
Efficient Transformation-Based Parsing 

Giorgio S a t t a  E r i c  B r i l l  

D i p a r t i m e n t o  di  E l e t t r o n i c a  ed  I n f o r m a t i c a  D e p a r t m e n t  of  C o m p u t e r  S c i e n c e  

U n i v e r s i t £  di P a d o v a  J o h n s  H o p k i n s  U n i v e r s i t y  

v i a  G r a d e n i g o ,  6 / A  B a l t i m o r e ,  M D  21218-2694  

2-35131 P a d o v a ,  I t a l y  b r i l l © c s ,  j h u .  edu 
satta@dei, unipd, it 

A b s t r a c t  

In transformation-based parsing, a finite 
sequence of tree rewriting rules are checked 
for application to an input structure. Since 
in practice only a small percentage of rules 
are applied to any particular structure, the 
naive parsing algorithm is rather ineffi- 
cient. We exploit this sparseness in rule 
applications to derive an algorithm two to 
three orders of magnitude faster than the 
standard parsing algorithm. 

1 I n t r o d u c t i o n  

The idea of using transformational rules in natu- 
ral language analysis dates back at least to Chore- 
sky, who at tempted to define a set of transfor- 
mations that  would apply to a word sequence to 
map it from deep structure to surface structure 
(see (Chomsky, 1965)). Transformations have also 
been used in much of generative phonology to cap- 
ture contextual variants in pronunciation, start- 
ing with (Chomsky and Halle, 1968). More re- 
cently, transformations have been applied to a di- 
verse set of problems, including part of speech 
tagging, pronunciation network creation, preposi- 
tional phrase at tachment disambiguation, and pars- 
ing, under the paradigm of transformation-based 
error-driven learning (see (Brill, 1993; Brill, 1995) 
and (Brill and Resnik, 1994)). In this paradigm, 
rules can be learned automatically from a training 
corpus, instead of being written by hand. 

Transformation-based systems are typically deter- 
ministic. Each rule in an ordered list of rules is ap- 
plied once wherever it can apply, then is discarded, 
and the next rule is processed until the last rule in 
the list has been processed. Since for each rule the 
application algorithm must check for a matching at 
all possible sites to see whether the rule can apply, 
these systems run in O(rrpn) time, where 7r is the 
number of rules, p is the cost of a single rule match- 
ing, and n is the size of the input structure. While 
this results in fast processing, it is possible to create 
much faster systems. In (Roche and Schabes, 1995), 

a method is described for converting a list of trans- 
formations that operates on strings into a determin- 
istic finite state transducer, resulting in an optimal 
tagger in the sense that tagging requires only one 
state transition per word, giving a linear time tag- 
ger whose run-time is independent of the number 
and size of rules. 

In this paper we consider transformation-based 
parsing, introduced in (Brill, 1993), and we im- 
prove upon the O(Trpn) t ime upper bound.. In 
transformation-based parsing, an ordered sequence 
of tree-rewriting rules (tree transformations) are ap- 
plied to an initial parse structure for an input sen- 
tence, to derive the final parse structure. We observe 
that in most transformation-based parsers, only a 
small percentage of rules are actually applied, for 
any particular input sentence. For example, in an 
application of the transformation-based parser de- 
scribed in (Brill, 1993), 7r = 300 rules were learned, 
to be applied at each node of the initial parse struc- 
ture, but the average number of rules that  are suc- 
cessfully applied at each node is only about one. So 
a lot of time is spent testing whether the conditions 
are met for applying a transformation and finding 
out that  they are not met. This paper presents an 
original algorithm for transformation-based parsing 
working in O(ptlog(t)) time, where t is the total 
number of rules applied for an input sentence. Since 
in practical cases t is smaller than n and we can 
neglect the log(n) factor, we have achieved a time 
improvement of a factor of r .  We emphasize that 
rr can be several hundreds large in actual systems 
where transformations are lexicalized. 

Our result is achieved by preprocessing the trans- 
formation list, deriving a finite state, determiflistic 
tree automaton. The algorithm then exploits the au- 
tomaton in a way that obviates the need for checking 
the conditions of a rule when that  rule will not apply, 
thereby greatly improving parsing run-time over the 
straightforward parsing algorithm. In a sense, our 
algorithm spends time only with rules that  can be 
applied, as if it knew in advance which rules cannot 
be applied during the parsing process. 

The remainder of this paper is organized as fol- 

255 



lows. In Section 2 we introduce some preliminaries, 
and in Section 3 we provide a representation of trans- 
formations that uses finite state, deterministic tree 
automata.  Our algorithm is then specified in Sec- 
tion 4. Finally, in Section 5 we discuss related work 
in the existing literature. 

2 P r e l i m i n a r i e s  

We review in the following subsections some termi- 
nology that  is used throughout this paper. 

