
L i n g u i s t i c S t r u c t u r e as C o m p o s i t i o n and P e r t u r b a t i o n

Carl de Marcken
MIT AI Laboratory, NE43-769

545 Technology Square
Cambridge, MA, 02139, USA

cgdemarc@ai.mit.edu

Abstract

This paper discusses the problem of learn-
ing language from unprocessed text and
speech signals, concentrating on the prob-
lem of learning a lexicon. In particular, it
argues for a representation of language in
which linguistic parameters like words are
built by perturbing a composition of exist-
ing parameters. The power of the represen-
tation is demonstrated by several examples
in text segmentation and compression, ac-
quisition of a lexicon from raw speech, and
the acquisition of mappings between text
and artificial representations of meaning.

1 Motivation

Language is a robust and necessarily redundant
communication mechanism. Its redundancies com-
monly manifest themselves as predictable patterns
in speech and text signals, and it is largely these
patterns that enable text and speech compression.
Naturally, many patterns in text and speech re-
flect interesting properties of language. For ex-
ample, the is both an unusually frequent sequence
of letters and an English word. This suggests us-
ing compression as a means of acquiring under-
lying properties of language from surface signals.
The general methodology of language-learning-by-
compression is not new. Some notable early propo-
nents included Chomsky (1955), Solomonoff (1960)
and Harris (1968), and compression has been used
as the basis for a wide variety of computer programs
that attack unsupervised learning in language; see
(Olivier, 1968; Wolff, 1982; Ellison, 1992; Stolcke,
1994; Chen, 1995; Cartwright and Brent, 1994)
among others.

1.1 P a t t e r n s a n d L a n g u a g e

Unfortunately, while surface patterns often reflect
interesting linguistic mechanisms and parameters,
they do not always do so. Three classes of exam-
ples serve to illustrate this.

1.1.1 E x t r a l l n g u l s t l c P a t t e r n s

The sequence it was a dark and stormy night is
a pat tern in the sense it occurs in text far more
frequently than the frequencies of its letters would
suggest, but that does not make it a lexical or gram-
matical primitive: it is the product of a complex
mixture of linguistic and extra-linguistic processes.
Such patterns can be indistinguishable from desired
ones. For example, in the Brown corpus (Francis and
Kucera, 1982) scratching her nose occurs 5 times,
a corpus-specific idiosyncrasy. This phrase has the
same structure as the idiom kicking the bucket. It is
difficult to imagine any induction algorithm learn-
ing kicking the bucket from this corpus without also
(mistakenly) learning scratching her nose.

1.1.2 T h e D e f i n i t i o n o f I n t e r e s t i n g

This discussion presumes there is a set of desired
patterns to extract from input signals. What is this
set? For example, is kicking the bucket a proper lexi-
cal unit? The answer depends on factors external to
the unsupervised learning framework. For the pur-
poses of machine translation or information retrieval
this sequence is an important idiom, but with re-
spect to speech recognition it is unremarkable. Sim-
ilar questions could be asked of subword units like
syllables. Plainly, the answers depends on the learn-
ing context, and not on the signal itself.

1.1.3 T h e D e f i n i t i o n o f P a t t e r n

Any statistical definition of pattern depends on
an underlying model. For instance, the sequence the
dog occurs much more frequently than one would
expect given an independence assumption about let-
ters. But for a model with knowledge of syntax and
word frequencies, there is nothing remarkable about
the phrase. Since all existing models have flaws, pat-
terns will always be learned that are artifacts of im-
perfections in the learning algorithm.

These examples seem to imply that unsupervised
induction will never converge to ideal grammars and
lexicons. While there is t ru th to this, the rest of this
paper describes a representation of language that
bypasses many of the apparent difficulties.

335

[national football league]

~ O ~] [football] [league]
/ \ / ' . .

tnation] [al] [foot] [ball] [a] [gue]

,1/ / \ I - ~ \ /
[n] [t] [b] [1] [g]

Figure I: A compositional representation.

