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Abstract  

In this paper,  we examine mechanisms for 
automat ic  dialogue initiative setting. We 
show how to incorporate initiative chang- 
ing in a task-oriented human-compute r  di- 
alogue system, and we evaluate the ef- 
fects of initiative both analytically and via 
compute r -compute r  dialogue simulation. 

1 Motivation: Initiative in 
Task-Oriented Dialogues 

Efficient human-compute r  dialogue requires imme- 
diate ut terance-by-ut terance accommodat ion to the 
needs of the interaction. The part icipants must con- 
tinuously focus all concerns on the goals of the task 
and avoid extraneous paths. This means tha t  the di- 
alogue i n i t i a t i v e  should always pass immediately 
to the part icipant  who is best able to handle the 
current task. An agent is said to have dialogue ini- 
tiative over a mutual  goal when tha t  agent controls 
how that  goal will be solved by the collaborators. In 
the implemented voice dialogue system "The Circuit 
Fix-it Shop" (Smith et al., 1992; Smith and Hipp, 
1995), the dialogue fragment given in Figure 1 occurs 
between a human user and a computer  collaborator. 
Utterances 2 and 4 indicate tha t  the computer  is di- 
recting the search for the missing wire in the faulty 
circuit. However, in Utterance 5 the user takes the 
initiative and suggests a different wire than has been 
proposed by the computer.  In this paper  we will 
present a theory explaining how initiative changes 
between participants and how computat ional  agents 
can evaluate who should be in control of solving a 
goal. 

2 Automat ing  Dialogue Init iative 
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1 U The LED is displaying an alter- 
nately flashing one and the 
top corner of a seven. 

2 C There  is supposed to be a wire 
between connector nine nine 
and connector one zero zero. 

3 U It  is there. 
4 C There is supposed to be a wire 

between connector nine eight and 
connector one zero two. 

5 U There  is no wire on connector 
o n e  ze ro  four .  [emphasis mine] 

6 C There  is supposed to be a wire 
between connector one zero four 
and 
connector one zero two. 

Table 1: A Dialogue Fragment  in the Circuit Fix-it 
Shoppe Domain 

is in control and the other agent is passive (the 
master-slave assumption).  For instance, in the LAD- 
DER system (Hendrix et al., 1978) the user has the 
initiative while the computer  is passive. In contrast,  
the VODIS system (Young and Proctor ,  1989) has 
the computer  taking the initiative while the user is 
passive. Some dialogue systems (like GUS (Bobrow 
et al., 1977)) allow for a more mixed-initiative inter- 
action; however, the places where the user can take 
the initiative are limited and defined a priori. The 
dialogue model of Smith (1995) allows for either the 
computer  or the user to assume degrees of initiative; 
however, Smith presents no algorithm for the com- 
puter  to change initiative during a dialogue. Our 
model of mixed-initiative dialogue allows either par- 
t icipant to be in control of the dialogue at any point 
in time. 

Like Smith (1995) we believe tha t  the level of ini- 
Many implemented dialogue systems are question- tiative in the dialogue should mirror the level of ini- 
answer systems with fixed initiative where one agent tiative in the task (which is a corollary to Grosz's 
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(1978) the structure of a dialog mirrors the structure 
o] the underlying task). Unlike previous research in 
dialogue initiative, however, we attach an initiative 
level to e a c h  g o a l  in the task tree. Thus an agent 
may have initiative over one goal but not another. 
As goals get pushed and popped from the problem- 
solving stack, initiative changes accordingly. Thus 
many initiative changes are done implicitly based 
on which goal is being solved. 