2.1 Trees  

We consider ordered trees whose nodes are assigned 
labels over some finite alphabet E; this set is denoted 
as ET. Let T E S T. A node of T is called l e f t m o s t  
if it does not have any left sibling ( a root node is 
a leftmost node). The h e i g h t  of T is the length 
of a longest path from the root to one of its leaves 
(a tree composed of a single node has height zero). 
We define I TI  as the number of nodes in T. A tree 
T E y]T is denoted as A if it consists of a single leaf 
node labeled by A, and as A(T1,T2,.. .  ,Ta), d >_ 1, 
if T has root labeled by A with d (ordered) children 
denoted by T1 , . . . ,Td .  Sometimes in the examples 
we draw trees in the usual way, indicating each node 
with its label. 

What  follows is standard terminology from the 
tree pattern matching literature, with the simplifi- 
cation that  we do not use variable terms. See (Hoff- 
mann and O'Donnell, 1982) for general definitions. 
Let n be a node of T. We say that a tree S m a t c h e s  
T at n if there exists a one-to-one mapping from the 
nodes of S to the nodes of T, such that the follow- 
ing conditions are all satisfied: (i) if n' maps to n", 
then n ~ and n I~ have the same label; (ii) the root of 
S maps to n; and (iii) if n ~ maps to n" and n ~ is not 
a leaf in S, then n ~ and n" have the same degree and 
the i-th child of n ~ maps to the i-th child of n% We 
say that T and S are e q u i v a l e n t  if they match each 
other at the respective root nodes. In what follows 
trees that  are equivalent are not treated as the same 
object. We say that  a tree T '  is a s u b t r e e  of T at 
n if there exists a tree S that matches T at n, and 
T ~ consists of the nodes of T that  are matched by 
some node of S and the arcs of T between two such 
nodes. We also say that T '  is matched by S at n. In 
addition, T '  is a p re f ix  of T if n is the root of T; T '  
is the suffix of T at n if T '  contains all nodes of T 
dominated by n. 
E x a m p l e  1 Let T -- B(D, C(B(D, B), C)) and let 
n be the second child of T's root. S -- C(B,C) 
matches T at n. S'  = B(D, C(B), C)) is a prefix o rS  
and S" = C(B(D, B), C) is the suffix of T at n. [] 

We now introduce a tree replacement operator 
that  will be used throughout the paper. Let S 
be a subtree of T and let S / be a tree having the 
same number of leaves as S. Let nl, n2, • . . ,  nz and 
n~,n~,... ,n~, 1 > 1, be all the leaves from left to 

B 

D C_ 

B_ E 
I 

E 
B 

E 

B 

C B 
f 

D E 

Figure 1: From left to right, top to bot tom: tree T 
with subtree S indicated using underlined labels at 
its nodes; tree S'  having the same number of leaves 
as S; tree T[S/S ~] obtained by "replacing" S with S ~. 

right of S and S', respectively. We write T[S/S'] 
to denote the tree obtained by embedding S ~ within 
T in place of S, through the following steps: (i) if 
the root of S is the i-th child of a node n] in T, 
the root of S I becomes the i-th child of n] ; and (ii) 
the (ordered) children of n~ in T, if any, become the 
children of n~, 1 < i < l. The root of T[S/S  ~] is the 
root of T if node n] above exists, and is the root of 
S t otherwise. 
E x a m p l e  2 Figure 1 depicts trees T, S I and T ~ in 
this order. A subtree S of T is also indicated using 
underlined labels at nodes of T. Note that  S and 
S'  have the same number of leaves. Then we have 
T' = T[S/S']. n 

2 . 2  Tree  a u t o m a t a  

Deterministic (bottom-up) tree au tomata  were first 
introduced in (Thatcher, 1967) (called FRT there). 
The definition we propose here is a generalization 
of the canonical one to trees of any degree. Note 
that  the transition function below is computed on 
a number of states that is independent of the de- 
gree of the input tree. Deterministic tree au tomata  
will be used later to implement the bot tom-up tree 
pattern matching algorithm of (Hoffmann and O'- 
Donnell, 1982). 

D e f i n i t i o n  1 A deterministic tree automaton (DTA) 
is a 5-tuple M = (Q, ~, ~, qo, F), where Q is a finite 
set of s~ates, ~ is a finite alphabet, qo E Q is the 
initial state, F C Q is the set of final states and 6 is 
a transition function mapping Q~ × E into O. 

Informally, a DTA M walks through a tree T by vis- 
iting its nodes in post-order, one node at a time. 
Every time a node is read, the current state of 
the device is computed on the basis of the states 

2 5 6  



reached upon reading the immediate left sibling and 
the rightmost child of the current node, if any. In 
this way the decision of the DTA is affected not only 
by the portion of the tree below the currently read 
node, but also by each subtree rooted in a left sib- 
ling of the current node. This is formally stated in 
what follows. Let T E ~T and let n be one of its 
nodes, labeled by a. The state r e a c h e d  by M upon 
reading n is recursively specified as: 

6(T,n)  = ~ ( X , X ' , a ) ,  (1) 

where X -- q0 if n is a leftmost node, X -- 6(T, n') if 
n' is the immediate left sibling of n; and X '  -- q0 if 
n is a leaf node, X '  = 6(T, n")  if n"  is the rightmost 
child of n. The tree language recognized by M is the 
set 

L ( M )  = { T  [ ~(T, n) E F, T E E T, 

n the root of T}. (2) 

