieval of parse informa-
tion. Lang in fact argues that parsing means
exactly the production of a shared forest struc-
ture "from which any specific parse can be ex-
tracted in time linear with the size of the ex-
tracted parse tree" (Lang, 1994, pg. 487), and
Sat ta (1994) makes this assumption as well.

These notions lead us to equate practical
parsers with the class of c-parsers, which keep
track of c-derivations and may also calculate
general substring derivations as well.

D e f i n i t i o n 2 A c-parser is an algorithm that
takes a CFG grammar G = (E , V , R , S) and
string w E E* as input and produces output
~G,w; J:G,w acts as an oracle about parse in-
formation, as follows:

• I f A c-derives w~, then .7:G,w(A,i,j) =
"yes ".

I f A ~ * J :which implies that A does not • W i

c-derive wJi), then :7:G,w(A, i, j) = "no".

• J:G,w answers queries in constant time.

Note that the answer 5~c,w gives can be arbi-
J trary if A :=v* J but A does not c-derive w i . w i

The constant-time constraint encodes the no-
tion that information extraction is efficient; ob-
serve that this is a stronger condition than that
called for by Lang.

] 0

We define c-parsers in this way to make the
class of c-parsers as broad as possible. If we
had changed the first condition to "If A derives

. . . " , then Earley parsers would be excluded,
since they do not keep track of all substring
derivations. If we had written the second con-
dition as "If A does not c-derive ur~i , then . . . ",
then CKY parsers would not be c-parsers, since
they keep track of all substring derivations, not
just c-derivations. So as it stands, the class of
c-parsers includes tabular parsers (e.g. CKY),
where 5rG,w is the table of substring deriva-
tions, and Earley-type parsers, where ~'G,~ is
the chart. Indeed, it includes all of the parsing
algorithms mentioned in the introduction, and
can be thought of as a formalization of Lang's
informal definition of parsing.

3 T h e r e d u c t i o n

We will reduce BMM to c-parsing, thus prov-
ing that any c-parsing algorithm can be used
as a Boolean matrix multiplication algorithm.
Our method, adapted from that of Satta (1994)
(who considered the problem of parsing with
tree-adjoining grammars), is to encode informa-
tion about Boolean matrices into a CFG. Thus,
given two Boolean matrices, we need to produce
a string and a grammar such that parsing the
string with respect to the grammar yields out-
put from which information about the product
of the two matrices can be easily retrieved.

We can sketch the behavior of the grammar
as follows. Suppose entries aik in A and bkj in
B are both 1. Assume we have some way to
break up array indices into two parts so that
i can be reconstructed from il and i2, j can
be reconstructed from j l and J2, and k can be
reconstructed from kl and k2. (We will describe
a way to do this later.) Then, we will have
the following derivation (for a quantity 5 to be
defined later) :

Cil ,Jl ~ Ail ,kl Bkl ,jl

derived by Ail,k I derived by Bkl,jl

The key thing to observe is that Cil,jt generates

two nonterminals whose "inner" indices match,
and that these two nonterminals generate sub-
strings that lie exactly next to each other. The
"inner" indices constitute a check on kl, and the
substring adjacency constitutes a check on k2.

Let A and B be two Boolean matrices, each
of size m x m, and let C be their Boolean matrix
product, C = A x B. In the rest of this section,
we consider A, B, C, and m to be fixed. Set
n = [ml/3] , and set 5 = n + 2 . We will be
constructing a string of length 35; we choose 5
slightly larger than n in order to avoid having
epsilon-productions in our grammar.

Recall that c/j is non-zero if and only if we
can find a non-zero aik and a non-zero ~ j such

that k -- k. In essence, we need simply check
for the equality of indices k and k. We will
break matrix indices into two parts: our gram-
mar will check whether the first parts of k and

are equal, and our string will check whether
the second parts are also equal, as we sketched
above. Encoding the indices ensures that the
grammar is of as small a size as possible, which
will be important for our time bound results.

Our index encoding function is as follows. Let
i be a matrix index, 1 < i < m. Then we define
the func t ion / (i) -- (f l (i) , f2(i)) by

f l (i) = [i /nJ (0 < f l (i) <_ n2), and

f2(i) = (i m o d n) + 2 (2 _ f 2 (i) _ < n + l) .

Since f l and f2 are essentially the quotient and
remainder of integer division of i by n, we can
retrieve i from (f l (i) , f 2 (i)) . We will use the
notational shorthand of using subscripts instead
of the functions f l and f2, that is, we write il
and i2 for f l(i) and f2(i).

