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A b s t r a c t  

Corpus-based methods for natural lan- 
guage processing often use supervised 
training, requiring expensive manual an- 
notation of training corpora. This paper 
investigates methods for reducing annota- 
tion cost by sample selection. In this ap- 
proach, during training the learning pro- 
gram examines many unlabeled examples 
and selects for labeling (annotation) only 
those that are most informative at each 
stage. This avoids redundantly annotating 
examples that contribute little new infor- 
mation. This paper extends our previous 
work on committee-based sample selection 
for probabilistic classifiers. We describe 
a family of methods for committee-based 
sample selection, and report experimental 
results for the task of stochastic part-of- 
speech tagging. We find that all variants 
achieve a significant reduction in annota- 
tion cost, though their computational effi- 
ciency differs. In particular, the simplest 
method, which has no parameters to tune, 
gives excellent results. We also show that 
sample selection yields a significant reduc- 
tion in the size of the model used by the 
tagger. 

1 I n t r o d u c t i o n  

Many corpus-based methods for natural language 
processing (NLP) are based on supervised training-- 
acquiring information from a manually annotated 
corpus. Therefore, reducing annotation cost is an 
important research goal for statistical NLP. The ul- 
timate reduction in annotation cost is achieved by 
unsupervised training methods, which do not require 
an annotated corpus at all (Kupiec, 1992; Merialdo, 
1994; Elworthy, 1994). It has been shown, how- 
ever, that some supervised training prior to the un- 
supervised phase is often beneficial. Indeed, fully 
unsupervised training may not be feasible for cer- 
tain tasks. This paper investigates an approach 

for optimizing the supervised training (learning) 
phase, which reduces the annotation effort required 
to achieve a desired level of accuracy of the trained 
model. 

In this paper, we investigate and extend the 
committee-based sample selection approach to min- 
imizing training cost (Dagan and Engelson, 1995). 
When using sample selection, a learning program ex- 
amines many unlabeled (not annotated) examples, 
selecting for labeling only those that are most in- 
formative for the learner at each stage of training 
(Seung, Opper, and Sompolinsky, 1992; Freund et 
al., 1993; Lewis and Gale, 1994; Cohn, Atlas, and 
Ladner, 1994). This avoids redundantly annotating 
many examples that contribute roughly the same in- 
formation to the learner. 

Our work focuses on sample selection for training 
probabilistic classifiers. In statistical NLP, prob- 
abilistic classifiers are often used to select a pre- 
ferred analysis of the linguistic structure of a text 
(for example, its syntactic structure (Black et al., 
1993), word categories (Church, 1988), or word 
senses (Gale, Church, and Yarowsky, 1993)). As a 
representative task for probabilistic classification in 
NLP, we experiment in this paper with sample se- 
lection for the popular and well-understood method 
of stochastic part-of-speech tagging using Hidden 
Markov Models. 

We first review the basic approach of committee- 
based sample selection and its application to part- 
of-speech tagging. This basic approach gives rise 
to a family of algorithms (including the original al- 
gorithm described in (Dagan and Engelson, 1995)) 
which we then describe. First, we describe the 'sim- 
plest' committee-based selection algorithm, which 
has no parameters to tune. We then generalize the 
selection scheme, allowing more options to adapt 
and tune the approach for specific tasks. The paper 
compares the performance of several instantiations 
of the general scheme, including a batch selection 
method similar to that of Lewis and Gale (1994). 
In particular, we found that the simplest version of 
the method achieves a significant reduction in an- 
notation cost, comparable to that of other versions. 
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We also evaluate the computational efficiency of the 
different variants, and the number of unlabeled ex- 
amples they consume. Finally, we study the effect 
of sample selection on the size of the model acquired 
by the learner. 

2 P r o b a b i l i s t i c  C l a s s i f i c a t i o n  

This section presents the framework and terminol- 
ogy assumed for probabilistic classification, as well 
as its instantiation for stochastic bigram part-of- 
speech tagging. 

A probabilistic classifier classifies input examples 
e by classes c E C, where C is a known set of pos- 
sible classes. Classification is based on a score func- 
tion, FM(C, e), which assigns a score to each possible 
class of an example. The classifier then assigns the 
example to the class with the highest score. FM is 
determined by a probabilistic model M. In many 
applications, FM is the conditional probability func- 
tion, PM (cle), specifying the probability of each class 
given the example, but  other score functions that  
correlate with the likelihood of the class are often 
used. 