E x a m p l e  3 Consider the infinite set L = 
{B(A,  C), B(A,  B(A,  C)), B(A,  B(A,  B(A,  C ) ) ) , . . . }  
consisting of all right-branching trees with internal 
nodes labeled by B and with strings A'~C, n > 1 
as their yields. Let M = (Q, { A , B , C } ,  6, qo, 
{qBc}) be a DTA specified as follows: Q = {q0, 
qA, qnc,  q-i} ;  6(qo, qo,A) = qA, 6(qA,qo, C) = 
5(qA, qBC, B) = qBC and q- i  is the value of all 
other entries of 5. It is not difficult to see that 
L ( M )  = L. 1:3 
Observe that  when we restrict to monadic trees, that  
is trees whose nodes have degree not greater than 
one, the above definitions correspond to the well 
known formalisms of deterministic finite state au- 
tomata,  the associated extended transition function, 
and the regular languages. 

2.3 Transformat ion-based  pars ing 

Transformation-based parsing was first introduced 
in (Brill, 1993). Informally, a transformation-based 
parser assigns to an input sentence an initial parse 
structure, in some uniform way. Then the parser 
iteratively checks an ordered sequence of tree trans- 
formations for application to the initial parse tree, 
in order to derive the final parse structure. This 
results in a deterministic, linear time parser. In 
order to present our algorithm, we abstract away 
from the assignment of the initial parse to the input, 
and introduce below the notion of transformation- 
based tree rewriting system. The formulation we 
give here is inspired by (Kaptan and Kay, 1994) 
and (Roche and Schabes, 1995). The relationship 
between transformation-based tree rewriting sys- 
tems and standard term-rewriting systems will be 
discussed in the final section. 

Def in i t ion  2 A transformation-based tree rewriting 
system ( T T S )  is a pair G = (E ,R) ,  where ~ is a 
finite alphabet and R = ( r i , r2 , . . . , r~ ) ,  7r >_ 1, is 
a finite sequence of tree rewriting rules having the 

form Q --+ Q', with Q, Q' E ~T and such that Q and 
Q' have the same number of leaves. 

If r = (Q ~ Q'), we write lhs(r) for Q and rhs(r) 
for Q'. We also write lhs(R) for {lhs(r) I r E R}. 
(Recall that we regard lhs(r/) and lhs(rj),  i # j ,  as 
different objects, even if these trees are equivalent.) 
We define [r I = Ilhs(r) l + I rhs(r) I. 

The notion of transformation associated with a 
TTS G = (E, R) is now introduced. Let C, C'  E E T. 
For any node n of C and any rule r = (Q ~ Q') of 
G, we write 

C ~ C' (3) 

if Q does not match C at n and C = C'; or if Q 
matches C at n and C'  = C[S/Q'],  where S is the 
subtree of T matched by Q at n and Q'c is a fresh 
copy of Q'. Let <nl ,n2 , . . . , n t l ,  t > 1, be the post- 
ordered sequence of all nodes of C. We write 

C ~ C' (4) 
r , n  • 

if Ci- i  ~ Ci, 1 < i <_ t, Co = C and Ct = 
C'. Finally, we define the translation induced by 
G on Ea, as the map M ( G )  = {(C,C ' )  I C E 
y]T, Ci_I~:~C i for 1 < i <  ~r, Co = C ,  C~ = C ' } .  

3 R u l e  r e p r e s e n t a t i o n  

We develop here a representation of rule sequences 
that makes use of DTA and that  is at the basis of 
the main result of this paper. Our technique im- 
proves the preprocessing phase of a bot tom-up tree 
pattern matching algorithm presented in (Hoffmann 
and O'Donnell, 1982), as it will be discussed in the 
final section. 

Let G = (~ ,R)  be a TTS,  R = ( r i , r 2 , . . . , r ~ ) .  In 
what follows we construct a DTA that  "detects" each 
subtree of an input tree that  is equivalent to some 
tree in lhs(_R). We need to introduce some additional 
notation. Let N be the set of all nodes from the trees 
in lhs(R). Call Nr the set of all root nodes (in N),  
N,~ the set of all leftmost nodes, Nz the set of all leaf 
nodes, and Na the set of all nodes labeled by a E ~. 
For each q E 2 N, let right(q) = {n I n E N, n' E 
q, n has immediate left sibling n'} and let up(q) = 
{n [ n E N, n' E q, n h a s r i g h t m o s t c h i l d n ' } .  
Also, let q0 be a fresh symbol. 

D e f i n i t i o n  3 G is associated with a DTA Aa = 
(2 N U {q0}, E, 6a, qo, F), where F = {q [ q E 
2 N, (q f3 Nr) # 0} and 6G is specified as follows: 

(i) 5a(qo,qo,a) = No M Nm A N t ;  
(it) dia(qo,q',a) = N a A N m A ( N t U u p ( q ' ) ) ,  forq '  # 

qo; 
(iii) diG(q, qo, a) = Na A Nz t] (Nr U right(q)), for q 

qo; 
(iv) 6a(q, q', a) = No M up(q') A (Nr U right(q)), for 

q • qo # q'. 