It is now our job to create a CFG G =
(E, ~/: R, S) and a string w that encode infor-
mation about A and B and express constraints
about their product C. Our plan is to include
a set of nonterminals {Cp,q : 1 < p ,q < n 2} in
V so that cij = 1 if and only if Cil,jl c-derives

w j2+2~ In section 3.11 we describe a version i2
of G and prove it has this c-derivation property.
Then, in section 3.2 we explain that G can easily
be converted to Chomsky normal form in such
a way as to preserve c-derivations.

11

We choose the set of terminals to be E =
{we : l < g < 3 n + 6 } , and choose the string
to be parsed to be w = WlW2. "'w3n+6.
We consider w to be made up of three
parts, x, y, and z, each of size 6: w =

W l W 2 • " " Wn+2 Wn+3 • " " W2n+4 W2n+5 " " " W3n+6. ~ ~ - ~ ,
z ~ z

Observe that for any i, 1 < i < m, wi.~ lies
within x, wi2+~ lies within y, and wi~+2~ lies
within z, since

i2 E [2, n + l] ,

i2 + 6 ~ [n + 4, 2n + 3], and

i2 + 26 E [2n + 6,3n + 5].

3.1 T h e g r a m m a r

Now we begin building the grammar G =
(E, V, R, S). We start with the nonterminals
V = {S} and the production set R = ~. We
add nonterminal W to V for generating arbi-
t rary non-empty substrings of w; thus we need
the productions

(W-rules) W > w t W l w e , 1 < g < 3n + 6.

Next we encode the entries of the input matrices
A and B in our grammar. We include sets of
non-terminals { Ap,q : 1 < p, q < n 2 } and { Bp,q :
1 < p, q < n2}. Then, for every non-zero entry
aij in A, we add the production

(A-rules) Ai~,j~ > wi~Wwj2+~.

For every non-zero entry bij in B, we add the
production

(B-rules) B Q , j l > zoi2+l+6Wzoj2+26.

We need to represent entries of C, so we cre-
ate nonterminals {Cp,q : 1 < p, q <_ n 2 } and pro-
ductions

(C - r u l e s) Cp,q > Ap,rBr,q, 1 < p, q, r < n 2.

Finally, we complete the construction with
productions for the start symbol S:

(S-rules) S > WCp,qW, l <_ p ,q < n 2.

We now prove the following result about the
grammar and string we have just described.

T h e o r e m 1 For 1 <_ i , j < m , the entry cij
in C is non-zero if and only i f Ci~,jl c-derives
W j2 +26

i2

Proof. Fix i and j.
Let us prove the :'only if" direction first.

Thus, suppose c~j = 1. Then there exists a k
such that aik = bkj = 1. Figure 1 sketches how

Cil,j~ c-derives w~. -~+2~ iS

C l a i m 1 Ci~,j~ 0 * w. ~)+2~ i2

The production Cil,jl > Ah,k~Bkx,j ~ is one of
the C-rules in our grammar. Since aik = 1,
Aix,k~ > wi2 Wwk2+~ is one of our A-rules, and
since bkj -: 1, B k l , j I) W k 2 + l + s W w j 2 + 2 6 is

one of our B-rules. Finally, since i2 + 1 < (k2 +
6) -- 1 and (k2 + 1 + 6) + 1 <__ (j2 +2~) - 1,
we have W 0 " .k2+~-1 and W =~* w j2+2~-~ w i 2 + l k2+2+6 '
since both substrings are of length at least one.
Therefore,

Cil ,jl o Ail ,kl Bkl ,jl

=:~* Wi2 W W k 2 + ~ W k 2 + l + 6 W w j 2 + 2 6

derived by Aq,k~ der ivedby B~,~

:=~ , j2+26
Wi 2 ,

and Claim 1 follows,

C l a i m 2 S 0 " " i~-lc~ ~,,3n+6
Wl ~ i l ,jl uJ j2+26+l •

This claim is essentially trivial, since by
the definition of the S-rules, we know that
S =~* WCi l , j l W . We need only show that nei-

w 3 n + 6 ther w~ "2-1 nor j2+26+1 is the empty string (and
hence can be derived by W); since 1 < i2 - 1
and j2 + 26 + 1 <__ 3n + 6, the claim holds.

Claims 1 and 2 together prove that Cil,jl c-
derives W j2+26 i2 , as required. 2

Next we prove the "if" direction. Sup-
pose Cil,j~ c-derives W j2+26 which by definition i2 '

means Cil,jl o * W j2+26 Then there must be i2
a derivation resulting from the application of a
C-rule as follows:

Ci l , j l 0 A i l , k , Bk , , j l =~* w~. .'2+2ci i2

2This proof would have been s impler if we had al-
lowed W to derive the empty string. However, we avoid
eps i lon-product ions in order to facil i tate the conversion
to Chomsky normal form, discussed later.