In stochastic part-of-speech tagging, the model as- 
sumed is a Hidden Markov Model (HMM), and input 
examples are sentences. The class c, to which a sen- 
tence is assigned is a sequence of the parts of speech 
(tags) for the words in the sentence. The score func- 
tion is typically the joint (or conditional) probability 
of the sentence and the tag sequence 1 . The tagger 
then assigns the sentence to the tag sequence which 
is most probable according to the HMM. 

The probabilistic model M, and thus the score 
function FM, are defined by a set of parameters, 
{hi}. During training, the values of the parameters 
are estimated from a set of statistics, S, extracted 
from a training set of annotated examples. We de- 
note a particular model by M = {hi}, where each ai 
is a specific value for the corresponding cq. 

In bigram part-of-speech tagging the HMM model 
M contains three types of parameters: transition 
probabilities P(ti---*tj) giving the probability of tag 
tj occuring after tag ti, lexical probabilities P(t[w) 
giving the probability of tag t labeling word w, and 
tag probabilities P(t) giving the marginal probability 

2 of a tag occurring. The values of these parameters 
are estimated from a tagged corpus which provides 
a training set of labeled examples (see Section 4.1). 

3 E v a l u a t i n g  E x a m p l e  U n c e r t a i n t y  

A sample selection method needs to evaluate the 
expected usefulness, or information gain, of learn- 
ing from a given example. The methods we investi- 

1This gives the Viterbi model (Merialdo, 1994), which 
we use here. 

2This version of the method uses Bayes' theorem 
~ (Church, 1988). (P(wdt,) o¢ P(t,) J 

gate approach this evaluation implicitly, measuring 
an example's informativeness as the uncertainty in 
its classification given the current training data  (Se- 
ung, Opper, and Sompolinsky, 1992; Lewis and Gale, 
1994; MacKay, 1992). The reasoning is that  if an 
example's classification is uncertain given current 
training data then the example is likely to contain 
unknown information useful for classifying similar 
examples in the future. 

We investigate the committee-based method,  
where the learning algorithm evaluates an example 
by giving it to a committee containing several vari- 
ant models, all 'consistent' with the training data  
seen so far. The more the committee members agree 
on the classification of the example, the greater our 
certainty in its classification. This is because when 
the training data  entails a specific classification with 
high certainty, most (in a probabilistic sense) classi- 
tiers consistent with the data  will produce that  clas- 
sification. 

The committee-based approach was first proposed 
in a theoretical context for learning binary non- 
probabilistic classifiers (Seung, Opper, and Som- 
polinsky, 1992; Freund et al., 1993). In this pa- 
per, we extend our previous work (Dagan and En- 
gelson, 1995) where we applied the basic idea of the 
committee-based approach to probabilistic classifi- 
cation. Taking a Bayesian perspective, the posterior 
probability of a model, P(M[S), is determined given 
statistics S from the training set (and some prior dis- 
tribution for the models). Commit tee  members are 
then generated by drawing models randomly from 
P(MIS ). An example is selected for labeling if the 
committee members largely disagree on its classifi- 
cation. This procedure assumes that  one can sample 
from the models'  posterior distribution, at least ap- 
proximately. 

To illustrate the generation of committee- 
members, consider a model containing a single bi- 
nomial parameter a (the probability of a success), 
with estimated value a. The statistics S for such a 
model are given by N,  the number of trials, and x, 
the number of successes in those trials. 

Given N and x, the 'best '  parameter  value may 
be estimated by one of several estimation methods. 
For example, the maximum likelihood estimate for a 

X is a = ~ ,  giving the model M = {a} = { ~} .  When 
generating a committee of models, however, we are 
not interested in the 'best '  model, but  rather in sam- 
pling the distribution of models given the statistics. 
For our example, we need to sample the posterior 
density of estimates for a, namely P(a = a]S). Sam- 
pling this distribution yields a set of estimates scat- 
tered around ~ (assuming a uniform prior), whose 
variance decreases as N increases. In other words, 
the more statistics there are for estimating the pa- 
rameter, the more similar are the parameter  values 
used by different committee members. 

For models with multiple parameters,  parame- 
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ter estimates for different committee members differ 
more when they are based on low training counts, 
and they agree more when based on high counts. Se- 
lecting examples on which the committee members 
disagree contributes statistics to currently uncertain 
parameters whose uncertainty also affects classifica- 
tion. 