2.1 T h e  S e t t i n g  o f  I n i t i a t i v e  L e v e l s  

In our model of dialogue, initiative levels for each 
goal are defined during the interaction based on 1) 
explicit and implicit initiative-changing utterances 
and 2) competency evaluation. 
E x p l i c i t  a n d  I m p l i c i t  I n i t i a t i v e - C h a n g i n g  U t -  
t e r a n c e s  Several researchers (Whittaker and Sten- 
ton, 1988; Walker and Whittaker,  1990) have noted 
that  dialogue control can be exchanged through 
overt cues in the discourse. Our model concentrates 
on two specific dialogue cues: questions and answers. 
When an agent AI asks another agent A2 to satisfy 
a goal G, agent A2 gains initiative over goal G and 
all subgoals of G until agent A2 passes control of 
one of those subgoals back to agent A1. A similar 
initiative-setting mechanism is fired if agent A1 an- 
nounces that  it cannot satisfy goal G. When a goal 
has been answered (satisfied) the problem-solving 
stack is popped. The initiative will now belong to 
whomever the initiative is for the goal on top of the 
stackJ.  In the following human-computer dialogue 
gathered by Smith and Hipp(Smith and Hipp, 1995), 

U: How do I fix this circuit? 
C: What  is the LED displaying? 
U: Nothing. 
C: What  is the switch at? 
U: Where is the switch? 
C: In the lower left corner. 
U: The switch is down. 
C: Put  the switch up. 

all initiative changes can be accounted for by ex- 
plicit initiative-changing utterances or by popping 
of the problem-solving stack due to goal resolution 
as illustrated in Figure 1. 

C o m p e t e n c y  E v a l u a t i o n  for I n i t i a t i v e  Se t -  
t i n g  How does an agent decide whether to ask its 
collaborator for help? An obvious approach is to ask 
for help when the agent is unable to satisfy a goal on 
its own. This approach is the basic mechanism for 
several dialogue systems (Young et al., 1989; Smith 

iSince each participant is carrying out initiative eval- 
uation independently, there may be conflicts on who 
should be in control. Numerous researchers have stud- 
ied how negotiation may be used to resolve these con- 
flicts (Guinn, 1994; Guinn, 1993a; Lambert and Car- 
berry, 1992; McRoy, 1993; Sidner, 1993) 

and Hipp, 1995; Guinn, 1994). An additional ap- 
proach is to ask the collaborator for help if it is be- 
lieved that  the collaborator has a better chance of 
solving the goal (or solving it more efficiently). Such 
an evaluation requires knowledge of the collaborat- 
ing agent's capabilities as well as an understanding 
of the agent's own capabilities. 

Our methodology for evaluating competency in- 
volves a probabilistic examination of the search 
space of the problem domain. In the process of solv- 
ing a goal, there may be many branches that  can be 
taken in an a t tempt  to prove a goal. Rather than 
selecting a branch at random, intelligent behavior 
involves evaluating (by some criteria) each possible 
branch that  may lead toward the solution of a goal 
to determine which branch is more likely to lead to a 
solution. In this evaluation, certain important  fac- 
t o r s  are examined to weight various branches. For 
example, during a medical exam, a patient may com- 
plain of dizziness, nausea, fever, headache, and itchy 
feet. The doctor may know of thousands of possible 
diseases, conditions, allergies, etc. To narrow the 
search, the doctor will t ry  to find a pathology that 
accounts for these symptoms. There may be some 
diseases that  account for all 5 symptoms, others that  
might account for 4 out of the 5 symptoms, and so 
on. In this manner, the practitioner sorts and prunes 
his list of possible pathologies. Competency evalu- 
ation will be based on how likely an agent's branch 
will be successful (based on a weighted factor analy- 
sis) and how likely the collaborator's branch will be 
successful (based on a weighted factor analysis and a 
probabilistic model of the collaborator's knowledge). 

In Section 3 we will sketch out how this calcula- 
tion is made, present several mode selection schemes 
based on this factor analysis, and show the results of 
analytical evaluation of these schemes. In Section 4 
we will present the methodology and results of using 
these schemes in a simulated dialogue environment. 