Code Length Components
000 --- Co(2 Co, c,

001 = c,h. 3 c,,c~,ce
010 = cln 2 ca, c ,

0110 ----- c 4 C.,Co, Cm,Cc
0111 = C nh. 3 C CoS, C, he

10000 ----

Figure 2: A coding of the first few words of a hypo-
thetical lexicon. The first two columns can be coded
succinctly, leaving the cost of pointers to component
words as the dominant cost of both the lexicon and
the representation of the input.

2 A C o m p o s i t i o n a l R e p r e s e n t a t i o n

The examples in sections 1.1.1 and 1.1.2 seem to
imply that any unsupervised language learning pro-
gram that returns only one segmentation of the in-
put is bound to make many mistakes. And sec-
tion 1.1.3 implies that the decisions about linguistic
units must be made relative to their representations.
Both problems can be solved if linguistic units (for
now, words in the lexicon) are built by composition
of other units. For example, kicking the bucket might
be built by composing kicking, the and bucket. 1 Of
course, if a word is merely the composition of its
parts, there is nothing interesting about it and no
reason to include it in the lexicon. So the motiva-
tion for including a word in the lexicon must be that
it function differently from its parts. Thus a word is
a perturbat ion of a composition.

In the case of kicking the bucket the perturbation is
one of both meaning and frequency. For scratching
her nose the perturbat ion may just be frequency. ~
This is a very natural representation from the view-
point of language. It correctly predicts that both
phrases inherit their sound and syntax from their
component words. At the same time it leaves open
the possibility that idiosyncratic information will be
attached to the whole, as with the meaning of kick-
ing the bucket. This structure is very much like the
class hierarchy of a modern programming language.
It is not the same thing as a context-free grammar,
since each word does not act in the same way as the
default composition of its components.

Figure 1 illustrates a recursive decomposition (un-
der concatenation) of the phrase national football
league. The phrase is broken into three words, each
of which are also decomposed in the lexicon. This
process bot toms out in the terminal characters. This
is a real decomposition achieved by a program de-
scribed in section 4. Not shown are the perturba-

1A simple composition operator is concatenation, but
in section 6 a more interesting one is discussed.

~Naturally, an unsupervised learning algorithm with
no access to meaning will not treat them differently.

tions (in this case merely frequency changes) that
distinguish each word from its parts. This general
framework extends to other perturbations. For ex-
ample, the word wanna is naturally thought of as
a composition of want and to with a sound change.
And in speech the three different words to, two and
too may well inherit the sound of a common ancestor
while introducing new syntactic and semantic prop-
erties.

2.1 C o d i n g

Of course, for this representation to be more than
an intuition both the composition and perturbation
operators must be exactly specified. In particular,
a code must be designed that enables a word (or a
sentence) to be expressed in terms of its parts. As a
simple example, suppose that the composition oper-
ator is concatenation, that terminals are characters,
and that the only perturbation operator-is the abil-
ity to express the frequency of a word independently
of the frequency of its parts. Then to code either a
sentence of the input or a (nonterminal) word in the
lexicon, the number of component words in the rep-
resentation must be written, followed by a code for
each component word. Naturally, each word in the
lexicon must be associated with its code, and under
a near-optimal coding scheme like a Huffman code,
the code length will be related to the frequency of
the word. Thus, associating a word with a code sub-
stitutes for writing down the frequency of a word.
Furthermore, if words are written down in order of
decreasing frequency, a Huffman code for a large
lexicon can be specified using a negligible number
of bits. This and the near-negligible cost of writ-
ing down word lengths will not be discussed further.
Figure 2 presents a portion of an encoding of a hy-
pothetical lexicon.

2.2 M D L

Given a coding scheme and a particular lexicon (and
a parsing algorithm) it is in theory possible to calcu-
late the minimum length encoding of a given input.

3 3 6

Part of the encoding will be devoted to the lexicon,
the rest to representing the input in terms of the
lexicon. The lexicon that minimizes the combined
description length of the lexicon and the input max-
imally compresses the input. In the sense of Rissa-
nen's minimum description-length (MDL) principle
(Rissanen, 1978; Rissanen, 1989) this lexicon is the
theory that best explains the data, and one can hope
that the patterns in the lexicon reflect the underly-
ing mechanisms and parameters of the language that
generated the input.

2.3 P r o p e r t i e s o f the Representation

Representing words in the lexicon as perturbations
of compositions has a number of desirable properties.