It may sometimes be difficult to sample P(M[S) 
due to parameter  interdependence. Fortunately, 
models used in natural language processing often 
assume independence between most model parame- 
ters. In such cases it is possible to generate commit- 
tee members by sampling the posterior distribution 
for each independent group of parameters separately. 

4 B i g r a m  P a r t - O f - S p e e c h  T a g g i n g  

4.1 S a m p l i n g  m o d e l  p a r a m e t e r s  

In order to generate committee members for bigram 
tagging, we sample the posterior distributions for 
transition probabilities, P(ti---~tj), and for lexical 
probabilities, P(t[w) (as described in Section 2). 

Both types of the parameters we sample have the 
form ofmultinomialdistr ibutions.  Each multinomial 
random variable corresponds to a conditioning event 
and its values are given by the corresponding set of 
conditioned events. For example, a transition prob- 
ability parameter P(ti--*tj) has conditioning event 
ti and conditioned event tj .  

Let {ui} denote the set of possible values of a 
given multinomial variable, and let S = {hi} de- 
note a set of statistics extracted from the training 
set for that  variable, where ni is the number of times 
that  the value ui appears in the training set for 
the variable, defining N = ~-~i hi. The parameters 
whose posterior distributions we wish to estimate 
are oil = P(ui). 

The maximum likelihood estimate for each of the 
multinomial 's distribution parameters, ai ,  is &i = 

In practice, this estimator is usually smoothed in N '  
some way to compensate for data sparseness. Such 
smoothing typically reduces slightly the estimates 
for values with positive counts and gives small pos- 
itive estimates for values with a zero count. For 
simplicity, we describe here the approximation of 
P(~i = ailS) for the unsmoothed estimator 3. 

We approximate the posterior P(ai = ai[S) by 
first assuming that  the multinomial is a collection of 
independent binomials, each of which corresponds to 
a single value ui of the multinomial; we then normal- 
ize the values so that  they sum to 1. For each such 
binomial, we approximate P ( a i  = ai[S) as a trun- 

3In the implementation we smooth the MLE by in- 
terpolation with a uniform probability distribution, fol- 
lowing Merialdo (1994). Approximate adaptation of 
P(c~i = ai[S) to the smoothed version of the estimator 
is simple. 

cated normal distribution (restricted to [0,1]), with 
and variance ~2 = #(1--#) 4 estimated mean#---- N N " 

To generate a particular multinomial distribution, 
we randomly choose values for the binomial param- 
eters ai from their approximated posterior distribu- 
tions (using the simple sampling method given in 
(Press et al., 1988, p. 214)), and renormalize them 
so that  they sum to 1. Finally, to generate a random 
HMM given statistics S, we choose values indepen- 
dently for the parameters of each multinomial, since 
all the different multinomials in an HMM are inde- 
pendent. 

4.2 E x a m p l e s  in  b i g r a m  t r a i n i n g  

Typically, concept learning problems are formulated 
such that  there is a set of training examples that  are 
independent of each other. When training a bigram 
model (indeed, any HMM), this is not true, as each 
word is dependent on that  before it. This problem 
is solved by considering each sentence as an individ- 
ual example. More generally, it is possible to break 
the text at any point where tagging is unambiguous. 
We thus use unambiguous words (those with only 
one possible part of speech) as example boundaries 
in bigram tagging. This allows us to train on smaller 
examples, focusing training more on the truly infor- 
mative parts of the corpus. 

5 S e l e c t i o n  A l g o r i t h m s  

Within the committee-based paradigm there exist 
different methods for selecting informative examples. 
Previous research in sample selection has used either 
sequential selection (Seung, Opper, and Sompolin- 
sky, 1992; Freund et al., 1993; Dagan and Engelson, 
1995), or batch selection (Lewis and Catlett ,  1994; 
Lewis and Gale, 1994). We describe here general 
algorithms for both sequential and batch selection. 