12

W

S

Cil,j~ W

W 1 . . . W i 2 . . . W k 2 + S W k 2 + l q - ~ . . . W j 2 + 2 8 . . . W 3 n + 6

x y z

Figure 1: Schematic of the derivation process when aik -~ bkj ---- 1. The substrings derived by Ail,k~
and Bkl , j l lie right next to each other.

for some k ~. It must be the case tha t for some
~, Ail,k' =:~* w ~. and Bk',jl 0 " ~ j ~+2~ B u t z2 ~ £ + 1 "

then we mus t have the product ions Ail,k'
wi2Wwt and Bk',j l > ?.l)£+lWWj2+2 5 with ~ =
k" + ~ for some k". But we can only have such
product ions if there exists a number k such tha t
kl = k t, k2 = k n, aik = 1, and bkj ---- 1; and this
implies tha t cij = 1. •

Examina t ion of the proof reveals tha t we have
also shown the following two corollaries.

C o r o l l a r y 1 For 1 < i , j < m, cij = 1 if and
only if Cil,jl =:b* j2+2~ W i 2

C o r o l l a r y 2 S =~* w if and only if C is not
the all-zeroes matrix.

Let us now calculate the size of G. V consists
of O((n2) 2) = O(m 4/3) nonterminals. R con-
tains O(n) W-rules and O((n2) 2) = O(m 4/3)
S-rules. There are at most m 2 A-rules, since
we have an A-rule for each non-zero entry in A;
similarly, there are at most m 2 B-rules. And
lastly, there are (n2) 3 = O(m 2) C-rules. There-
fore, our g rammar is of size O(m2); since G en-
codes matr ices A and B, it is of opt imal size.

3.2 C h o m s k y n o r m a l f o r m

We would like our results to be t rue for the
largest class of parsers possible. Since some
parsers require the input g rammar to be in
Chomsky normal form (CNF), we therefore wish
to construct a CNF version G ~ of G. However,
in order to preserve time bounds, we desire tha t
O(IG'I) = O(]GI), and we also require tha t The-
orem 1 holds for G ~ as well as G.

The s tandard algori thm for convert ing CFGs
to CNF can yield a quadrat ic blow-up in the
size of the grammar and thus is clearly un-
satisfactory for our purposes. However, since
G contains no epsilon-productions or unit pro-
ductions, it is easy to see tha t we can convert
G simply by introducing a small (O(n)) num-
ber of nonterminals without changing any c-
derivations for the Cp,q. Thus, from now on we
will simply assume that G is in CNF.

3.3 T i m e b o u n d s

We are now in a position to prove our relation
between t ime bounds for Boolean ma t r ix multi-
plication and t ime bounds for CFG parsing.

13

T h e o r e m 2 Any c-parser P with running time
O(T(g)t(N)) on grammars of size g and
strings of length N can be converted into
a BMM algorithm Mp that runs in time
O(max(m 2, T(m2)t(mU3))). In particular, if P
takes time O(gN3-e), then l~/Ip runs in time
0(m3-~/3).

Proof. Me acts as follows. Given two Boolean
m x m matrices A and B, it constructs G and
w as described above. It feeds G and w to P,
which outputs $'c,w- To compute the prod-
uct matrix C, Me queries for each i and j ,
1 < i , j < m, whether Ci~,jl derives wJ ~+2~

- - - - ' t 2

(we do not need to ask whether Cil,j~ c-derives

w']J ~+26 because of corollary 1), setting cij appro- i2
priately. By definition of c-parsers, each such
query takes constant time. Let us compute the
running time of Me. It takes O(m 2) time to
read the input matrices. Since G is of size
O(rn 2) and Iwl = O(ml/3), it takes O(m 2) time
to build the input to P, which then computes
5rG,w in time O(T(m2)t(ml/3)). Retrieving C
takes O(m2). So the total time spent by Mp is
O(max(m 2, T(m2)t(mU3))), as was claimed.

In the case where T(g) = g and t(N) = N 3-e,
M p has a running time of O(m2(ml/3) a-e) =
O(m 2+1-£/3) = O(m3-e'/3). II

The case in which P takes time linear in the
grammar size is of the most interest, since in
natural language processing applications, the
grammar tends to be far larger than the strings
to be parsed. Observe that theorem 2 trans-
lates the running time of the standard CFG
parsers, O(gN3), into the running time of the
s tandard BMM algorithm, O(m3). Also, a c-
parser with running time O(gN 2"43) would yield
a matrix multiplication algorithm rivalling that
of Strassen's, and a c-parser with running time
bet ter than O(gN H2) could be converted into
a BMM method faster than Coppersmith and
Winograd. As per the discussion above, even if
such parsers exist, they would in all likelihood
not be very practical. Finally, we note that if
a lower bound on BMM of the form f~(m 3-a)
were found, then we would have an immediate
lower bound of ~(N 3-3a) on c-parsers running
in time linear in g.