• The choice of composition and perturbation op-
erators captures a particular detailed theory of
language. They can be used, for instance, to
reference sophisticated phonological and mor-
phological mechanisms.

• The length of the description of a word is a mea-
sure of its linguistic plausibility, and can serve
as a buffer against learning unnatural coinci-
dences.

• Coincidences like scratching her nose do not ex-
clude desired structure, since they are further
broken down into components that they inherit
properties from.

• Structure is shared: the words blackbird and
blackberry can share the common substructure
associated with black, such as its sound and
meaning. As a consequence, data is pooled for
estimation, and representations are compact.

• Common irregular forms are compiled out. For
example, if wang is represented in terms of go
(presumably to save the cost of unnecessarily
reproducing syntactic and semantic properties)
the complex sound change need only be repre-
sented once, not every time went is used.

• Since parameters (words) have compact repre-
sentations, they are cheap from a description
length standpoint, and many can be included
in the lexicon. This allows learning algorithms
to fit detailed statistical properties of the data.

This coding scheme is very similar to that found in
popular dictionary-based compression schemes like
LZ78 (Ziv and Lempel, 1978). It is capable of com-
pressing a sequence of identical characters of length
n to size O(log n). However, in contrast to compres-
sion schemes like LZ78 that use deterministic rules
to add parameters to the dictionary (and do not ar-
rive at linguistically plausible parameters), it is pos-
sible t a perform more sophisticated searches in this
representation.

Start with lexicon of terminals.
Iterate

Iterate (EM)
Parse input and words using current lexicon.
Use word counts to update frequencies.

Add words to the lexicon.
Iterate (EM)

Parse input and words using current lexicon.
Use word counts to update frequencies.

Delete words from the lexicon.

Figure 3: An iterative search algorithm. Two it-
erations of the inner loops are usually sufficient for
convergence, and for the tests described in this pa-
per after 10 iterations of the outer loop there is little
change in the lexicon in terms of either compression
performance or structure.

3 A S e a r c h Algori thm

Since the class of possible lexicons is infinite, the
minimization of description length is necessarily
heuristic. Given a fixed lexicon, the expectation-
maximization algorithm (Dempster et al., 1977) can
be used to arrive at a (locally) optimal set of fre-
quencies and codelengths for the words in the lex-
icon. For composition by concatenation, the algo-
r i thm reduces to the special case of the Baum-Welch
procedure (Baum et al., 1970) discussed in (Deligne
and Bimbot, 1995). In general, however, the parsing
and reestimation involved in EM can be consider-
ably more complicated. To update the structure of
the lexicon, words can be added or deleted from it
if this is predicted to reduce the description length
of the input. This algorithm is summarized in fig-
ure 3. 3

3.1 A d d i n g a n d D e l e t i n g W o r d s

For words to be added to the lexicon, two things are
needed. The first is a means of hypothesizing candi-
date new words. The second is a means of evaluat-
ing candidates. One reasonable means of generating
candidates is to look at pairs (or triples) of words
that are composed in the parses of words and sen-
tences of the input. Since words are built by com-
posing other words and act like their composition, a
new word can be created from such a pair and substi-
tuted in place of the pair wherever the pair appears.
For example, if water and melon are frequently com-
posed, then a good candidate for a new word is water
o me lon = watermelon, where o is the concatenation

3For the composition operators and test sets we have
looked at, using single (Viterbi) parses produces almost
exactly the same results (in terms of both compression
and lexical structure) as summing probabilities over mul-
tiple parses.

337

operator. In order to evaluate whether the addition
of such a new word is likely to reduce the description
length of the input, it is necessary to record during
the EM step the extra statistics of how many times
the composed pairs occur in parses.