Sequential selection examines unlabeled examples 
as they are supplied, one by one, and measures the 
disagreement in their classification by the commit- 
tee. Those examples determined to be sufficiently 
informative are selected for training. Most simply, 
we can use a committee of size two and select an 
example when the two models disagree on its clas- 
sification. This gives the following, parameter-free, 
t w o  m e m b e r  s e q u e n t i a l  s e l e c t i o n  a l g o r i t h m ,  
executed for each unlabeled input example e: 

1. Draw 2 models randomly from P(MIS), where 
S are statistics acquired from previously labeled 
examples; 

4The normal approximation, while easy to imple- 
ment, can be avoided. The posterior probability P(c~i -- 
ai[S) for the multinomial is given exactly by the Dirich- 
let distribution (Johnson, 1972) (which reduces to the 
Beta distribution in the binomial case). In this work we 
assumed a uniform prior distribution for each model pa- 
rameter; we have not addressed the question of how to 
best choose a prior for this problem. 
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2. Classify e by each model, giving classifications 
cl and c~; 

3. If cl ~ c~, select e for annotation; 
4. If e is selected, get its correct label and update 

S accordingly. 

This basic algorithm needs no parameters. If de- 
sired, it is possible to tune the frequency of selection, 
by changing the variance of P(MIS  ) (or the variance 
of P(~i = ailS) for each parameter),  where larger 
variances increase the rate of disagreement among 
the committee members. We implemented this ef- 
fect by employing a temperature parameter t, used 
as a multiplier of the variance of the posterior pa- 
rameter distribution. 

A more general algorithm results from allowing 
(i) a larger number of committee members, k, in or- 
der to sample P(MIS  ) more precisely, and (it) more 
refined example selection criteria. This gives the fol- 
lowing g e n e r a l  s e q u e n t i a l  s e l e c t i o n  a l g o r i t h m ,  
executed for each unlabeled input example e: 

1. Draw k models {Mi) randomly from P(MIS ) 
(possibly using a temperature t); 

2. Classify e by each model Mi giving classifica- 
tions {ci); 

3. Measure the disagreement D over {ci); 
4. Decide whether to select e for annotation, based 

on the value of D; 

5. If e is selected, get its correct label and update 
S accordingly. 

It is easy to see that  two member sequential selec- 
tion is a special case of general sequential selection, 
where any disagreement is considered sufficient for 
selection. In order to instantiate the general algo- 
r i thm for larger committees, we need to define (i) a 
measure for disagreement (Step 3), and (it) a selec- 
tion criterion (Step 4). 

Our approach to measuring disagreement is to use 
the vote entropy, the entropy of the distribution of 
classifications assigned to an example ( 'voted for') 
by the committee members. Denoting the number 
of committee members assigning c to e by V(c, e), 
the vote entropy is: 

1 V(e, e) log V(e, e) 
D-logk k 

e 

(Dividing by log k normalizes the scale for the num- 
ber of committee members.) Vote entropy is maxi- 
mized when all committee members disagree, and is 
zero when they all agree. 

In bigram tagging, each example consists of a se- 
quence of several words. In our system, we measure 
D separately for each word, and use the average en- 
tropy over the word sequence as a measurement of 
disagreement for the example. We use the average 
entropy rather than the entropy over the entire se- 
quence, because the number of committee members 

is small with respect to the total number of possible 
tag sequences. Note that  we do not look at the en- 
tropy of the distribution given by each single model 
to the possible tags (classes), since we are only in- 
terested in the uncertainty of the final classification 
(see the discussion in Section 7). 

We consider two alternative selection criteria (for 
Step 4). The simplest is thresholded seleclion, in 
which an example is selected for  annotat ion if its 
vote entropy exceeds some threshold 0. The other 
alternative is randomized selection, in which an ex- 
ample is selected for annotation based on the flip 
of a coin biased according to the vote en t ropy- -a  
higher vote entropy entailing a higher probability of 
selection. We define the selection probabili ty as a 
linear function of vote entropy: p = gD, where g is 
an entropy gain parameter.  The selection method 
we used in our earlier work (Dagan and Engelson, 
1995) is randomized sequential selection using this 
linear selection probability model, with parameters 
k, t and g. 

An alternative to sequential selection is batch se- 
lection. Rather than evaluating examples individ- 
ually for their informativeness a large batch of ex- 
amples is examined, and the m best are selected for 
annotation. The b a t c h  s e l e c t i o n  a l g o r i t h m ,  exe- 
cuted for each batch B of N examples, is as follows: 

1. For each example e in B: 

(a) Draw k models randomly from P(MIS); 
(b) Classify e by each model, giving classifica- 

tions {ci}; 
(c) Measure the disagreement De for e over 

{ei}; 
2. Select for annotation the m examples from B 

with the highest De; 
3. Update S by the statistics of the selected exam- 

ples. 