257 



Observe that  each state of Ac  simultaneously car- 
ries over the recognition of several suffixes of trees 
in lhs(/~). These processes are started whenever Ac  
reads a leftmost node n with the same label as a 
leftmost leaf node in some tree in lhs(R) (items (i) 
and (ii) in Definition 3). Note also that  we do 
not require any matching of the left siblings when 
we match  the root of a tree in lhs(R) (items (iii) 
and (iv)). 

B B 

A --~ a B A / ' D  
B 

A 
c B 

- +  c c A 
A B 

B B 

C B A B 

A B 

Figure 2: From top to bot tom:  rules r l ,  r2 and r3 
of G. 

E x a m p l e  4 Let G = (E ,R) ,  where E = {A, B, 
C, D} and R = (rl,r2, r3). Rules ri are depicted 
in Figure 2. We write nij to denote the j - th  node 

• in a post-order enumerat ion of the nodes of lhs(ri), 
1 < i < 3 and 1 < j <__ 5. (Therefore n35 denotes the 
root node of lhs(r3) and n22 denotes the first child 
of the second child of the root node of lhs(r~).) If  we 
consider only the useful states, that  is those states 
that  can be reached on an actual input, the DTA 
Ac --- (Q, E, 5, qo, F) ,  is specified as follows: Q = 
{qi I 0 < i < I1}, where ql = {nll ,n12,  n22, n32}, 
q2 = {n21,n3x}, q3 = {n13, n23}, q4 = {n33}, q5 = 
{n14}, q6 = {n24}, q7 = {n34}, qs = {n15}, q9 -= 
{n35}, qlo = {n25}, qll = (b; F = {qs, qg, qlo}. The 
transition function 5, restricted to the useful states, 
is specified in Figure 3. Note that  among the 215 + 1 
possible states, only 12 are useful. [] 

6(qo,qo,A)  = ql 6(qo,qo,C)  = q2 
6(qa,qo, B)  = q3 6 (q l ,qo ,C)  = q, 
6 ( q l , q z , B )  = qs 6(q2,  q 3 , B )  = qs 
~(q~,q, ,  B)  = q7 ~(qo, qs, B)  = q~ 
6 ( q o , q 6 , B )  = q9 6(qo, q T , B )  = qlo 

Figure 3: Transition function of G. For all (q, q~, a) E 
Q2× E not indicated above, 5(q, q', a) = qll- 

Although the number of states of Ac is exponen- 

tial in IN I, in practical cases most  of these states 
are never reached by the au tomaton  on an actual 
input, and can therefore be ignored. This happens 
whenever there are few pairs of suffix trees of trees 
in lhs(R) that  share a common prefix tree but  no 
tree in the pair matches the other at the root node. 
This is discussed at length in (Hoffmann and O'Don-  
nell, 1982), where an upper  bound on the number  of 
useful states is provided. 

The following l emma  provides a characterization 
of Aa  tha t  will be used later. 

L e m m a  1 Let n be a node o f T  E ~T and let n ~ be 
the roof node of r E R. Tree lhs(r) matches T a f  n 
if  and only if  n' E iG(T ,n) .  

P r o o f  ( o u t l i n e ) .  The s ta tement  can be shown by 
proving the following claim. Let m be a node in T 
and m t be a node in lhs(r). Call m l , . . . , m ~  = m, 
k > 1, the ordered sequence of the left siblings of m, 
with m included, and call m ~ , . . . ,  m' k, -" m',  k' > 1, 
the ordered sequence of the left siblings of m ~, with 
m '  included. If  m '  ~ Nr,  then the two following 
conditions are equivalent: 

* m '  E i v ( T ,  m); 

• k = k' and, for 1 < i < k, the suffix of lhs(r) at 
m~ matches T at mi. 

The claim can be shown by induction on the posi- 
tion of m ~ in a post-order enumerat ion of the nodes 
of lhs(r). The l emma  then follows f rom the spec- 
ification of set F and the t rea tment  of set N~ in 
items (iii) and (iv) in Definition 3. [] 

We also need a function mapping  F x {1. . ( r  + 1)} 
into {1..r} U {.1_}, specified as (min@ =_1_): 

next(q,i)  = min{j  [ i < j < 7r, lhs(rj)  has 

root node in q}. (5) 

Assume tha t  q E F is reached by AG upon reading a 
node n (in some tree). In the next section next(q, i) 
is used to select the index of the rule tha t  should be 
next applied at node n, after the first i - 1 rules of 
R have been considered. 

4 T h e  a l g o r i t h m  

We present a translation algori thm for T T S  that  
can immediately  be converted into a t ransformat ion-  
based parsing algorithm. We use all definitions in- 
troduced in the previous sections. To simplify the 
presentation, we first make the assumption tha t  the 
order in which we apply several instances of the same 
rule to a given tree does not affect the outcome. 
Later we will deal with the general case. 

4.1 O r d e r - f r e e  case  

We start  with an impor tant  property tha t  is used 
by the algorithm below and that  can be easily shown 
(see also (Hoffmann and O'Donnell ,  1982)). Let G = 
(E, R) be a T T S  and let ha be the m a x i m u m  height 

258 



of a tree in lhs(R). Given trees T and S, S a subtree 
of T, we write local(T, S) to denote the set of all 
nodes of S and the first ha  proper ancestors of the 
root of S' in T (when these nodes are defined). 