3 Mathematical  Analysis of 
Efficiency 

Our model of best-first search assumes that  for each 
goal there exists a set of n factors, f l , . - . ,  f~, which 
are used to guide the search through the problem- 
solving space. Associated with each factor are two 
weights, wi, which is the percentage of times a suc- 
cessful branch will have that  factor and xi which is 
the percentage of all branches that  satisfy fi. If an 
agent, a, knows q~', . . . ,  qn a percentage of the knowl- 
edge concerning factors f l , . . . ,  f~, respectively, and 
assuming independence of factors, using Bayes' rule 
an agent can calculate the success likelihood of each 
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U: How do I fix I 
this circuit? ~ /  

goal(fix_circuit). 
Initiative: Computer 

Problem-Solving Slack 

ITHINKING] 
> 

observe(switch). 
hdtiutive: Computer 

debug(led.oft). 
bfftiative: Computer 

goal(fix_circuit). 
lnititaive: Computer 

Problem-Solving Stack 

C: What is the switch at? 

[THINKING] 
< :  

observe(switch). 

Inith~tive: User 

debug(led,off). 
Initiutive: Computer 

goal(fixcircuit). 
Initiutive: Computer 

Problem-Solvlng Stack 

raise(switch). 
Initiative: User 

debug(led.off). 
Inithttive: Computer 

goal(fix_circuit). 
bdtiative: Computer 

Problem-Solving Stack 

U: Where is the switch? 

::> 

C: Put the switch up. 

observe(led). 
Initiative: Computer 

goal(fix_circuit). 
Initiative: Computer 

Problem-Solving Stack 

debug(led,off). 
Initiative: Computer 

goal(fix_circuiO. 
Initiative: Computer 

Problem-Solving Stack 

locate(switch). 
Initiative: Computer 

observe(switch). 
bdtiutive: User 

debug(led,offL 
Initiative: Computer 

goal(fix_circuit). 
hdtiative: Computer 

Problem-Solving Stack 

raise(switch). 
Initiative: Computer 

debug(led,off). 
Initiative: Computer 

goal(fix_circuit). 
hlitiative: Computer 

Problem-Solving Stack 

C: What is the 

LED displaying? 

[THINKING] 

C: In the lower left comer. 

[POPI 

[THINKING] 

observe(led). 
Initiative: User 

goal(fix_circuit). 
Initiative: Computer 

Problem-Soiling Stack 

U: Nothing. / 

IPOP] i 

I goal(fix circuit). I 
Initiutive: Computer 

Problem-Solving Stack 

observe(switch). 
lnitiutive: U.~er 

debug(led,oil). 
Initiative: Computer 

goal(fix_circuit). 
blitiative: Computer 

Problem-Solving Stack 

I 

U: The switch is down I 
I 

24--  
I debug(ll~d,off). 

I goal(fixcircuit). 
Initiative." Computer 

Problem-Solving Stack 

Figure h Tracking Initiative via Explicit Initiative-Changing Utterances and Problem-Solving Stack Manip- 
ulation 
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possible branch of a goal G tha t  it knows: 

p(b) = 1 - f I  1 - F(i)wi (1/k) (1) 
i=-I Xi  

where b is a branch out of a list of k branches and 
F(i) = 1 if the agent knows branch b satisfies factor 
f / a n d  F(i) = x i ( 1 - q a )  otherwise. [Note: x i ( 1 - q a )  
is the probabili ty that  the branch satisfies factor fi  
but  the agent does not know this fact.] We define 
the sorted list of branches for a goal G tha t  an agent 
knows, [b~,.. .  , b~], where for each be~, p(b~) is the 
likelihood that  branch b~ will result in success where 
p(b~) > =  p(b~), Vi < j .  

