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A b s t r a c t  

We show how a general grammar may 
be automatically adapted for fast parsing 
of utterances from a specific domain by 
means of constituent pruning and grammar 
specialization based on explanation-based 
learning. These methods together give an 
order of magnitude increase in speed, and 
the coverage loss entailed by grammar spe- 
cialization is reduced to approximately half 
that reported in previous work. Experi- 
ments described here suggest that the loss 
of coverage has been reduced to the point 
where it no longer causes significant perfor- 
mance degradation in the context of a real 
application. 

1 I n t r o d u c t i o n  

Suppose that we have a general grammar for En- 
glish, or some other natural language; by this, we 
mean a grammar which encodes most of the impor- 
tant constructions in the language, and which is in- 
tended to be applicable to a large range of different 
domains and applications. The basic question at- 
tacked in this paper is the following one: can such a 
grammar be concretely useful if we want to process 
input from a specific domain? In particular, how can 
a parser that uses a general grammar achieve a level 
of efficiency that is practically acceptable? 

The central problem is simple to state. By the 
very nature of its construction, a general grammar 
allows a great many theoretically valid analyses of 
almost any non-trivial sentence. However, in the 
context of a specific domain, most of these will be ex- 
tremely implausible, and can in practice be ignored. 
If we want efficient parsing, we want to be able to 
focus our search on only a small portion of the space 
of theoretically valid grammatical analyses. 

One possible solution is of course to dispense 
with the idea of using a general grammar, and sim- 
ply code a new grammar for each domain. Many 
people do this, but one cannot help feeling that 
something is being missed; intuitively, there are 
many domain-independent grammatical constraints, 
which one would prefer only to need to code once. 
In the last ten years, there have been a number 
of attempts to find ways to automatically adapt a 
general grammar and/or parser to the sub-language 
defined by a suitable training corpus. For exam- 
ple, (Briscoe and Carroll, 1993) train an LR parser 
based on a general grammar to be able to distin- 
guish between likely and unlikely sequences of pars- 
ing actions; (Andry et al., 1994) automatically infer 
sortal constraints, that can be used to rule out oth- 
erwise grammatical constituents; and (Grishman et 
al., 1984) describes methods that reduce the size of a 
general grammar to include only rules actually use- 
ful for parsing the training corpus. 

The work reported here is a logical continuation 
of two specific strands of research aimed in this gen- 
eral direction. The first is the popular idea of sta- 
tistical tagging e.g. (DeRose, 1988; Cutting et al., 
1992; Church, 1988). Here, the basic idea is that 
a given small segment S of the input string may 
have several possible analyses; in particular, if S 
is a single word, it may potentially be any one of 
several parts of speech. However, if a substantial 
training corpus is available to provide reasonable es- 
timates of the relevant parameters, the immediate 
context surrounding S will usually make most of the 
locally possible analyses of S extremely implausible. 
In the specific case of part-of-speech tagging, it is 
well-known (DeMarcken, 1990) that a large propor- 
tion of the incorrect tags can be eliminated "safely"~ 
i.e. with very low risk of eliminating correct tags. 
In the present paper, the statistical tagging idea is 
generalized to a method called "constituent prun- 
ing"; this acts on local analyses of phrases normally 
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larger than single-word units. 
Constituent pruning is a bottom-up approach, 

and is complemented by a second, top-down, 
method based on Explanation-Based Learning (EBL; 
(Mitchell et al., 1986; van Harmelen and Bundy, 
1988)). This part of the paper is essentially an exten- 
sion and generalization of the line of work described 
in (Rayner, 1988; Rayner and Samuelsson, 1990; 
Samuelsson and Rayner, 1991; Rayner and Samuels- 
son, 1994; Samuelsson, 1994b). Here, the basic idea 
is that  grammar rules tend in any specific domain to 
combine much more frequently in some ways than 
in others. Given a sufficiently large corpus parsed 
by the original, general, grammar, it is possible to 
identify the common combinations of grammar rules 
and "chunk" them into "macro-rules". The result is 
a "specialized" grammar; this has a larger number of 
rules, but a simpler structure, allowing it in practice 
to be parsed very much more quickly using an LR- 
based method (Samuelsson, 1994a). The coverage 
of the specialized grammar is a strict subset of that  
of the original grammar; thus any analysis produced 
by the specialized grammar is guaranteed to be valid 
in the original one as well. The practical utility of 
the specialized grammar is largely determined by the 
loss of coverage incurred by the specialization pro- 
cess. 