L e m m a  2 Assume that lhs(r), r E R, matches a 
tree T at some node n. Let T ~'~ T'  and lel S be the 
copy of rhs(r) used in the rewriting. For every node 
n' no~ included in local(T', S),  we have ~a(T, n') = 
Oa(T' ,n ' ) .  [] 

We precede the specification of the method with 
an informal presentation. The following three da ta  
structures are used. An associative list state asso- 
ciates each node n of the rewritten input tree with 
the state reached by Aa upon reading n. If  n is 
no longer a node of the rewritten input tree, state 
associates n with the emptyset .  A set rule(i) is as- 
sociated with each rule ri, containing some of the 
nodes of the rewritten input tree at which lhs(ri) 
matches.  A heap da ta  structure H is also used to 
order the indices of the non-empty sets rule(i) ac- 
cording to the priority of the associated rules in the 
rule sequence. All the above data  structures are up- 
dated by a procedure called update. 

To compute the translation M ( G )  we first visit 
the input tree with AG and initialize our data  struc- 
tures in the following way. For each node n, state is 
assigned a state of AG as specified above. If  rule ri 
must  be applied first at n, n is added to rule(i) and 
H is updated.  We then enter a main loop and re- 
trieve elements from the heap. When i is retrieved, 
rule ri is considered for application at each node 
n in rule(i). It  is impor tant  to observe that,  since 
some rewriting of the input tree might have occurred 
in between the t ime n has been inserted in rule(i) 
and the t ime i is retrieved from H,  it could be that  
the current rule ri can no longer be applied at n. 
Information in state is used to detect these cases. 
Crucial to the efficiency of our algorithm, each t ime 
a rule is applied only a small portion of the current 
tree needs to be reread by AG, in order to update  
our da ta  structures, as specified by Lemma 2 above. 
Finally, the main loop is exited when the heap is 
empty.  

A l g o r i t h m l  Let G - ( ~ , R )  be a TTS,  R = 
( r l , r 2 , . . . , r ~ ) . a n d  l e t T  E ~ be an input tree. 
Let Aa = (2 ~ U {q0}, ~, ~a, q0, F)  be the DTA as- 
sociated with G and ~G the reached state function. 
Let also i be an integer valued variable, state be an 
associative array, rule(i) be an initially empty  set, 
for 1 < i < ~', and let H be a heap data  structure. 
(n ---+ rule(i) adds n to rule(i); i ---* H inserts i in H;  
i ~-- H assigns to i the least element in H,  i f H  is not 
empty.)  The algorithm is specified in Figure 4. [] 

E x a m p l e  4 (continued) We describe a run of Al- 
gori thm 1 working with the sample TTS  G = (E, R) 
previously specified (see Figure 2). 

p roc  update( oldset, newset, j) 
for each node n E oldset 

state(n) ~ O 
for each node n E newset do 

state(n) ~- gG(C, n) 
if state(n) • F and next(state(n), j) #.l_ then do 

if rule(next(state(n), j) ) = O 
then next(state(n), j) --~ Y 

n ~ rule(next(s tate(n) ,  j ) )  
od 

od 

main 
C + - - T ; i , - 1  
update(O, nodes of C, i) 
while H not empty do 

i ~ - H  
for each node n E rule(i) s.t. the root of lhs(ri) 

is in state(n) do 
S ~ the subtree of C matched by lhs(ri) at n 
S I *-- copy of rhs(ri) 
c ,-- c [ s / s ' ]  
update(node~ of S, lo~al(C, S'), i + 1) 

od 
od 
return C. 

Figure 4: Translation algorithm computing M ( G )  
for a TTS  G. 

Let Ci E ~T, 1 < i < 3, be as depicted in Figure 5. 
We write mij to denote the j - th  node in a post- 
order enumeration of the nodes of Ci, 1 < i < 3 and 
1 < j < 7. Assume that  CI is the input tree. 

After the first call to procedure update, we have 
state(m17) = qz0 = {n25} and state(m16) = qs = 
{nzh}; no other final state is associated with a node 
of C1. We also have that  r u l e ( l ) =  {m16}, rule(2) = 
{m17}, rule(3) = 0 and H contains indices 1 and 2. 

Index 1 is then retrieved from H and the only 
node in rule(l), i.e., mr6, is considered. Since the 
root of lhs(rz), i.e., node n15, belongs to q8, mz~ 
passes the test in the head of the for-statement in 
the main program. Then rz is applied to C1, yielding 
C2. Observe that  m l l  = m21 and m17 - -  m27; all 
the remaining nodes of C2 are fresh nodes. 

The next call to update, associated with the appli- 
cation of r l ,  updates the associative list state in such 
a way that  state(m27) = q9 = { n 3 5 } ,  and no other 
final state is associated with a node of C2. Also, we 
now have rule(l) = {m16}, ru le (2)= {m27} (recall 
t h a t  m 1 7  = m 2 7 ) ,  rule(3) = {m27}, and H contains 
indices 2 and 3. 