4 R e l a t e d r e s u l t s a n d c o n c l u s i o n

We have shown that fast practical CFG parsing
algorithms yield fast practical BMM algorithms.
Given that fast practical BMM algorithms are
unlikely to exist, we have established a limita-
tion on practical CFG parsing.

Valiant (personal communication) notes that
there is a reduction of m × m Boolean matrix
multiplication checking to context-free recog-
nition of strings of length m2; this reduc-
tion is alluded to in a footnote of a paper
by Harrison and Havel (1974). However, this
reduction converts a parser running in time
O(Iwl 1"5) to a BMM checking algorithm run-
ning in time O(m 3) (the running time of the
standard multiplication method), whereas our
result says that sub-cubic practical parsers are
quite unlikely; thus, our result is quite a bit
stronger.

Seiferas (1986) gives a simple proof of
N 2 an ~t(lo-Q-W) lower bound (originally due to

Gallaire (1969)) for the problem of on-line lin-
ear CFL recognition by multi tape Turing ma-
chines. However, his results concern on-line
recognition, which is a harder problem than
parsing, and so do not apply to the general off-
line parsing case.

Finally, we recall Valiant's reduction of
CFG parsing to boolean matrix multiplication
(Valiant, 1975); it is rather pleasing to have the
reduction cycle completed.

5 A c k n o w l e d g m e n t s

I thank Joshua Goodman, Rebecca Hwa, Jon
Kleinberg, and Stuart Shieber for many helpful
comments and conversations. Thanks to Les
Valiant for pointing out the "folklore" reduc-
tion. This material is based upon work sup-
ported in part by the National Science Foun-
dation under Grant No. IRI-9350192. I also
gratefully acknowledge partial support from
an NSF Graduate Fellowship and an AT&T
G R P W / A L F P grant. Finally, thanks to Gior-
gio Satta, who mailed me a preprint of his
BMM/TAG paper several years ago.

14

R e f e r e n c e s

Arlazarov, V. L., E. A. Dinic, M. A. Kronrod, and
I. A. Farad~ev. 1970. On economical construc-
tion of the transitive closure of an oriented graph.
Soviet Math. Dokl., 11:1209-1210. English trans-
lation of the Russian article in Dokl. Akad. Nauk
SSSR 194 (1970).

Coppersmith, Don and Shmuel Winograd. 1990.
Matrix multiplication via arithmetic progression.
Journal of Symbolic Computation, 9(3):251-280.
Special Issue on Computational Algebraic Com-
plexity.

Earley, Jay. 1970.
ing algorithm.
13(2):94-102.

An efficient context-free pars-
Communications of the A CM,

Gallaire, Herv& 1969. Recognition time of context-
free languages by on-line turing machines. Infor-
mation and Control, 15(3):288-295, September.

Graham, Susan L., Michael A. Harrison, and Wal-
ter L. Ruzzo. 1980. An improved context-free
recognizer. A CM Transactions on Programming
Languages and Systems, 2(3):415-462.

Harrison, Michael and Ivan Havel. 1974. On the
parsing of deterministic languages. Journal of the
ACM, 21(4):525-548, October.

Kasami, Tadao. 1965. An efficient recognition and
syntax algorithm for context-free languages. Sci-
entific Report AFCRL-65-758, Air Force Cam-
bridge Research Lab, Bedford, MA.

Lang, Bernard. 1 9 9 4 . Recognition can be
harder than parsing. Computational Intelligence,
10(4):486-494, November.

Satta, Giorgio. 1994. Tree-adjoining grammar pars-
ing and boolean matrix multiplication. Computa-
tional Linguistics, 20(2):173-191, June.

Seiferas, Joel. 1986. A simplified lower bound
for context-free-language recognition. Informa-
tion and Control, 69:255-260.

Strassen, Volker. 1969. Gaussian elimination is not
optimal. Numerische Mathematik, 14(3):354-356.

Strassen, Volker. 1990. Algebraic complexity the-
ory. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume A. Elsevier
Science Publishers, chapter 11, pages 633-672.

Valiant, Leslie G. 1975. General context-free recog-
nition in less than cubic time. Journal of Com-
puter and System Sciences, 10:308-315.

Younger, Daniel H. 1967. Recognition and parsing
of context-free languages in time n 3. Information
and Control, 10(2):189-208.

15