The two methods, constituent pruning and gram- 
mar specialization, are combined as follows. The 
rules in the original, general, grammar are divided 
into two sets, called phrasal and non-phrasal respec- 
tively. Phrasal rules, the majority of which define 
non-recursive noun phrase constructions, are used 
as they are; non-phrasal rules are combined using 
EBL into chunks, forming a specialized grammar 
which is then compiled further into a set of LR- 
tables. Parsing proceeds by interleaving constituent 
creation and deletion. First, the lexicon and mor- 
phology rules are used to hypothesize word analyses. 
Constituent pruning then removes all sufficiently un- 
likely edges. Next, the phrasal rules are applied 
bottom-up, to find all possible phrasal edges, after 
which unlikely edges are again pruned. Finally, the 
specialized grammar is used to search for full parses. 
The scheme is fully implemented within a version of 
the Spoken Language Translator system (Rayner et 
al., 1993; Agniis et al., 1994), and is normally applied 
to input in the form of small lattices of hypotheses 
produced by a speech recognizer. 

The rest of the paper is structured as fol- 
lows. Section 2 describes the constituent pruning 
method. Section 3 describes the grammar special- 
ization method, focusing on how the current work 
extends and improves on previous results. Section 4 

describes experiments where the constituent prun- 
ing/grammar specialization method was used on sets 
of previously unseen speech data. Section 5 con- 
cludes and sketches further directions for research, 
which we are presently in the process of investigat- 
ing. 

2 C o n s t i t u e n t  P r u n i n g  

Before both the phrasal and full parsing stages, the 
constituent table (henceforth, the chart) is pruned 
to remove edges that  are relatively unlikely to con- 
tribute to correct analyses. 

For example, after the string "Show flight D L 
three one two" is lexically analysed, edges for "D" 
and "L" as individual characters are pruned because 
another edge, derived from a lexical entry for "D 
L" as an airline code, is deemed far more plausible. 
Similarly, edges for "one" as a determiner and as 
a noun are pruned because, when flanked by two 
other numbers, "one" is far more likely to function 
as a number. 

Phrasal parsing then creates a number of new 
edges, including one for "flight D L three one two" as 
a noun phrase. This edge is deemed far more likely 
to serve as the basis for a correct full parse than 
any of the edges spanning substrings of this phrase; 
those edges, too, are therefore pruned. As a result, 
full parsing is very quick, and only one analysis (the 
correct one) is produced for the sentence. In the ab- 
sence of pruning, processing takes over eight times 
as long and produces 37 analyses in total. 

2.1 T h e  p r u n i n g  a l g o r i t h m  

Our algorithm estimates the probability of correct- 
ness of each edge: that  is, the probability that  the 
edge will contribute to the correct full analysis of the 
sentence (assuming there is one), given certain lex- 
ical and/or  syntactic information about it. Values 
on each criterion (selection of pieces of information) 
are derived from training corpora by maximum like- 
lihood estimation followed by smoothing. That  is, 
our estimate for the probability that  an edge with 
property P is correct is (modulo smoothing) simply 
the number of times edges with property P occur in 
correct analyses in training divided by the number 
of times such edges are created during the analysis 
process in training. 

The current criteria are: 

• The left bigram score: the probability of correct- 
ness of an edge considering only the following 
data  about it: 

- its tag (corresponding to its major category 
symbol plus, for a few categories, some ad- 
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ditional distinctions derived from feature 
values); 

- for a lexical edge, its word or semantic 
word class (words with similar distribu- 
tions, such as city names, are grouped into 
classes to overcome data  sparseness); or for 
a phrasal edge, the name of the final (top- 
most) grammar rule that  was used to create 
it; 

- the tag of a neighbouring edge immediately 
to its left. I f  there are several left neigh- 
bours, the one giving the highest probabil- 
ity is used. 

• The right bigram score: as above, but consider- 
ing right neighbours. 

• The unigram score: the probabili ty of correct- 
ness of an edge considering only the tree of 
g r a m m a r  rules, with words or word classes at 
the leaves, that  gave rise to it. For a lexical 
edge, this reduces to its word or word class, and 
its tag. 