Index 2 is next retrieved from H and node m27 
is considered. However, at this point the root of 
lhs(r2), i.e., node n~5, does no longer belong to 
state(m27), indicating that  r~ is no longer applicable 
to that  node. The body of the for-statement  in the 

259 



B 

C B 

A B 

B 

C B 

A C 

A D 
B 

A B 
A 

A D 

Figure 5: From left to right, top to bot tom: trees C1, 
C2 and C3. In the sample T T S  G we have (C1, C3) E 

M(G), since C1 ~=~ C~ ~=~ C2 ~=~ Ca. 

main program is not executed this time. 
Finally, index 3 is retrieved from H and node m27 

is again considered, this t ime for the application of 
rule r3. Since the root of lhs(ra), i.e., node n35, be- 
longs to state(m27), r3 is applied to C2 at node m27, 
yielding C3. Da ta  structures are again updated by 
a call to procedure update with the second param- 
eter equal to 4. Then state qs is associated with 
node m37, the root node of C3. Despite of the fact 
tha t  qs E F ,  we now have next(qs, 4) = _k. There- 
fore rule r l  is not considered for application to C3. 
Since H is now empty,  the computat ion terminates 
returning C3. [] 

The results in L e m m a  1 and Lemma  2 can be used 
to show that ,  in the main program, a node n passes 
the test in the head of the for-statement if and only 
if lhs(ri) matches C at n. The correctness of Algo- 
r i thm 1 then follows from the definition of the heap 
da ta  structure. 

We now turn to computat ional  complexity issues. 
Let p = maxl<i<_~lril .  For T e E T, let a l s o t ( T )  
be the total  number  of rules that  are successfully 
applied on a run of Algori thm i on input T, counting 
repetitions. 

T h e o r e m  1 The running time of Algorithm 1 on 
input tree T is 0(I  TI + pt(T) log(t(T))) .  

P r o o f .  We can implement  our data structures in 
such a way tha t  each of the primitive access oper- 
ations that  are executed by the algorithm takes a 
constant amount  of time. 

Consider each instance of the membership of a 
node n in a set rule(i) and represent it as a pair 
(n, i). We call active each pair (n, i) such that  lhs(ri) 
matches C at n at the t ime i is retrieved from H.  As 
already mentioned, these pairs pass the test in the 
head of the for-loop in the main program. The num- 
ber of active pairs is therefore t(T). All remaining 

pairs are called dead. Note tha t  an active pair (n, i) 
can turn at most  I lhs ( r i ) I+hR active pairs into dead 
ones, through a call to the procedure update. Hence 
the total  number  of dead pairs must  be O(pt(T)). 
We conclude that  the number  of pairs to ta l ly  in- 
stantiated by the algori thm is O(pt(T)). 

It  is easy to see tha t  the number  of pairs totMly 
instantiated by the algori thm is also a bound on the 
number of indices inserted in or retrieved f rom the 
heap. Then the t ime spent by the algori thm with 
the heap is O(pt(T) log(t(T)))  (see for instance (Cor- 
men, Leiserson, and Rivest, 1990)). The  first cMl 
to the procedure update in the main  program takes 
t ime proportional  to ]T[. All remaining operations 
of the algorithm will now be charged to some active 
pair. 

For each active pair, the body of the for-loop in the 
mMn program and the body of the update procedure 
are executed, taking an amount  of t ime O(p). For 
each dead pair, only the test in the head of the for- 
loop is executed, taking a constant amount  of time. 
This t ime is charged to the active node tha t  turned 
the pair under consideration into a dead one. In this 
way each active node is charged an extra  amount  of 
t ime O(p). 

Every operation executed by the algori thm has 
been considered in the above analysis. We can then 
conclude that  the running t ime of Algori thm 1 is 
O( ITI  + pt(T) log(t(T))). 0 

Let us compare the above result with the 
t ime performance of the s tandard algori thm for 
t ransformation-based parsing. The s tandard algo- 
r i thm checks each rule in R for application to an 
initial parse tree T, trying to match  the l e f t -hand  
side of the current rule at each node of T. Using 
the notation of Theorem 1, the running t ime is then 
O(IrplTI). In practical applications, t(T) and ITI 
are very close (of the order of the length of the in- 
put string). Therefore we have achieved a t ime im- 
provement of a factor of ~r/log(t(T)).  We empha-  
size that  ~r might be several hundreds large if the 
learned t ransformations are lexicalized. Therefore 
we have improved the asymptot ic  t ime complexity 
of t ransformation-based parsing of a factor between 
two to three orders of magnitude.  

4.2 O r d e r - d e p e n d e n t  p a r s i n g  

We consider here the general case for the T T S  trans- 
lation problem, in which the order of application of 
several instances of rule r to a tree can affect the final 
result of the rewriting. In this case rule r is called 
critical. According to the definition of translat ion 
induced by a TTS,  a critical rule should always be 
applied in post-order w.r.t, the nodes of the tree 
to be rewritten. The solution we propose here for 
critical rules is based on a preprocessing of the rule 
sequence of the system. 