3.1 Ef f ic iency  A n a l y s i s  o f  D i a l o g u e  
In i t ia t ive  

For efficient initiative-setting, it is also necessary 
to establish the likelihood of success for one's col- 
laborator ' s  lSt-ranked branch, 2nd-ranked branch, 
and so on. This calculation is difficult because the 
agent does not have direct access to its collabora- 
tor 's  knowledge. Again, we will rely on a proba- 
bilistic analysis. Assume that  the agent does not 
know exactly what is in the collaborator 's  knowledge 
but does know the degree to which the collaborator 
knows about  the factors related to a goal. Thus, in 
the medical domain, the agent may know that  the 
collaborator knows more about  diseases tha t  account 
for dizziness and nausea, less about  diseases that  
cause fever and headache, and nothing about  dis- 
eases that  cause itchy feet. For computat ional  pur- 
poses these degrees of knowledge for each factor can 
be quantified: the agent, a, may know percentage q~ 
of the knowledge about  diseases that  cause dizzi- 
ness while the collaborator, c, knows percentage qC 
of the knowledge about  these diseases. Suppose the 
agent has 1) a user model that  states that  the col- 
laborator  knows percentages q{, q~,. . . ,  q~, about  fac- 
tors f l , f 2 , . . . , f m  respectively and 2) a model of 
the domain which states the approximate  number  
of branches, N'. Assuming independence, the ex- 
pected number of branches which satisfy all n factors 
is ExpAUN = N" l-Ii=l Xi" Given that  a branch sat- 
isfies all n factors, the likelihood that  the collabora- 
tor will know tha t  branch is rZin_l qC. Therefore, the 
expected number of branches for which the collabo- 
rator  knows all n factors is ExpAl lN  I~i~=1 qg. The 
probabili ty that  one of these branches is a success- 

producing branch is 1 - [ L ~ I  1 - w i  ~ (from Equa- 
tion 1). By computing similar probabilities for each 
combination of factors, the agent can compute the 
likelihood that  the collaborator 's  first branch will be 
a successful branch, and so on. A more detailed he- 

count of this evaluation is given by Guinn (1993b; 
1994). 

We have investigated four initiative-setting 
schemes using this analysis. These schemes 
do not necessarily correspond to any observable 
human-human or human-computer dialogue behav- 
ior. Rather, they provide a means for exploring pro- 
posed dialogue initiative schemes. 

Random In Random mode, one agent is given ini- 
tiative at random in the event of a conflict. This 
scheme provides a baseline for initiative setting 
algorithms. Hopefully, a proposed algorithm 
will do better than Random. 

SingleSelection In SingleSelection mode, the more 
knowledgeable agent (defined by which agent 
has the greater total percentage of knowledge) 
is given initiative. The initiative is set through- 
out the dialogue. Once a leader is chosen, the 
participants act in a master-slave fashion. 

Continuous In Continuous mode, the more knowl- 
edgeable agent (defined by which agent's first- 
ranked branch is more likely to succeed) is ini- 
tially given initiative. If that branch fails, this 
agent 's  second-ranked branch is compared to 
the other agent 's  first-ranked branch with the 
winner gaining initiative. In general if Agent 1 
is working on its ith-ranked branch and Agent 2 
is working on its jth-ranked branch, we compare 

A1 A1 p ( h i )  to 

O r a c l e  In Oracle mode, an all-knowing mediator 
selects the agent tha t  has the correct branch 
ranked highest in its list of branches. This 
scheme is an upper  bound on the effectiveness of 
initiative setting schemes. No initiative setting 
algorithm can do better.  

As knowledge is varied between participants we 
see some significant differences between the various 
strategies. Figure 2 summarizes this analysis. The x 
and y axis represent the amount  of knowledge that  
each agent is given 2, and the z axis represents the 
percentage of branches explored from a single goal. 
SingleSelection and Continuous modes perform sig- 
nificantly bet ter  than Random mode. On aver- 
age Continuous mode results in 40% less branches 
searched per goal than Random. Continuous mode 

2This distribution is normalized to insure that all the 
knowledge is distributed between each agent. Agent 1 
will have ql + (1 q l ) (1 -  2 - q ) ql+q2 percent of the knowl- 
edge while Agent 2 will have q2 + (1 - ql)(1 - q2) q~ 

q l  "~-q2 
percent of the knowledge. If ql + q2 = O, then set 
ql -= q2 -= 0.5. 
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Figure 2: An Analytical Comparison of Dialogue Initiative-Setting Schemes 

performs between 15-20% better  than SingleSelec- 
tion. The large gap between Oracle and Continuous 
is due to the fact tha t  Continuous initiative selection 
is only using limited probabilistic information about  
the knowledge of each agent. 