The effect on description length of adding a new
word can not be exactly computed. Its addition
will not only affect other words, but may also cause
other words to be added or deleted. Furthermore, it
is more computat ionally efficient to add and delete
many words simultaneously, and this complicates
the estimation of the change in description length.
Fortunately, simple approximations of the change
are adequate. For example, if Viterbi analyses are
being used then the new word watermelon will com-
pletely take the place of all compositions of water
and melon. This reduces the counts of water and
melon accordingly, though they are each used once
in the representation of watermelon. If it is assumed
that no other word counts change, these assumptions
allow one to predict the counts and probabilities of
all words after the change. Since the codelength
of a word w with probability p(w) is approximately
- l o g p(~) , the total estimated change in description
length of adding a new word W to a lexicon/ ; is

zx -c'(W) logp'(w) + d.l.(changes) +
Z + c(0)logp(o))

where c(w) is the count of the word w, primes indi-
cated counts and probabilities after the change and
d.l.(changes) represents the cost of writing down the
perturbations involved in the representation of W.
If A < 0 the word is predicted to reduce the total
description length and is added to the lexicon. Sim-
ilar heuristics can be used to estimate the benefit of
deleting words. 4

3 .2 S e a r c h P r o p e r t i e s

A significant source of problems in traditional gram-
mar induction techniques is local minima (de Mar-
cken, 1995a; Pereira and Schabes, 1992; Carroll and
Charniak, 1992). The search algorithm described
above avoids many of these problems. The reason
is that hidden structure is largely a "compile-time"
phenomena. During parsing all that is impor tant
about a word is its surface form and codelength. The
internal representation does not matter. Therefore,
the internal representation is free to reorganize at
any time; it has been decoupled. This allows struc-
ture to be built bo t tom up or for structure to emerge
inside already existing parameters. Furthermore,
since parameters (words) encode surface patterns, it

4See (de Mareken, 1995b) for more detailed discus-
sion of these estimations. The actual formulas used in
the tests presented in this paper are slightly more com-
plicated than presented here.

is relatively easy to determine when they are useful,
and their use is limited. They usually do not have
competing roles, in contrast, for instance, to hidden
nodes in neural networks. And since there are no
fixed number of parameters, when words do start to
have multiple disparate uses, they can be split with
common substructure shared. Finally, since add and
delete cycles can compensate for initial mistakes, in-
exact heuristics can be used for adding and deleting
words.

4 C o n c a t e n a t i o n R e s u l t s

The simplest reasonable instantiation of the
composit ion-and-perturbation framework is with the
concatenation operator and frequency perturbation.
This instantiation is easily tested on problems of text
segmentation and compression. Given a text docu-
ment, the search algorithm can be used to learn a
lexicon that minimizes its description length. For
testing purposes, spaces will be removed from input
text and true words will be defined to be minimal
sequences bordered by spaces in the original input).
The search algorithm parses the input as it com-
presses it, and can therefore output a segmentation
of the input in terms of words drawn from the lex-
icon. These words are themselves decomposed in
the lexicon, and can be considered to form a tree
tha t terminates in the characters of the sentence.
This tree can have no more than O(n) nodes for a
sentence with n characters, though there are O(n 2)
possible "true words" in the input sentence; thus,
the tree contains considerable information. Define
recall to be the percentage of true words that oc-
cur at some level of the segmentation-tree. Define
crossing-bracket to be the percentage of true words
that violate the segmentation-tree structure, s

The search algorithm was applied to two texts,
a lowercase version of the million-word Brown cor-
pus with spaces and punctuation removed, and 4
million characters of Chinese news articles in a two-
byte/character format. In the case of the Chinese,
which contains no inherent separators like spaces,
segmentation performance is measured relative to
another computer segmentation program that had
access to a (human-created) lexicon. The algorithm
was given the raw encoding and had to deduce the
internal two-byte structure. In the case of the Brown
corpus, word recall was 90.5% and crossing-brackets
was 1.7%. For the Chinese word recall was 96.9%
and crossing-brackets was 1.3%. In the case of both
English and Chinese, most of the unfound words
were words that occurred only once in the corpus.
Thus, the algorithm has done an extremely good job
of learning words and properly using them to seg-
ment the input. Furthermore, the crossing-bracket

5The true word moon in the input [the/[moon] is a
crossing-bracket violation of them in the segmentation
tree [[th~mJfoI[on]].

