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Abstract 
Charts constitute a natural uniform architecture for 
parsing and generation provided string position is 
replaced by a notion more appropriate to logical 
forms and that measures are taken to curtail gener- 
ation paths containing semantically incomplete 
phrases. 

1 Charts 
Shieber (1988) showed that parsing charts can be also used 
in generation and raised the question, which we take up 
again here, of whether they constitute a natural uniform 
architecture for parsing and generation. In particular, we 
will be interested in the extent to which they bring to the 
generation process advantages comparable to those that 
make them attractive in parsing. 

Chart parsing is not a well defined notion. The usual 
conception of it involves at least four related ideas: 

Inactive edges. In context-free grammar, all phrases of a 
given category that cover a given part of the string are 
equivalent for the purposes of constructing larger 
phrases. Efficiency comes from collecting equivalent 
sets of phrases into (inactive) edges and constructing 
edges from edges rather than phrases from phrases. 

Active edges. New phrases of whatever size can be built 
by considering existing edges pair-wise if provision is 
made for partial phrases. Partial phrases are collected 
into edges that are said to be active because they can be 
thought of as actively seeking material to complete 
them. 

The algorithm schema. Newly created edges are placed 
on an agenda. Edges are moved from the agenda to the 
chart one by one until none remains to be moved. 
When an edge is moved, all interactions between it and 
edges already in the chart are considered and any new 
edges that they give rise to are added to the agenda. 

Indexing. The positions in the string at which phrases 
begin and end can be used to index edges so that the 
algorithm schema need consider interactions only 
between adjacent pairs. 

Chart parsing is attractive for the analysis of natural lan- 
guages, as opposed to programming languages, for the way 
in which it treats ambiguity. Regardless of the number of 
alternative structures for a particular string that a given 
phrase participates in, it will be constructed once and only 
once. Although the number of structures of a string can 
grow exponentially with the length of the string, the number 
of edges that needs to be constructed grows only with the 
square of the string length and the whole parsing process 
can be accomplished in cubic time. 

Innumerable variants of the basic chart parsing scheme 
are possible. For example, if there were languages with 
truly free word order, we might attempt to characterize 
them by rules like those of context-free grammar, but with a 
somewhat different interpretation. Instead of replacing non- 
terminal symbols in a derivation with strings from the right- 
hand side of corresponding rules, we would remove the 
nonterminal symbol and insert the symbols from the right- 
hand side of the rule at arbitrary places in the string. 

A chart parser for languages with free word order 
would be a minor variant of the standard one. An edge 
would take the form X~,, where v is a vector with a bit for 
every word in the string and showing which of those words 
the edge covers. There is no longer any notion of adjacency 
so that there would be no indexing by string position. Inter- 
esting interactions occur between pairs of edges whose bit 
vectors have empty intersections, indicating that they cover 
disjoint sets of words. There can now be as many edges as 
bit-vectors and, not surprisingly, the computational com- 
plexity of the parsing process increases accordingly. 

2 Generation 
A parser is a transducer from strings to structures or 

logical forms. A generator, for our purposes, is the inverse. 
One way to think of it, therefore, is as a parser of structures 
or logical forms that delivers analyses in the form of strings. 
This view has the apparent disadvantage of putting insignif- 
icant differences in the syntax of a logical forms, such as 
the relative order of the arguments to symmetric operators, 
on the same footing as more significant facts about them. 
We know that it will not generally be possible to reduce 
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logical expressions to a canonical form but this does not 
mean that we should expect our generator to be compro- 
mised, or even greatly delayed, by trivial distinctions. Con- 
siderations of this kind were, in part, responsible for the 
recent resurgence of interest in "flat" representations of log- 
ical form (Copestake et a/.,1996) and for the representa- 
tions used for transfer in Shake-and-Bake translation 
(Whitelock, 1992). They have made semantic formalisms 
like those now usually associated with Davison (Davidson, 
1980, Parsons, 1990) attractive in artificial intelligence for 
many years (Hobbs 1985, Kay, 1970). Operationally, the 
attraction is that the notations can be analyzed largely as 
free word-order languages in the manner outlined above. 
Consider the expression ( 1 ) 
(1) r: run(r), past(r), fast(r), argl (r,j), name(j, John) 
which we will take as a representation of the logical form of 
the sentences John ran fast and John ran quickly. It consists 
of a distinguished index (r) and a list of predicates whose 
relative order is immaterial. The distinguished index identi- 
fies this as a sentence that makes a claim about a running 
event. "John" is the name of the entity that stands in the 
' a rg l '  relation to the running which took place in the past 
and which was fast. Nothing turns on these details which 
will differ with differing ontologies, logics, and views of 
semantic structure. What concerns us here is a procedure 
for generating a sentence from a structure of this general 
kind. 