This procedure is repeated sequentially for succes- 
sive batches of N examples, returning to the start  of 
the corpus at the end. If N is equal to the size of the 
corpus, batch selection selects the m globally best 
examples in the corpus at each stage (as in (Lewis 
and Catlett,  1994)). On the other hand, as N de- 
creases, batch selection becomes closer to sequential 
selection. 

6 E x p e r i m e n t a l  R e s u l t s  

This section presents results of applying committee- 
based sample selection to bigram part-of-speech tag- 
ging, as compared with complete training on all ex- 
amples in the corpus. Evaluation was performed 
using the University of Pennsylvania tagged corpus 
from the ACL/DCI CD-ROM I. For ease of im- 
plementation, we used a complete (closed) lexicon 
which contains all the words in the corpus. 

The committee-based sampling algorithm was ini- 
tialized using the first 1,000 words from the corpus, 
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Figure  1: Training versus accuracy. In batch, random, 
and thresholded runs, k = 5 and t = 50. (a) Number 
of ambiguous words selected for labeling versus classifi- 
cation accuracy achieved. (b) Accuracy versus number 
of words examined from the corpus (both labeled and 
unlabeled). 

and  then  sequen t ia l ly  e x a m i n e d  the  fol lowing exam-  
ples in the  corpus  for poss ib le  label ing .  T h e  t r a in ing  
set consis ted  of  the  first mi l l ion  words in the  cor- 
pus,  wi th  sentence o rder ing  r andomized  to  compen-  
sa te  for i nhomogene i t y  in corpus compos i t ion .  The  
tes t  set was a s epa ra t e  po r t i on  of  the  corpus,  con- 
s is t ing of  20,000 words.  We compare  the  a m o u n t  
of  t r a in ing  requi red  by different select ion m e t h o d s  
to achieve a given t agg ing  accuracy  on the  tes t  set, 
where bo th  the  a m o u n t  of  t r a in ing  and t agg ing  ac- 
curacy  are measu red  over amb iguous  words.  5 

The  effectiveness of  r a n d o m i z e d  c o m m i t t e e - b a s e d  

5Note that  most other work on tagging has measured 
accuracy over all words, not just  ambiguous ones. Com- 
plete training of our system on 1,000,000 words gave us 
an accuracy of 93.5% over ambiguous words, which cor- 
responds to an accuracy of 95.9% over all words in the 
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Figure  2: Evaluating batch selection, for m = 5. (a) Ac- 
curacy achieved versus batch size at different numbers of 
selected training words. (b) Accuracy versus number of 
words examined from the corpus for different batch sizes. 

select ion for par t -of - speech  tagg ing ,  wi th  5 and  10 
commi t t ee  member s ,  was d e m o n s t r a t e d  in (Dagan  
and Engelson,  1995). Here we present  and  compare  
resul ts  for ba tch ,  r andomized ,  th resholded ,  and  two 
m e m b e r  c o m m i t t e e - b a s e d  select ion.  

F igure  1 presents  the  resul ts  of  c o m p a r i n g  the  sev- 
eral  select ion m e t h o d s  aga ins t  each other .  T h e  p lo ts  
shown are for the  best  p a r a m e t e r  se t t ings  t h a t  we 
found th rough  m a n u a l  t un ing  for each m e t h o d .  Fig-  
ure l ( a )  shows the advan t age  t h a t  s a m p l e  select ion 
gives wi th  regard  to  a n n o t a t i o n  cost. For  example ,  
comple te  t r a in ing  requires  a n n o t a t e d  examples  con- 
t a in ing  98,000 amb iguous  words  to  achieve a 92.6% 
accuracy  (beyond  the  scale of  the  g raph) ,  while the  
selective m e t h o d s  require  only  18,000-25,000 am-  
b iguous  words to achieve this  accuracy.  We also find 

test set, comparable to other published results on bigram 
tagging. 
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Figure 3: The size of the trained model, measured by 
t h e  number of frequency counts > 0, plotted (y-axis) ver- 
sus classification accuracy achieved (x-axis). (a) Lexicai 
counts (freq(t, w)) (b) Bigram counts (freq(tl--+t2)). 

that,  to a first approximation, all selection methods 
considered give similar results. Thus, it seems that  a 
refined choice of the selection method is not crucial 
for achieving large reductions in annotation cost. 