338

Kank Word
0 [s]
1 [the]
2 [and]
3 [a]
4 [o~]
5 [in]
6 [to]

500 [s tudents]
501 [mate r ia l]
502 [tun]
503 [words]
504 [period]
505 [class]
506 [question]

5000 [l ing] [them]]
5001 [[mort] [k]]
5002 [[re] [lax]]
5003 [[rig] [id]]
5004 [[connect] [ed]]
5005 [[i]Ek]]
5006 [[hu] [t]]

26000 [[p loura l] [blood] [supply]]
26001 [[anordinary] [happy] [family]]
26002 [[f] leas] [ibility] [of]]
26003 [[lunar] [brightness] [distribut ion]]
26004 [[primarily] [diff] [using]]
26005 [[sodium] [tri] [polyphosphate]]
26006 [[charcoal] [broil] ted]]

Figure 4: Sections of the lexicon learned from the
Brown corpus, ranked by frequency. The words in
the less-frequent half are listed with their first-level
decomposition. Word 5000 causes crossing-bracket
violations, and words 26002 and 26006 have internal
structure tha t causes recall violations.

measure indicates tha t the algori thm has made very
few clear mistakes. Of course, the hierarchical lexical
representation does not make a commitment to what
levels are " t rue words" and which are not; about
5 times more internal nodes exist than true words.
Experiments in section 5 demonstrate that for most
applications this is not only not a problem, but de-
sirable. Figure 4 displays some of the lexicon learned
from the Brown corpus.

The algori thm was also run as a compressor
on a lower-case version of the Brown corpus with
spaces and punctuat ion left in. All bits neces-
sary for exactly reproducing the input were counted.
Compression performance is 2.12 bits/char, signifi-
cantly lower than popular algori thms like gzip (2.95
bi ts /char) . This is the best text compression result
on this corpus that we are aware of, and should not
be confused with lower figures tha t do not include
the cost of parameters . Furthermore, because the
compressed text is stored in terms of linguistic units
like words, it can be searched, indexed, and parsed
without decompression.

5 L e a r n i n g M e a n i n g s

Unsupervised learning algorithms are rarely used in
isolation. The goal of this work has been to ex-
plain how linguistic units like words can be learned,
so tha t other processes can make use of these
units. In this section a means of learning the map-
pings between words and artificial representations
of meanings is described. The composit ion-and-
per turbat ion encompasses this application neatly.

Imagine tha t text utterances are paired with rep-
resentations of meaning, s and that the goal is to find
the minimum-length description of both the text and
the meaning. I f there is mutual information between
the meaning and text portions of the input, then bet-
ter compression is achieved if the two s treams are
compressed simultaneously. If a text word can have
some associated meaning, then writing down that
word to account for some portion of text also ac-
counts for some portion of the meaning of that text.
The remaining meaning can be written down more
succinctly. Thus, there is an incentive to associate
meaning with sound, although of course the associ-
ation pays a price in the description of the lexicon.

Although it is obviously a naive simplification,
many of the interesting properties of the composi-
tional representation surface even when meanings
are treat ing as sets of arbi t rary symbols. A word is
now both a character sequence and a set of symbols.
The composit ion operator concatenates the charac-
ters and unions the meaning symbols. Of course,
there must be some way to alter the default meaning
of a word. One way to do this is to explicitly write
out any symbols that are present in the word's mean-
ing but not in its components, or vice versa. Thus,
the word red { R E D } might be represented as r o e o
d + R E D . Given an existing word berry {BERRY } ,
the red berry cranberry { R E D B E R R Y } can be rep-
resented c o r o a o n o berry { B E R R Y } + R E D .

5.1 R e s u l t s

To test the a lgor i thm's ability to infer word mean-
ings, 10,000 utterances from an unsegmented textual
database of mothers ' speech to children were paired
with representations of meaning, constructed by as-
signing a unique symbol to each root word in the vo-
cabulary. For example, the sentence and wha~ is he
pa in t ing a plc~ure o f f is paired with the unordered
meaning A N D W H A T BE H E P A I N T A P I C -
T U R E OF. In the first experiment, the algori thm
received these pairs with no noise or ambiguity, us-
ing an encoding of meaning symbols such that each
symbol ' s length was 10 bits. After 8 iterations of
training without meaning and then a further 8 it-
erations with, the text sequences were parsed again
without access to the true meaning. The meanings

SThis framework is easily extended to handle multi-
ple ambiguous meanings (with and without priors) and
noise, but these extensions will not be discussed here.