Other criteria, such as tr igrams and finer-grained 
tags, are obviously worth investigating, and could 
be applied straightforwardly within the framework 
described here. 

The min imum score derived from any of the crite- 
ria applied is deemed initially to be the score of the 
constituent. Tha t  is, an assumption of full statis- 
tical dependence (Yarowsky, 1994), rather than the 
more common full independence, is made3  When 

llf events El, E2,..., E,~ are fully independent, then 
the joint probability P(E1 A ... A En) is the product of 
P(EI). . .P(En), but if they are maximally dependent, 
it is the minimum of these values. Of course, neither 
assumption is any more than an approximation to the 
truth; but assuming dependence has the advantage that 
the estimate of the joint probability depends much less 
strongly on n, and so estimates for alternative joint 
events can be directly compared, without any possibly 
tricky normalization, even if they are composed of dif- 
ferent numbers of atomic events. This property is de- 
sirable: different (sub-)paths through a chart may span 
different numbers of edges, and one can imagine evalu- 
ation criteria which are only defined for some kinds of 
edge, or which often duplicate information supplied by 
other criteria. Taking minima means that the pruning of 
an edge results from it scoring poorly on one criterion, 
regardless of other, possibly good scores assigned to it by 
other criteria. This fits in with the fact that on the basis 
of local information alone it is not usually possibly to 
predict with confidence that a particular edge is highly 
likely to contribute to the correct analysis (since global 
factors will also be important) but it often is possible to 
spot highly unlikely edges. In other words, our training 
procedure yields far more probability estimates close to 
zero than close to one. 

recognizer output  is being processed, however, the 
estimate from each criterion is in fact multiplied by 
a further estimate derived from the acoustic score of 
the edge: that  is, the score assigned by the speech 
recognizer to the best-scoring sentence hypothesis 
containing the word or word string for the edge in 
question. Multiplication is used here because acous- 
tic and lexicosyntactic likelihoods for a word or con- 
stituent would appear  to be more nearly fully inde- 
pendent than fully dependent, being based on very 
different kinds of information. 

Next, account is taken of the connectivity of the 
chart. Each vertex of the chart is labelled with the 
score of the best path  through the chart tha t  vis- 
its that  vertex. In accordance with the dependence 
assumption, the score of a pa th  is defined as the min- 
imum of the scores of its component  edges. Then the 
score of each edge is recalculated to be the min imum 
of its existing score and the scores of its s tar t  and 
end vertices, on the grounds that  a constituent, how- 
ever intrinsically plausible, is not worth preserving 
if it does not occur on any plausible paths.  

Finally, a pruning threshold is calculated as the 
score of the best pa th  through the chart multiplied 
by a certain fraction. For the first pruning phase 
we use 1/20, and for the second, 1/150, although 
performance is not very sensitive to this. Any con- 
stituents scoring less than the threshold are pruned 
out. 

2.2 R e l a t i o n  t o  o t h e r  p r u n i n g  m e t h o d s  

As the example above suggests, judicious pruning 
of the chart at appropriate  points can greatly re- 
strict the search space and speed up processing. Our 
method has points of similarity with some very re- 
cent work in Constraint G r a m m a r  2 and is an alter- 
native to several other, related schemes. 

Firstly, a remarked earlier, it generalizes tagging: 
it not only adjudicates between possible labels for 
the same word, but  can also use the existence of 
a constituent over one span of the chart as justifi- 
cation for pruning another constituent over another 
span, normally a subsumed one, as in the "D L" ex- 
ample. This is especially true in the second stage of 
pruning, when many  constituents of different lengths 
have been created. Furthermore, it applies equally 
well to lattices, rather than strings, of words, and 
can take account of acoustic plausibility as well as 
syntactic considerations. 