Assume that the lexicon contains entries like those in 
(2) in which the italicized arguments to the semantic predi- 
cates are variables. 
(2) 

Words Cat Semantics 

John np(x) x: name(x, John) 

ran vp(x, y) x: run(x), argl (x, y), 
past(x) 

fast adv(x) x: fast(x) 

quickly adv(x) x: fast(x) 

A prima facie argument for the utility of these particular 
words for expressing (I) can be made simply by noting that, 
modulo appropriate instantiation of the variables, the 
semantics of each of these words subsumes (1). 

3 The Algorithm Schema 
The entries in (2), with their variables suitably instantiated, 
become the initial entries of an agenda and we begin to 
move them to the chart in accordance with the algorithm 

schema, say in the order given. 
The variables in the 'Cat '  and 'Semantics' columns of 

(2) provide the essential link between syntax and semantics. 
The predicates that represent the semantics of a phrase will 
simply be the union of those representing the constituents. 
The rules that sanction a phrase (e.g. (3) below) show 
which variables from the two parts are to be identified. 

When the entry for John is moved, no interactions are 
possible because the chart is empty. When run is moved, the 
sequence John ran is considered as a possible phrase on the 
basis of rule (3). 
(3) s(x) ~ rip(y), vp(x, 3'). 
With appropriate replacements for variables, this maps onto 
the subset (4) of the original semantic specification in (1). 
(4) r: run(r), past(r), argl(r,j),  name(j, John) 
Furthermore it is a complete sentence. However, it does not 
count as an output to the generation process as a whole 
because it subsumes some but not all of (1). It therefore 
simply becomes a new edge on the agenda. 

The string ran fast constitutes a verb phrase by virtue 
of rule (5) giving the semantics (6), and the phrase ran 
quickly with the same semantics is put on the agenda when 
the quickly edge is move to the chart. 
(5) vp(x) ~ vp(x) adv(x) 
(6) r: run(r), past(r), fast(r), arg 1 (r, y) 
The agenda now contains the entries in (7). 
(7) 

Words Cat Semantics 

John ran s(r) r: run(r), past(r), argl(r,j), 
name(j, John) 

ran fast vp(r, j) r: run(r), past(r), fast(r), 
argl(r, j)  

ran quickly vp(r, j) r: run(r), past(r), fast(r), 
argl(r, j)  

Assuming that adverbs modify verb phrases and not sen- 
tences, there will be no interactions when the John ran edge 
is moved to the chart. 

When the edge for ran .fast is moved, the possibility 
arises of creating the phrase tan fast quickly as well as ran 
fast  fast. Both are rejected, however, on the grounds that 
they would involve using a predicate from the original 
semantic specification more than once. This would be simi- 
lar to allowing a given word to be covered by overlapping 
phrases in free word-order parsing. We proposed eliminat- 
ing this by means of a bit vector and the same technique 
applies here. The fruitful interactions that occur here are 
between ran .fast and ran quickly on the one hand, and John 
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on the other. Both give sentences whose semantics sub- 
sumes the entire input. 

Several things are noteworthy about the process just 
outlined. 
!. Nothing turns on the fact that it uses a primitive version 

of event semantics. A scheme in which the indices 
were handles referring to subexpressions in any variety 
of fiat semantics could have been treated in the same 
way. Indeed, more conventional formalisms with richly 
recursive syntax could be converted to this form on the 
fly. 