339

of the resulting word sequences were compared with
the true meanings. Symbol accuracy was 98.9%, re-
call was 93.6%. Used to differentiate the true mean-
ing from the meanings of the previous 20 sentences,
the program selected correctly 89.1% of the time, or
ranked the true meaning tied for first 10.8% of the
time.

A second test was performed in which the algo-
r i thm received three possible meanings for each ut-
terance, the true one and also the meaning of the
two surrounding utterances. A uniform prior was
used. Symbol accuracy was again 98.9%, recall was
75.3%.

The final lexicon includes extended phrases, but
meanings tend to filter down to the proper level.
For instance, although the words duck, ducks, the
ducks and duekdrink all exist and contain the mean-
ing DUCK, the symbol is only written into the de-
scription of duck. All others inherit it. Similar re-
sults hold for similar experiments on the Brown cor-
pus. For example, scratching her nose inherits its
meaning completely from its parts, while kicking the
bucke~ does not. This is exactly the result argued
for in the motivation section of this paper, and illus-
trates why occasional extra words in the lexicon are
not a problem for most applications.

6 O t h e r A p p l i c a t i o n s a n d C u r r e n t

W o r k

We have performed other experiments using this rep-
resentation and search algorithm, on tasks in unsu-
pervised learning from speech and grammar induc-
tion.

Figure 5 contains a small portion of a lexicon
learned from 55,000 utterances of continuous speech
by multiple speakers. The utterances are taken from
dictated Wall Street :Journal articles. The concate-
nation operators was used with phonemes as termi-
nals. A second layer was added to the framework
to map from phonemes to speech; these extensions
are described in more detail in (de Marcken, 1995b).
The sound model of each phoneme was learned sep-
arately using supervised training on different, seg-
mented speech. Although the phoneme model is ex-
tremely poor, many words are recognizable, and this
is the first significant lexicon learned directly from
spoken speech without supervision.

If the composition operator makes use of context,
then the representation extends naturally to a more
powerful form of context-free grammars, where com-
position is tree-insertion. In particular, if each word
is associated with a part-of-speech, and parts of
speech are permissible terminals in the lexicon, then
"words" become production rules. For example, a
word might be VP ~ take off NP and represented
in terms of the composition of VP ---* V P NP, V ---*
~ake and P ---* off. Furthermore, VP --* V P NP may
be represented in terms of VP ---* V PP and PP ---*

P~ank w rep(w)
5392 [wvrmr] [[w3r]mr]
5393 [Oauzn] [O[auzn]]
5394 [tahld] [[tah]Id]
5395 [~ktld] [~k[tld]]
5396 [Anitn] [An[itn]]
5397 [m£1i~ndalrz] [[m¢liindalr]z]
8948 [aldiiz] [[al]di~z]
8949 [s]krti] [s~k[rti]]
8950 [130taim] [[130][talm]]
8951 [s£kgIn] [[s£k] [gln]]
8952 [wAnpA] [[wAn]PAl
8953 [vend~r] [v[~n][d~r]]
8954 [ollmlnei] [e[lImln][ei]]
8955 [m~lii~] [[m~l]i[i0]]
8956 [b£1iindal] [b~[liindal]]
9164 [gouldm~nsmks] [[goul] d[rr~n]s [a~ks]]
9165 [kmp~utr] [[kmp] [~ut]r]
9166 [gavrmin] [ga[vrmin]]
9167 [oublzohuou] [[oubl][~.ohuou]]
9168 [ministrei~in] [[min]i[strei~in]]
9169 [tj£rtn] [[tj£]r [in]]
9170 [hAblhahwou] [[hAbl][h~hwou]]
9171 [shmp~iO] [S[hmp] [6iO]]
9172 [prplou ,l] [[prJ[plou] .l]
9173 [bouskgi] [[bou][skg]i]
9174 [kg£d]il] [[kg£][dji]l]
9175 [gouldmaiinz] [[goul]d[maiinz]]
9176 [k~rpreiUd] [[brpr] [eitld]]

Figure 5: Some words from a lexicon learned from
55,000 utterances of continuous, dictated Wall Street
:Journal articles. Although many words are seem-
ingly random, words representing million dollars,
Goldman-Sachs, thousand, etc. are learned. Further-
more, as word 8950 (loTzg time) shows, they are often
properly decomposed into components.