4 Computer  Simulations 

The dialogue model outlined in this paper has 
been implemented, and computer-computer  dia- 
logues have been carried out to evaluate the model 
and judge the effectiveness of various dialogue initia- 
tive schemes. In a methodology similar to that  used 
by Power (1979), Carletta (1992) and Walker (1993), 
knowledge is distributed by a random process be- 
tween agents, and the resulting interaction between 
these collaborating agents is observed. This method- 
ology allows investigators to test different aspects of 
a dialogue theory. Details of this experimental strat- 
egy are given by Guinn (1995). 

4.1 T h e  U s a g e  o f  Computer -Computer  
Dialogues  

The use of computer-computer simulations to study 
and build human-computer dialogue systems is 
controversial. Since we are building computa- 
tional models of dialogue, it is perfectly reason- 
able to explore these computational models through 
computer-computer simulations. The difficulty 
lies in what these simulations say about human- 
computer or computer-computer dialogues. This 
author argues that  computer-computer simulations 
are one layer in the multi-layer process of build- 

ing human-computer  dialogue systems. Computer- 
computer simulations allow us to evaluate our com- 
putational models and explore issues that  can not 
be resolved analytically. These simulations can help 
us prune out some mechanisms and suggest mech- 
anisms that  may work well in a human-computer  
system. For instance, if the dialogues that  result 
in a computer-computer  conversation are incoherent 
to a human observer, this suggests that  the dialogue 
mechanisms employed may be inappropriate for a 
human-computer  system. On the other hand, if the 
resulting dialogues are coherent and exhibit features 
that  are desired in a human-computer  system, this 
suggests that  these mechanisms may work well in a 
human-computer  system. The final test, of course, 
must be in the implementation of a human-computer  
dialogue system. The scarcity of such systems sug- 
gests that  it is an extremely expensive process to 
build a functional human-computer  dialogue system, 
and computer-computer simulations can assist in re- 
ducing these costs. 

4.2 Simulat ion Results  

A murder mystery domain was created with 22 
suspects. An annotated example dialogue from a 
computer-computer  collaboration in this domain is 
presented in Figure 3. Agents were given partial 
information through a random process. By using 
either Random mode or Continuous mode, we can 
evaluate the effect of those mechanisms in this ex- 
perimental environment. Table 2 presents results 
computed from 5008 collaborations where the agents 
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Speaker Utterance 
Watson 
Holmes 
Watson 
Holmes 
Watson 
Holmes 
Watson 