We informally describe the technique presented 
below. Assume that  a critical rule r is to be applied 

260 



at several matching nodes of a tree C. We parti t ion 
the matching nodes into two sets. The first set con- 
tains all the nodes n at which the matching of lhs(r) 
overlaps with a second matching at a node n'  dom- 
inated by n. All the remaining matching nodes are 
inserted in the second set. Then rule r is applied to 
the nodes of the second set. After that,  the nodes 
in the first set are in turn parti t ioned according to 
the above criterion, and the process is i terated until 
all the matching nodes have been considered for ap- 
plication of r. This  is more precisely stated in what 
follows. 

B 
B 

B c 
B C 

B C 
B C 

B C 

Figure 6: From left to right: trees Q and Qp. Node 
p of Q is indicated by underlying its label. 

We star t  with some additional notation. Let r = 
(Q ~ Q')  be a tree-rewriting rule. Also, let p be a 
node of Q and let S be the suffix of Q at p. We say 
that  p is periodic if (i) p is not the root of Q; and 
(ii) S matches Q at the root node. It  is easy to see 
that  the fact that  lhs(r) has some periodic node is 
a necessary condition for r to be critical. Let the 
root of S be the i-th child of a node n/  in Q, and 
let Qc be a c o p y o f Q .  We write Qp to denote the 
tree obtained start ing from Q by excising S and by 
letting the root of Qc be the new i-th child of hi. 
Finally, call nl the root of Qp and n2 the root of Q. 
E x a m p l e  5 Figure 6 depicts trees Q and Qp. The 
periodic node p of Q under consideration is indicated 
by underlying its label. [] 

Let us assume that  rule r is critical and that  p is 
the only periodic node in Q. We add Qp to set lhs(R) 
and construct AG accordingly. Algorithm 1 should 
then be modified as follows. We call p-chain any 
sequence of one or more subtrees of C, all matched 
by Q, that  part ial ly overlap in C. Let n be a node 
of C and let q = state(n). Assume that  n2 E q and 
call S the subtree of C at n matched by Q (S exists 
by L e m m a  1). We distinguish two possible cases. 
Case 1: If  nl E q, then we know that  Q also matches 
some portion of C that  overlaps with S (at the node 
matched by the periodic node p of Q). In this case 
S belongs to a p-chain consisting of at least two sub- 
trees and S is not the bo t tom-mos t  subtree in the 
p-chain. 
Case 2: If  nt ~ q, then we know that  S is the 
bo t tom-mos t  subtree in a p-chain. 
Let i be the index of rule r under consideration. 
We use an additional set chain(i). Each node n 

of C such that  n~ 6 state(n) is then inserted in 
chain(i) if state(n) satisfies Case 1 above, and is 
inserted in rule(i) otherwise. Note that  chain(i) is 
non-empty only in case rule(i) is such. Whenever i is 
retrieved from H,  we process each node n in rule(i), 
as usual. But when we update  our data  structures 
with the procedure update, we also look for match- 
ings of lhs(ri) at nodes of C in chain(i). The overall 
effect of this is that  each p-chain is considered in a 
bot tom-up fashion in the application of r. This is 
compatible with the post-order application require- 
ment.  

The above technique can be applied for each peri- 
odic node in a critical rule, and for each critical rule 
of G. This only affects the size of AG, not the t ime 
requirements of Algorithm 1. In fact, the proposed 
preprocessing can at worst double ha. 

5 D i s c u s s i o n  

In this section we relate our work with the existing 
literature and further discuss our result. 

There are several alternative ways in which one 
could see transformation-based rewriting systems. 
TTS ' s  are closely related to a class of graph rewr.iting 
systems called neighbourhood-controlled embedding 
graph g rammars  (N CE grammars;  see (J anssens and 

Rozenberg, 1982)). In fact our definition of the 
relation and of the underlying [/] operator  has been 
inspired by similar definitions in the NCE formal- 
ism. Apart  from the restriction to tree rewriting, the 
main difference between NCE grammars  and TTS ' s  
is that  in the latter formalism the productions are 
totally ordered, therefore there is no recursion. 

Ordered trees can also be seen as ground terms. If  
we extend the alphabet ~ with variable symbols, we 

can redefine the ~ relation through variable sub- 
stitution. In this way a TTS becomes a particular 
kind of term-rewriting system. The idea of imposing 
a total order on the rules of a term-rewrit ing system 
can be found in the literature, but in these cases all 
rules are reconsidered for application at each step 
in the rewriting, using their priority (see for in- 
stance the priority term-rewrit ing systems (Baeten, 
Bergstra, and Klop, 1987)). Therefore these systems 
allow recursion. There are cases in which a critical 
rule in a TTS does not give rise to order-dependency 
in rewriting. Methods for deciding the confluency 
property for a term-rewriting system with critical 
pairs (see (Dershowitz and Jouannaud,  1990) for def- 
initions and an overview) can also be used to detect 
the above cases for TTS.  

As already pointed out, the translation problem 
investigated here is closely related with the stan- 
dard tree pat tern matching problem. Our au toma ta  
AG (Definition 3) can be seen as an abstract ion of 
the bot tom-up tree pat tern matching algori thm pre- 
sented in (Hoffmann and O'Donnell,  1982). While 
that  result uses a representation of the pat tern  set 

261 



(our set lhs(R)) requiring an amount of space which 
is exponential in the degree of the pattern trees, as 
an improvement, our transition function does not de- 
pend on this parameter. However, in the worst case 
the space requirements of both algorithm are expo- 
nential in the number of nodes in lhs(R) (see the 
analysis in (Hoffmann and O'Donnell, 1982)). As 
already discussed in Section 3, the worst case condi- 
tion is hardly met in natural language applications. 