P NP. In this way syntactic structure emerges in the
internal representation of words. This sort of gram-
mar offers significant advantages over context-free
grammars in that non-independent rule expansions
can be accounted for. We are currently looking at
various methods for automatically acquiring parts of
speech; in initial experiments some of the first such
classes learned are the class of vowels, of consonants,
and of verb endings.

7 C o n c l u s i o n s

No previous unsupervised language-learning proce-
dure has produced structures that match so closely
with linguistic intuitions. We take this as a vindi-
cation of the perturbation-of-compositions represen-
tation. Its ability to capture the statistical and lin-
guistic idiosyncrasies of large structures without sac-

340

rificing the obvious regularities within them makes it
a valuable tool for a wide variety of induction prob-
lems.

References

Leonard E. Baum, Ted Petrie, George Soules, and Nor-
man Weiss. 1970. A maximization technique occur-
ing in the statistical analysis of probabaJistic functions
in markov chains. Annals of Mathematical Statistics,
41:164-171.

Glenn Carroll and Eugene Charniak. 1992. Learn-
ing probaballstic dependency grammars from labelled
text. In Working Notes, Fall Symposium Series,
AAAL pages 25-31.

Timothy Andrew Cartwright and Michael R. Brent.
1994. Segmenting speech without a lexicon: Evidence
for a bootstrapping model of lexical acquisition. In
Proc. of the 16th Annual Meeting of the Cognitive Sci-
ence Society, Hillsdale, New Jersey.

Stanley F. Chen. 1995. Bayesian grammar induction for
language modeling. In Proe. $2nd Annual Meeting of
the Association for Computational Linguistics, pages
228-235, Cambridge, Massachusetts.

Noam A. Chomsky. 1955. The Logical Structure of Lin-
guistic Theory. Plenum Press, New York.

Carl de Marcken. 1995a. Lexical heads, phrase structure
and the induction of grammar. In Third Workshop on
Very Large Corpora, Cambridge, Massachusetts.

Carl de Marcken. 1995b. The unsupervised acquisition
of a lexicon from continuous speech. Memo A.I. Memo
1558, MIT Artificial Intelligence Lab., Cambridge,
Massachusetts.

Sabine Deligne and Frederic Bimbot. 1995. Language
modeling by variable length sequences: Theoretical
formulation and evaluation of multigrams. In Proceed-
ings of the International Conference on Speech and
Signal Processing, volume 1, pages 169-172.

A. P. Dempster, N. M. Liard, and D. B. Rubin. 1977.
Maximum lildihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
B(39):I-38.

T. Mark Ellison. 1992. The Machine Learning of Phono-
logical Structure. Ph.D. thesis, University of Western
Australia.

W. N. Francis and H. Kucera. 1982. Frequency analysis
of English usage: lexicon and grammar. Houghton-
Mifflin, Boston.

Zellig Harris. 1968. Mathematical Structure of Lan-
guage. Wiley, New York.

Donald Cort Olivier. 1968. Stochastic Grammars and
Language Acquisition Mechanisms. Ph.D. thesis, Har-
vard University, Cambridge, Massachusetts.

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed corpora.
In Proc. $9th Annual Meeting of the Association for
Computational Linguistics, pages 128-135, Berkeley,
California.

Jorma Rissanen. 1978. Modeling by shortest data de-
scription. Automatica, 14:465-471.

Jorma Rissanen. 1989. Stochastic Complexity in Statis-
tical Inquiry. World Scientific, Singapore.

R. J. Solomonoff. 1960. The mechanization of linguis-
tic learning. In Proceedings of the 2nd International
Conference on Cybernetics, pages 180-193.

Andreas Stolcke. 1994. Bayesian Learning of Proba-
balistic Language Models. Ph.D. thesis, University of
California at Berkeley, Berkeley, CA.

J. Gerald Wolff. 1982. Language acquisition, data com-
pression and generalization. Language and Communi-
cation, 2(1):57-89.

J. Ziv and A. Lempel. 1978. Compression of individual
sequences by variable rate coding. I g g g Transactions
on Information Theory, 24:530-538.

341