Secondly, our method is related to beam search 
(Woods, 1985). In beam search, incomplete parses 
of an utterance are pruned or discarded when, on 

2Ghrister Samuelsson, personal communication, 8th 
April 1996; see (Karlsson et al., 1995) for background. 
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some criterion, they are significantly less plausi- 
ble than other, competing parses. This pruning is 
fully interleaved with the parsing process. In con- 
trast, our pruning takes place only at certain points: 
currently before parsing begins, and between the 
phrasM and full parsing stages. Potentially, as with 
any generate-and-test algorithm, this can mean effi- 
ciency is reduced: some paths will be explored that 
could in principle be pruned earlier. However, as 
the results in section 4 below will show, this is not 
in practice a serious problem, because the second 
pruning phase greatly reduces the search space in 
preparation for the potentially inefficient full parsing 
phase. Our method has the advantage, compared to 
beam search, that there is no need for any particu- 
lar search order to be followed; when pruning takes 
place, all constituents that could have been found 
at the stage in question are guaranteed already to 
exist. 

Thirdly, our method is a generalization of the 
strategy employed by (McCord, 1993). McCord in- 
terleaved parsing with pruning in the same way as 
us, but only compared constituents over the same 
span and with the same major category. Our com- 
parisons are more global and therefore can result in 
more effective pruning. 

3 G r a m m a r  s p e c i a l i z a t i o n  

As described in Section 1 above, the non-phrasal 
grammar rules are subjected to  two phases of pro- 
cessing. In the first, "EBL learning" phase, a parsed 
training corpus is used to identify "chunks" of rules, 
which are combined by the EBL algorithm into sin- 
gle macro-rules. In the second phase, the resulting 
set of "chunked" rules is converted into LR table 
form, using the method of (Samuelsson, 1994a). 

There are two main parameters that can be ad- 
justed in the EBL learning phase. Most simply, there 
is the size of the training corpus; a larger training 
corpus means a smaller loss of coverage due to gram- 
mar specialization. (Recall that grammar special- 
ization in general trades coverage for speed). Sec- 
ondly, there is the question of how to select the rule- 
chunks that will be turned into macro-rules. At one 
limit, the whole parse-tree for each training exam- 
ple is turned into a single rule, resulting in a special- 
ized grammar all of whose derivations are completely 
"flat". These grammars can be parsed extremely 
quickly, but the coverage loss is in practice unac- 
ceptably high, even with very large training corpora. 
At the opposite extreme, each rule-chunk consists 
of a single rule-application; this yields a specialized 
grammar identical to the original one. The challenge 
is to find an intermediate solution, which specializes 

the grammar non-triviMly without losing too much 
coverage. 

Several attempts to find good "chunking crite- 
ria" are described in the papers by Rayner and 
Samuelsson quoted above. In (Rayner and Samuels- 
son, 1994), a simple scheme is given, which creates 
rules corresponding to four possible units: full utter- 
ances, recursive NPs, PPs, and non-recursive NPs. 
A more elaborate scheme is given in (Samuelsson, 
1994b), where the "chunking criteria" are learned 
automatically by an entropy-minimization method; 
the results, however, do not appear to improve on 
the earlier ones. In both cases, the coverage loss 
due to grammar specialization was about 10 to 12% 
using training corpora with about 5,000 examples. 
In practice, this is still unacceptably high for most 
applications. 

Our current scheme is an extension of the one from 
(Rayner and Samuelsson, 1994), where the rule- 
chunks are trees of non-phrasal rules whose roots 
and leaves are categories of the following possible 
types: full utterances, utterance units, imperative 
VPs, NPs, relative clauses, VP modifiers and PPs. 
The resulting specialized grammars are forced to be 
non-recursive, with derivations being a maximum of 
six levels deep. This is enforced by imposing the 
following dominance hierarchy between the possible 
categories: 

utterance > utterance_unit > imperative_VP 
> NP > {tel, VP_modifier} > PP 

The precise definition of the rule-chunking criteria is 
quite simple, and is reproduced in the appendix. 

Note that only the non-phrasal rules are used as 
input to the chunks from which the specialized gram- 
mar rules are constructed. This has two important 
advantages. Firstly, since all the phrasal rules are 
excluded from the speciMization process, the cov- 
erage loss associated with missing combinations of 
phrasal rules is eliminated. As the experiments in 
the next section show, the resulting improvement is 
quite substantial. Secondly, and possibly even more 
importantly, the number of specialized rules pro- 
duced by a given training corpus is approximately 
halved. The most immediate consequence is that 
much larger training corpora can be used before the 
specialized grammars produced become too large to 
be handled by the LR table compiler. If both phrasal 
and non-phrasal rules are used, we have been unable 
to compile tables for rules derived from training sets 
of over 6,000 examples (the process was killed after 
running for about six hours on a Sun Sparc 20/HS21, 
SpecINT92=131.2). Using only non-phrasal rules, 
compilation of the tables for a 15,000 example train- 
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ing set required less than two CPU-hours on the 
same machine. 