Polynomial space requirements can be guaranteed 
if one switches to top-down tree pattern matching 
algorithms. One such a method is reported in (Hoff- 
mann and O'Donnell, 1982), but in this case the 
running-time of Algorithm 1 cannot be maintained. 
Faster top-down matching algorithms have been re- 
ported in (Kosaraju, 1989) and (Dubiner, Galil, and 
Magen, 1994), but these methods seems impractical, 
due to very large hidden constants. 

A tree-based extension of the very fast algorithm 
described in (Roche and Schabes, 1995) is in prin- 
ciple possible for transformation-based parsing, but 
is likely to result in huge space requirements and 
seems impractical. The algorithm presented here 
might then be a good compromise between fast pars- 
ing and reasonable space requirements. 

When restricted to monadic trees, our automa- 
ton Ac comes down to the finite state device used 
in the well-known string pattern matching algorithm 
of Aho and Corasick (see (Aho and Corasick, 1975)), 
requiring linear space only. If space requirements are 
of primary importance or when the rule set is very 
large, our method can then be considered for string- 
based transformation rewriting as an alternative to 
the already mentioned method in (Roche and Sch- 
abes, 1995), which is faster but has more onerous 
space requirements. 

A c k n o w l e d g e m e n t s  

The present research was done while the first author 
was visiting the Center for Language and Speech 
Processing, Johns Hopkins University, Baltimore, 
MD. The second author is also a member of the Cen- 
ter for Language and Speech Processing. This work 
was funded in part by NSF grant IRI-9502312. The 
authors are indebted with Alberto Apostolico, Rao 
Kosaraju, Fernando Pereira and Murat Saraclar for 
technical discussions on topics related to this paper. 
The authors whish to thank an anonymous referee 
for having pointed out important connections be- 
tween TTS and term-rewriting systems. 

R e f e r e n c e s  

Aho, A. V. and M. Corasick. 1975.  Efficient 
string matching: An aid to bibliographic search. 
Communications of the Association for Comput- 
ing Machinery, 18(6):333-340. 

Baeten, J., J. Bergstra, and 3. Klop. 1987. Prior- 
ity rewrite systems. In Proc. Second International 
Conference on Rewriting Techniques and Applica- 
tions, LNCS 256, pages 83-94, Berlin, Germany. 
Springer-Verlag. 

Brill, E. 1993. Automatic grammar induction and 
parsing free text: A transformation-based ap- 
proach. In Proceedings of the 31st Meeting of the 
Association of Computational Linguistics, Colum- 
bus, Oh. 

Brill, E. 1995. Transformation-based error-driven 
learning and natural language processing: A case 
study in part of speech tagging. Computational 
Linguistics. 

Brill, E, and P. Resnik. 1994. A transformation- 
based approach to prepositional phrase attach- 
ment disambiguation. In Proceedings of the 
Fifteenth International Conference on Computa- 
tional Linguistics (COLING-199~), Kyoto, Japan. 

Chomsky, N. 1965. Aspects of the Theory of Syntax. 
The MIT Press, Cambridge, MA. 

Chomsky, N. and M. Halle. 1968. The Sound Pat- 
tern of English. Harper and Row. 

Cormen, T. H., C. E. Leiserson, and R. L. Rivest. 
1990. Introduction to Algorithms. The MIT Press, 
Cambridge, MA. 

Dershowitz, N. and J. Jouannaud. 1990. Rewrite 
systems. In J. Van Leeuwen, editor, Handbook 
of Theoretical Computer Science, volume B. Else- 
vier and The MIT Press, Amsterdam, The Nether- 
lands and Cambridge, MA, chapter 6, pages 243- 
320. 

Dubiner, M., Z. Galil, and E. Magen. 1994. Faster 
tree pattern matching. Journal of the Association 
for Computing Machinery, 41(2):205-213. 

Hoffmann, C. M. and M. J. O'Donnell. 1982. Pat- 
tern matching in trees. Journal of the Association 
for Computing Machinery, 29(1):68-95. 

Janssens, D. and G. Rozenberg. 1982. Graph gram- 
mars with neighbourhood-controlled embedding. 
Theoretical Computer Science, 21:55-74. 

Kaplan, R. M. and M. Kay. 1994. Regular models 
of phonological rule sistems. Computational Lin- 
guistics, 20(3):331-378. 

Kosaraju, S. R. 1989. Efficient tree-pattern match- 
ing. In Proceedings of the 30 Conference on Foun- 
dations of Computer Science (FOCS), pages 178- 
183. 

Roche, E. and Y. Schabes. 1995. Deterministic part 
of speech tagging with finite state transducers. 
Computational Linguistics. 

Thatcher, J. W. 1967. Characterizing derivation 
trees of context-free grammars through a general- 
ization of finite automata theory. Journal of Com- 
puter and System Science, 1:317-322. 

262 