2. Because all our rules are binary, we make no use of 
active edges. 

3. While it fits the conception of chart parsing given at 
the beginning of this paper, our generator does not 
involve string positions centrally in the chart represen- 
tation. In this respect, it differs from the proposal of 
Shieber (1988) which starts with all word edges leav- 
ing and entering a single vertex. But there is essentially 
no information in such a representation. Neither the 
chart nor any other special data structure is required to 
capture the fact that a new phrase may be constructible 
out of any given pair, and in either order, if they meet 
certain syntactic and semantic criteria. 

4. Interactions must be considered explicitly between 
new edges and all edges currently in the chart, because 
no indexing is used to identify the existing edges that 
could interact with a given new one. 

5. The process is exponential in the worst case because, if 
a sentence contains a word with k modifiers, then a 
version it will be generated with each of the 2 k subsets 
of those modifiers, all but one of them being rejected 
when it is finally discovered that their semantics does 
not subsume the entire input. If the relative orders of 
the modifiers are unconstrained, matters only get 
worse. 

Points 4 and 5 are serious flaws in our scheme for which we 
shall describe remedies. Point 2 will have some importance 
for us because it will turn out that the indexing scheme we 
propose will require the use of distinct active and inactive 
edges, even when the rules are all binary. We take up the 
complexity issue first, and then turn to bow the efficiency of 
the generation chart might be enhanced through indexing. 

4 Internal and External Indices 
The exponential factor in the computational complexity of 
our generation algorithm is apparent in an example like (8). 
(8) Newspaper reports said the tall young Polish athlete 

ran fast 
The same set of predicates that generate this sentence 
clearly also generate the same sentence with deletion of all 

subsets of the words tall, young, and Polish for a total of 8 
strings. Each is generated in its entirety, though finally 
rejected because it fails to account for all of the semantic 
material. The words newspaper and fast  can also be deleted 
independently giving a grand total of 32 strings. 

We concentrate on the phrase tall young Polish athlete 
which we assumed would be combined with the verb phrase 
ran fast  by the rule (3). The distinguished index of the noun 
phrase, call it p, is identified with the variable y in the rule, 
but this variable is not associated with the syntactic cate- 
gory, s, on the left-hand side of the rule. The grammar has 
access to indices only through the variables that annotate 
grammatical categories in its rules, so that rules that incor- 
porate this sentence into larger phrases can have no further 
access to the index p. We therefore say that p is internal to 
the sentence the tall young Polish athlete ran fast. 

The index p would, of course, also be internal to the 
sentences the young Polish athlete ran fast, the tall Polish 
athlete ran fast, etc. However, in these cases, the semantic 
material remaining to be expressed contains predicates that 
refer to this internal index, say 'tall(p)', and 'young(p)'. 
While the lexicon may have words to express these predi- 
cates, the grammar has no way of associating their referents 
with the above noun phrases because the variables corre- 
sponding to those referents are internal. We conclude that, 
as a matter of principle, no edge should be constructed if 
the result of doing so would be to make internal an index 
occurring in part of the input semantics that the new phrase 
does not subsume. In other words, the semantics of a phrase 
must contain all predicates from the input specification that 
refer to any indices internal to it. This strategy does not pre- 
vent the generation of an exponential number of variants of 
phrases containing modifiers. It limits proliferation of the ill 
effects, however, by allowing only the maximal one to be 
incorporated in larger phrases. In other words, if the final 
result has phrases with m and n modifiers respectively, then 
2 n versions of the first and 2 m of the second will be created, 
but only one of each set will be incorporated into larger 
phrases and no factor of 2 (n+m) will be introduced into the 
cost of the process. 

5 Indexing 
String positions provide a natural way to index the strings 
input to the parsing process for the simple reason that there 
are as many of them as there are words but, for there to be 
any possibility of interaction between a pair of edges, they 
must come together at just one index. These are the natural 
points of articulation in the domain of strings. They cannot 
fill this role in generation because they are not natural prop- 
erties of the semantic expressions that are the input to the 
process. The corresponding natural points of articulation in 
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flat semantic structures are the entities that we have already 
been referring to as indices. 