4 E x p e r i m e n t s  

This section describes a number of experiments car- 
ried out to test the utility of the theoretical ideas 
presented above. The basic corpus used was a set 
of 16,000 utterances from the Air Travel Planning 
(ATIS; (Hemphill et al., 1990)) domain. All of these 
utterances were available in text form; 15,000 of 
them were used for training, with 1,000 held out for 
test purposes. Care was taken to ensure not just that 
the utterances themselves, but also the speakers of 
the utterances were disjoint between test and train- 
ing data; as pointed out in (Rayner et al., 1994a), 
failure to observe these precautions can result in sub- 
stantial spurious improvements in test data results. 

The 16,000 sentence corpus was analysed by the 
SRI Core Language Engine (Alshawi (ed), 1992), us- 
ing a lexicon extended to cover the ATIS domain 
(Rayner, 1994). All possible grammatical analyses 
of each utterance were recorded, and an interactive 
tool was used to allow a human judge to identify 
the correct and incorrect readings of each utterance. 
The judge was a first-year undergraduate student 
with a good knowledge of linguistics but no prior 
experience with the system; the process of judging 
the corpus took about two and a half person-months. 
The input to the EBL-based grammar-specialization 
process was limited to readings of corpus utterances 
that had been judged correct. When utterances had 
more than one correct reading, a preference heuristic 
was used to select the most plausible one. 

Two sets of experiments were performed. In the 
first, increasingly large portions of the training set 
were used to train specialized grammars. The cov- 
erage loss due to grammar specialization was then 
measured on the 1,000 utterance test set. The ex- 
periment was carried out using both the chunking 
criteria from (Rayner and Samuelsson, 1994) (the 
"Old" scheme), and the chunking criteria described 
in Section 3 above (the "New" scheme). The results 
are presented in Table 1. 

The second set of experiments tested more di- 
rectly the effect of constituent pruning and gram- 
mar specialization on the Spoken Language Transla- 
tor's speed and coverage; in particular, coverage was 
measured on the real task of translating English into 
Swedish, rather than the artificial one of producing a 
correct QLF analysis. To this end, the first 500 test- 
set utterances were presented in the form of speech 
hypothesis lattices derived by aligning and conflat- 
ing the top five sentence strings produced by a ver- 
sion of the DECIPHER (TM) recognizer (Murveit 

Examples 

100 
250 
500 

1000 
3000 
5000 
7000 

11000 
15000 

Old scheme 
Rules Loss 

100 47.8% 
181 37.6% 
281 27.6% 
432 22.7% 
839 14.9% 

1101 11.2% 
1292 10.4% 
1550 9.8% 
1819 8.7% 

New scheme 
Rules Loss 

69 35.5% 
126 21.8% 
180 14.7% 
249 10.8% 
455 7.8% 
585 6.6% 
668 62% 
808 5.8% 
937 5.0% 

Table 1: EBL rules and EBL coverage 
number of training examples 

loss against 

et al., 1993). The lattices were analysed by four dif- 
ferent versions of the parser, exploring the different 
combinations of turning constituent pruning on or 
off, and specialized versus unspecialized grammars. 
The specialized grammar used the "New" scheme, 
and had been trained on the full training set. Ut- 
terances which took more than 90 CPU seconds to 
process were timed out and counted as failures. 

The four sets of outputs from the parser were then 
translated into Swedish by the SLT transfer and gen- 
eration mechanism (Agn~ et al., 1994). Finally, 
the four sets of candidate translations were pairwise 
compared in the cases where differing translations 
had been produced. We have found this to be an 
effective way of evaluating system performance. Al- 
though people differ widely in their judgements of 
whether a given translation can be regarded as "ac- 
ceptable", it is in most cases surprisingly easy to 
say which of two possible translations is preferable. 
The last two tables summarize the results. Table 2 
gives the average processing times per input lattice 
for each type of processing (times measured run- 
ning SICStus Prolog 3#3 on a SUN Sparc 20/HS21), 
showing how the time is divided between the various 
processing phases. Table 3 shows the relative scores 
of the four parsing variants, measured according to 
the "preferable translation" criterion. 