This equivalence of the different methods also 
largely holds with respect to computational effi- 
ciency. Figure l(b)  plots classification accuracy ver- 
sus number of words examined, instead of those 
selected. We see that  while all selective methods 
are less efficient in terms of examples examined 
than complete training, they are comparable to each 
other. Two member selection seems to have a clear, 
though small, advantage. 

In Figure 2 we investigate further the properties 
of batch selection. Figure 2(a) shows that  accuracy 
increases with batch size only up to a point, and 
then starts to decrease. This result is in line with 
theoretical difficulties with batch selection (Freund 
et al., 1993) in that  batch selection does not account 

for the distribution of input examples. Hence, once 
batch size increases past a point, the input distribu- 
tion has too little influence on which examples are 
selected, and hence classification accuracy decreases. 
Furthermore, as batch size increases, computat ional  
efficiency, in terms of the number of examples exam- 
ined to attain a given accuracy, decreases tremen- 
dously (Figure 2(5)). 

The ability of committee-based selection to fo- 
cus on the more informative parts of the training 
corpus is analyzed in Figure 3. Here we examined 
the number of lexical and bigram counts tha t  were 
stored (i.e, were non-zero) during training, using 
the two member selection algorithm and complete 
training. As the graphs show, the sample selec- 
tion method achieves the same accuracy as complete 
training with fewer lexical and bigram counts. This 
means that  many counts in the d a t a  a r e  less useful 
for correct tagging, as replacing them with smoothed 
estimates works just  as well. 6 Committee-based se- 
lection ignores such counts, focusing on parameters 
which improve the model. This behavior has the 
practical advantage of reducing the size of the model 
significantly (by a factor of three here). Also, the 
average count is lower in a model constructed by 
selective training than in a fully trained model, sug- 
gesting that  the selection method avoids using ex- 
amples which increase the counts for already known 
parameters. 

7 Discuss ion 

Why does committee-based sample selection work? 
Consider the properties of those examples that  are 
selected for training. In general, a selected train- 
ing example will contribute data  to several statistics, 
which in turn will improve the estimates of several 
parameter vMues. An informative example is there- 
fore one whose contribution to the statistics leads to 
a significantly useful improvement of model parame- 
ter estimates. Model parameters for which acquiring 
additional statistics is most beneficial can be char- 
acterized by the following three properties: 

1. The current estimate of the parameter  is uncer- 
tain due to insufficient statistics in the training 
set. Additional statistics would bring the esti- 
mate closer to the true value. 

2. Classification of examples is sensitive to changes 
in the current estimate of the parameter.  Oth- 
erwise, even if the current value of the pa- 
rameter is very uncertain, acquiring additional 
statistics will not change the resulting classifi- 
cations. 

3. The parameter affects classification for a large 
proportion of examples in the input. Parame- 

6As noted above, we smooth the MLE estimates 
by interpolation with a uniform probability distribution 
(Merialdo, 1994). 
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ters that  affect only few examples have low over- 
all utility. 

The committee-based selection algorithms work 
because they tend to select examples that  affect pa- 
rameters with the above three properties. Prop- 
erty 1 is addressed by randomly drawing the parame- 
ter values for committee members from the posterior 
distribution given the current statistics. When the 
statistics for a parameter  are insufficient, the vari- 
ance of the posterior distribution of the estimates is 
large, and hence there will be large differences in the 
values of the parameter chosen for different commit- 
tee members. Note that  property 1 is not addressed 
when uncertainty in classification is only judged rel- 
ative to a single model 7 (as in, eg, (Lewis and Gale, 
1994)). 

Property 2 is addressed by selecting examples for 
which committee members highly disagree in clas- 
sification (rather than measuring disagreement in 
parameter  estimates). Committee-based selection 
thus addresses properties 1 and 2 simultaneously: 
it acquires statistics just  when uncertainty in cur- 
rent parameter  estimates entails uncertainty regard- 
ing the appropriate classification of the example. 
Our results show that  this effect is achieved even 
when using only two committee members to sample 
the space of likely classifications. By appropriate 
classification we mean the classification given by a 
perfectly-trained model, that  is, one with accurate 
parameter values. 

Note that  this type of uncertainty regarding the 
identity of the appropriate classification, is differ- 
ent than uncertainty regarding the correctness of the 
classification itself. For example, sufficient statistics 
may yield an accurate 0.51 probability estimate for 
a class c in a given example, making it certain that 
c is the appropriate classification. However, the cer- 
tainty that  c is the correct classification is low, since 
there is a 0.49 chance that  c is the wrong class for 
the example. A single model can be used to estimate 
only the second type of uncertainty, which does not 
correlate directly with the utility of additional train- 
ing. 