In the modified version of the procedure, whenever a 
new inactive edge is created with label B(b ...), then for all 
rules of the form in (9), an active edge is also created with 
label A(...)/C(c ...). 
(9) A(...) ~ B(b ...) C(c ...) 
This represents a phrase of category A that requires a phrase 
of category C on the right for its completion. In these labels, 
b and c are (variables representing) the first, or distin- 
guished indices associated with B and C. By analogy with 
parsing charts, an inactive edge labeled B(b ...) can be 
thought of as incident from vertex b, which means simply 
that it is efficiently accessible through the index b. An active 
edge A(...)/C(c ...) should be thought of as incident from, or 
accessible through, the index c. The key property of this 
scheme is that active and inactive edges interact by virtue of 
indices that they share and, by letting vertices correspond to 
indices, we collect together sets of edges that could interact. 

We illustrate the modified procedure with the sentence 
(10) whose semantics we will take to be (11), the grammar 
rules (12)-(14), and the lexical entries in (15). 
(10) The dog saw the cat. 
(11 ) dog(d), def(d), saw(s), past(s), cat(c), def(c), 

argl (s, d), arg2(s, c). 
(l 2) s(x) ~ np(y) vp(x, y) 
(13) vp(x,y) --* v(x,y, z) np(z) 
(14) rip(x) ~ det(x) n(x) 
(15) 

Words 

cat 

s a w  

dog 

the 

Cat Semantics 

n(x) x: cat(x) 

v(x, y, z) x: see(x), past(x), argl (x, y), 
arg2(xcz) 

n(x) x: dog(x) 

det(x) x: def(x) 

The procedure will be reminiscent of left-corner parsing. 
Arguments have been made in favor of a head-driven strat- 
egy which would, however, have been marginally more 
complex (e.g. in Kay (1989), Shieber, et el. (1989)) and the 
differences are, in any case, not germane to our current con- 
cerns. 

The initial agenda, including active edges, and collect- 
ing edges by the vertices that they are incident from, is 
given in (16). 

The grammar is consulted only for the purpose of cre- 
ating active edges and all interactions in the chart are 
between active and inactive pairs of edges incident from the 

same vertex. 

(16) 

Vert 

d 

Words 

the 

the 

dog 

s a w  

s a w  

the 

the 

cat 

Cat 

det(d) 

npfd)/n(d) 

n(d) 

v(s, d, c) 

vp(s, d)/np(c) 

det(c) 

np(c)/n(c) 

n(c) 

Semantics 

d: deffd) 

d: def(d) 

d: dog(d) 

s: see(s), past(s), 
argl(s, d), arg2(s, c) 

r: see(s), past(s), 
argl(r,j) 

c: def(c) 

c: def(c) 

c: dog(c) 

(17) 

Vert 

d 

Words 

the dog 

saw the 
cat 

c the cat 

s saw the 
cat 

Cat 

np(d) 

vp(s, d)/np(d) 

np(c) 

vp(s, d) 

Semantics 

d: dog(d), def(d) 

s: see(s), past(s), 
arg 1 (s, d), arg2(s, c), 
cat(c), def(c) 

c: cat(c), def(c) 

s: see(s), past(s), 
argl (s, d), arg2(s, c), 
cat(c), def(c) 

Among the edges in (16), there are two interactions, 
one at vertices c and d. They cause the first and third edges 
in (17) to be added to the agenda. The first interacts with the 
active edge originally introduced by the verb "saw" produc- 
ing the fourth entry in (17). The label on this edge matches 
the first item on the right-hand side of rule (12) and the 
active edge that we show in the second entry is also intro- 
duced. The final interaction is between the first and second 
edges in (17) which give rise to the edge in (18). 

This procedure confirms perfectly to the standard algo- 
rithm schema for chart parsing, especially in the version 
that makes predictions immediately following the recogni- 
tion of the first constituent of a phrase, that is, in the version 
that is essentially a caching left-comer parser. 
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(18) 

Vert 

s 

Words Cat Semantics 

The dog saw the cat s(s) dog(d), def(d), 
see(s), 
past(s),arg 1 (s, d), 
arg2(s, c), cat(c), 
def(c). 
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