5 C o n c l u s i o n s  a n d  f u r t h e r  d i r e c t i o n s  

Table 2 indicates that EBL and pruning each make 
processing about three times faster; the combination 
of both gives a factor of about nine. In fact, as the 
detailed breakdown shows, even this underestimates 
the effect on the main parsing phase: when both 
pruning and EBL are operating, processing times for 
other components (morphology, pruning and prefer- 
ences) become the dominant ones. As we have so 
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E- E-t- E- E+ 
p-  p-  P÷ P+ 

Morph/lex lookup 0.53 0.54 0.54 0.49 
Phrasal parsing 0.27 0.28 0.14 0.14 

Pruning - - 0.57 0.56 
Full parsing 12.42 2 .61  3.04 0.26 
Preferences 3.63 1 .57  1 .27  0.41 

TOTAL 

Table 2: Breakdown of average time spent on each 
processing phase for each type of processing (seconds 
per utterance) 

E- E+ E- E-t- 
P-  P-  P-t- P+ 

E - / P -  12-24 25-63 24-65 
E + / P -  24-12 31-50 26-47 
E - / P +  63-25 50-31 5-8 
E + / P +  65-24 47-26 8-5 

Table 3: Comparison between translation results on 
the four different analysis alternatives, measured on 
the 500-utterance test set. The entry for a given 
row and column holds two figures, showing respec- 
tively the number of examples where the "row" vari- 
ant produced a better translation than the "col- 
umn" variant and the number where it produced a 
worse one. Thus for example "EBL+/pruning+" 
was better than "EBL-/pruning-" on 65 examples, 
and worse on 24. 

far expended little effort on optimizing these phases 
of processing, it is reasonable to expect substantial 
further gains to be possible. 

Even more interestingly, Table 3 shows that real 
system performance, in terms of producing a good 
translation, is significantly improved by pruning, and 
is not degraded by grammar specialization. (The 
slight improvement in coverage with EBL on is not 
statistically significant). Our interpretation of these 
results is that the technical loss of grammar cover- 
age due to the specialization and pruning processes 
is more than counterbalanced by two positive effects. 
Firstly, fewer utterances time out due to slow pro- 
cessing; secondly, the reduced space of possible anal- 
yses means that the problem of selecting between 
different possible analyses of a given utterance be- 
comes easier. 

To sum up, the methods presented here demon- 
strate that it is possible to use the combined pruning 
and grammar specialization method to speed up the 
whole analysis phase by nearly an order of magni- 

tude, without incurring any real penalty in the form 
of reduced coverage. We find this an exciting and 
significant result, and are further continuing our re- 
search in this area during the coming year. In the 
last two paragraphs we sketch some ongoing work. 

All the results presented above pertain to English 
only. The first topic we have been investigating is 
the application of the methods described here to 
processing of other languages. Preliminary exper- 
iments we have carried out on the Swedish version 
of the CLE (Gamb~ick and Rayner 1992) have been 
encouraging; using exactly the same pruning meth- 
ods and EBL chunking criteria as for English, we 
obtain comparable speed-ups. The loss of coverage 
due to grammar specialization also appears compa- 
rable, though we have not yet had time to do the 
work needed to verify this properly. We intend to 
do so soon, and also to repeat the experiments on 
the French version of the CLE (Rayner, Carter and 
Bouillon, 1996). 

The second topic is a more radical departure, and 
can be viewed as an attempt to make interleaving 
of parsing and pruning the basic principle underly- 
ing the CLE's linguistic analysis process. Exploiting 
the "stratified" nature of the EBL-specialized gram- 
mar, we group the chunked rules by level, and apply 
them one level at a time, starting at the bottom. 
After each level, constituent pruning is used to elim- 
inate unlikely constituents. The intent is to achieve 
a trainable robust parsing model, which can return 
a useful partial analysis when no single global analy- 
sis is found. An initial implementation exists, and is 
currently being tested; preliminary results here are 
also very positive. We expect to be able to report 
on this work more fully in the near future. 
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A p p e n d i x :  d e f i n i t i o n  o f  t h e  " N e w "  

c h u n k i n g  r u l e s  

This appendix defines the "New" chunking rules re- 
ferred to in Sections 3 and 4. There are seven types 
of non-phrasal constituent in the specialised gram- 
mar. We start  by describing each type of constituent 
through examples. 