Finally, property 3 is addressed by independently 
examining input examples which are drawn from the 
input distribution. In this way, we implicitly model 
the distribution of model parameters used for clas- 
sifying input examples. Such modeling is absent in 
batch selection, and we hypothesize that  this is the 
reason for its lower effectiveness. 

8 C o n c l u s i o n s  

Annotating large textual corpora for training natu- 
ral language models is a costly process. We propose 
reducing this cost significantly using committee- 

rThe use of a single model is also criticized in (Cohn, 
Atlas, and Ladner, 1994). 

based sample selection, which reduces redundant an- 
notation of examples that  contribute little new in- 
formation. The method can be applied in a semi- 
interactive process, in which the system selects sev- 
eral new examples for annotation at a time and up- 
dates its statistics after receiving their labels from 
the user. The implicit modeling of uncertainty 
makes the selection system generally applicable and 
quite simple to implement. 

Our experimental study of variants of the selec- 
tion method suggests several practical conclusions. 
First, it was found that  the simplest version of the 
committee-based method, using a two-member com- 
mittee, yields reduction in annotation cost compa- 
rable to that of the multi-member committee. The 
two-member version is simpler to implement, has no 
parameters to tune and is computationally more ef- 
ficient. Second, we generalized the selection scheme 
giving several alternatives for optimizing the method 
for a specific task. For bigram tagging, comparative 
evaluation of the different variants of the method 
showed similar large reductions in annotation cost, 
suggesting the robustness of the committee-based 
approach. Third, sequential selection, which im- 
plicitly models the expected utility of an example 
relative to the example distribution, worked in gen- 
eral better than batch selection. The latter was 
found to work well only for small batch sizes, where 
the method mimics sequential selection. Increas- 
ing batch size (approaching 'pure'  batch selection) 
reduces both accuracy and efficiency. Finally, we 
studied the effect of sample selection on the size of 
the trained model, showing a significant reduction 
in model size. 

8.1 F u r t h e r  r e s e a r c h  

Our results suggest applying committee-based sam- 
ple selection to other statistical NLP tasks which 
rely on estimating probabilistic parameters from an 
annotated corpus. Statistical methods for these 
tasks typically assign a probability estimate, or some 
other statistical score, to each alternative analysis 
(a word sense, a category label, a parse tree, etc.), 
and then select the analysis with the highest score. 
The score is usually computed as a function of the 
estimates of several 'atomic'  parameters, often bino- 
mials or multinomials, such as: 

• In word sense disambiguation (Hearst, 1991; 
Gale, Church, and Varowsky, 1993): P(s l f  ), 
where s is a specific sense of the ambiguous word 
in question w, and f is a feature of occurrences 
of w. Common features are words in the context 
of w or morphological attributes of it. 

• In prepositional-phrase (PP) at tachment (Hin- 
dle and Rooth, 1993): P(alf),  where a is a pos- 
sible attachment,  such as an at tachment  to a 
head verb or noun, and f is a feature, or a com- 
bination of features, of the at tachment.  Corn- 

325 



mon features are the words involved in the at- 
tachment, such as the head verb or noun, the 
preposition, and the head word of the PP. 

• In statistical parsing (Black et al., 1993): 
P(rlh), the probability of applying the rule r 
at a certain stage of the top down derivation of 
the parse tree given the history h of the deriva- 
tion process. 

• In text categorization (Lewis and GMe, 1994; 
Iwayama and Tokunaga, 1994): P(tlC), where 
t is a term in the document to be categorized, 
and C is a candidate category label. 

Applying committee-based selection to supervised 
training for such tasks can be done analogously to 
its application in the current paper s. ~rthermore,  
committee-based selection may be attempted also 
for training non-probabilistic classifiers, where ex- 
plicit modeling of information gain is typically im- 
possible. In such contexts, committee members 
might be generated by randomly varying some of 
the decisions made in the learning algorithm. 

Another important area for future work is in de- 
veloping sample selection methods which are inde- 
pendent of the eventual learning method to be ap- 
plied. This would be of considerable advantage in 
developing selectively annotated corpora for general 
research use. Recent work on heterogeneous uncer- 
tainty sampling (Lewis and Catlett, 1994) supports 
this idea, using one type of model for example selec- 
tion and a different type for classification. 
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