Hohnes 

Holmes 
Watson 
Holmes 
Watson 
Holmes 
Watson 
Holmes 

Watson 

Holmes 

Watson 

Watson 
Holmes 
Watson 

Holmes 

Watson 

Who is the murderer of Lord Dunsmore? ~ 
Is it the case that  Suspect16 is the murderer of Lord Dunsmore? 
Is it the case that  Suspectl6 had a motive to murder Lord Dunsmore? 
Suspectl6 had a motive to murder Lord Dunsmore. 
Is it the case that  Suspectl6 had access to the poison? 
I am unable to determine whether Suspectl6 had access to the poison. 
I am unable to determine whether Suspectl6 is the murderer of Lord 
Dunsmore. 
I am unable to determine whether Suspectl6 is the murderer of Lord 
Dunsmore. 
Who is the murderer of Lord Dunsmore? b 
Is it the case that  Suspectl0 is the murderer of Lord Dunsmore? 
Is it the case that  Suspectl0 had a motive to murder Lord Dunsmore? 
Suspectl0 had a motive to murder Lord Dunsmore. 
Is it the case that  Suspectl0 had access to the poison? 
Suspectl0 had access to the poison. 
Is it the case that  Suspectl0 had an opportunity to administer the 
poison? 
I am unable to determine whether Suspectl0 had an opportunity to 
administer the poison. 
I am unable to determine whether Suspectl0 is the murderer of Lord 
Dunsmore. 
I am unable to determine whether Suspectl0 is the murderer of Lord 
Dunsmore. 
Is it the case that  Suspect9 is the murderer of Lord Dunsmore? 
Is it the case that  Suspect7 is the murderer of Lord Dunsmore? c 
I have proven that  Suspect9 has a motive to murder Lord Dunsmore and 
Suspect9 had access to the poison, d 
I have proven that  Suspect7 had access to the poison, Suspect7 had 
an opportunity to administer the poison, and Suspect7 has a criminal 
disposition. ~ 
Suspect7 is the murderer of Lord Dunsmore. f 

aw a t son  gives control of the investigation over to Holmes. Each part i c ipant  uses  t h e  C o n t i n u o u s  M o d e  a l g o r i t h m  to d e t e r m i n e  who 
should be in control. 

bHolmes is giving up control of direc t ing  the  inves t iga t ion  here.  
CHolmes is challenging Watson's investigative choice. 

dwatson nego t ia t e s  for his choice. 
eHolmes negotiates for his choice. 

fWatson now has enough in format ion  to prove t h a t  Suspect7 is the murderer. 

Figure 3: A Sample Dialogue 
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had to communicate to solve the task. 

Random Continuous 
Times (secs) 82.398 44.528 

of Utterances 39.921 26.650 
~uspects Examined 6.188 3.412 

Table 2: Data on 5008 Non-trivial Dialogues from 
the Murder Mystery Domain 

5 Extension to Human-Computer  
Dialogues 

Currently, two spoken-dialogue human-computer 
systems are being developed using the underlying 
algorithms described in this paper. The Duke Pro- 
gramming Tutor instructs introductory computer 
science students how to write simple Pascal pro- 
grams by providing multiple modes of input and 
output (voice/text/graphics) (Bierman et al., 1996). 
The Advanced Maintenance Assistant and Trainer 
(AMAT) currently being developed by Research Tri- 
angle Institute for the U.S. Army allows a mainte- 
nance trainee to converse with a computer assistant 
in the diagnosis and repair of a virtual MIA1 tank. 
While still in prototype development, preliminary 
results suggest that the algorithms that were suc- 
cessful for efficient computer-computer collabora- 
tion are capable of participating in coherent human- 
machine interaction. Extensive testing remains to be 
done to determine the actual gains in efficiency due 
to various mechanisms. 

One tenet of our theory is that proper initiative 
setting requires an effective user model. There are 
several mechanisms we are exploring in acquiring the 
kind of user model information necessary for the pre- 
viously described dialogue mode algorithms. Stereo- 
types (Rich, 1979; Chin, 1989) are a valuable tool 
in domains where user classification is possible and 
relevant. For instance, in the domain of military 
equipment maintenance, users can be easily classi- 
fied by rank, years of experience, equipment famil- 
iarity and so on. An additional source of user model 
information can be dynamically obtained in envi- 
ronments where the user interacts for an extended 
period of time. A tutoring/training system has the 
advantage of knowing exactly what lessons a stu- 
dent has taken and how well the student did on in- 
dividual lessons and questions. Dynamically mod- 
ifying the user model based on on-going problem 
solving is difficult. One mechanism that may prove 
particularly effective is negotiating problem-solving 
strategies (Guinn, 1994). The quality of a collabora- 
tor's negotiation reflects the quality of its underlying 

knowledge. There is a tradeoff in that negotiation 
is expensive, both in terms of time and computa- 
tional complexity. Thus, a synthesis of user model- 
ing techniques will probably be required for effective 
and efficient collaboration. 
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