U t t e r a n c e :  The top category. 

U t t e r a n c e _ u n i t :  Ut te rance_  u n i t s  are minimal 
syntactic units capable of standing on their own: 
for example, declarative clauses, questions, NPs 
and PPs. Utterances may consist of more 
than one u t t e r a n c e _ u n i t .  The following is an 
u t t e r a n c e  containing two u t t e r a n c e _ u n i t s :  
"[Flights to Boston on Monday] [please show 
me the cheapest ones.]" 

I m p e r a t l v e _ V P :  Since imperative verb phrases 
are very common in the corpus, we make them 
a category of their own in the specialised gram- 
mar. To generalise over possible addition of 
adverbials (in particular, "please" and "now"), 
we define the impera t ive_vp category so as to 
leave the adverbials outside. Thus the brack- 
eted portion of the following utterance is an 
impera t ive_vp:  "That 's  fine now [give me the 
fares for those flights]" 

Non_phrasa lANP:  All NPs which are not pro- 
duced entirely by phrasal rules. The following 
are all non_phrasa l~Ps :  "Boston and Denver", 
"Flights on Sunday morning", "Cheapest fare 
from Boston to Denver", "The meal I 'd get on 
that  flight" 

R e h  Relative clauses. 

VP . . mod i f i e r :  VPs appearing as NP postmodifiers. 
The bracketed portions of the following are 
VP_modifiers:  "Delta flights [arriving after 
seven P M] . . . .  All flights tomorrow [ordered by 
arrival time]" 

P P :  The CLE grammar treats nominal temporal 
adverbials, sequences of PPs, and "A to B" 
constructions as PPs (cf (Rayner, 1994)). The 

following are examples of PPs: "Tomorrow af- 
ternoon", "From Boston to Dallas on Friday", 
"Denver to San Francisco Sunday" 

We can now present the precise criteria which de- 
termine the chunks of rules composed to form each 
type of constituent. For each type of constituent in 
the specialised grammar,  the chunk is a subtree ex- 
tracted from the derivation tree of a training exam- 
ple (cf (Rayner and Samuelsson, 1994)); we specify 
the roots and leaves of the relevant subtrees. The 
term "phrasal tree" will be used to mean a deriva- 
tion tree all of whose rule-applications are phrasal 
rules. 

U t t e r a n c e :  The root of the chunk is the root of 
the original tree. The leaves are the nodes re- 
suiting from cutting at maximal  subtrees for 
u t t e r a n c e _ u n i t s ,  non_phrasal_ups pps, and 
maximal phrasal subtrees. 

U t t e r a n c e _ u n i t :  The root is the root of a 
maximal subtree for a constituent of type 
u t t e r a n c e _ u n i t .  The leaves are the nodes re- 
sulting from cutting at maximal subtrees for 
imperat ive_vps,  nps, and pps, and maximal 
phrasal subtrees. 

I m p e r a t l v e _ V P :  The root is the root of a maxi- 
mal subtree under an application of the S --~ 
VP rule whose root is not an application of an 
adverbial modification rule. The leaves are the 
nodes resulting from cutting at maximal  sub- 
trees for non_phrasal_np, and pp, and maximal 
phrasal subtrees. 

N o n _ p h r a s a l _ N P :  The root is the root of a max- 
imal non-phrasal subtree for a constituent of 
type np. The leaves are the nodes result- 
ing from cutting at maximal subtrees for re1 ,  
vp_modif ier ,  and pp, and maximal phrasal 
subtrees. 

R e h  The root is the root of a maximal subtree for 
a constituent of type re1.  The leaves are the 
nodes resulting from cutting at maximal sub- 
trees for pp, and maximal phrasal subtrees. 

V P . a n o d i f i e r :  The root is the root of a vp subtree 
immediately dominated by an application of the 
NP --+ NP VP rule. The leaves are the nodes re- 
sulting from cutting at maximal subtrees for pp, 
and maximal phrasal subtrees. 

P P :  The root is the root of a maximal non-phrasal 
subtree for a constituent of type pp. The leaves 
are the nodes resulting from cutting at maximal 
phrasal subtrees. 
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