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A b s t r a c t  

This paper presents a generalised two- 
level implementation which can handle lin- 
ear and non-linear morphological opera- 
tions. An algorithm for the interpretation 
of multi-tape two-level rules is described. 
In addition, a number of issues which arise 
when developing non-linear grammars are 
discussed with examples from Syriac. 

1 I n t r o d u c t i o n  

The introduction of two-level morphology (Kosken- 
niemi, 1983) and subsequent developments has made 
implementing computational-morphology models a 
feasible task. Yet, two-level formalisms fell short 
from providing elegant means for the description of 
non-linear operations such as infixation, circumfix- 
ation and root-and-pattern morphology} As a re- 
sult, two-level implementations - e.g. (Antworth, 
1990; Karttunen,  1983; Kar t tunen and Beesley, 
1992; Ritchie et al., 1992) - have always been bi- 
ased towards linear morphology. 

The past decade has seen a number of proposals 
for handling non-linear morphology; 2 however, none 

* Supported by a Benefactor Studentship from St 
John's College• This research was done under the super- 
vision of Dr Stephen G. Pulman. Thanks to the anony- 
mous reviewers for their comments. All mistakes remain 
mine. 

1Although it is possible to express some classes of 
non-linear rules using standard two-level formalisms by 
means of ad hoc diacritics, e.g., infixation in (Antworth, 
1990, p. 156), there are no means for expressing other 
classes as root-and-pattern phenomena. 

2(Kay, 1987), (Kataja and Koskenniemi, 1988), 
(Beesley et al., 1989), (Lavie et al., 1990), (Beesley, 
1990), (Beesley, 1991), (Kornai, 1991), (Wiebe, 1992), 
(Pulman and Hepple, 1993), (Narayanan and Hashem, 
1993), and (Bird and Ellison, 1994). See (Kiraz, 1996) 
for a review. 

(apart from Beesley's work) seem to have been im- 
plemented over large descriptions, nor have they pro- 
vided means by which the grammarian can develop 
non-linear descriptions using higher level notation• 

To test the validity of one's proposal or formalism, 
minimally a medium-scale description is a desider- 
atum. SemHe 3 fulfils this requirement• It is a gen- 
eralised multi-tape two-level system which is being 
used in developing non-linear grammars. 

This paper (1) presents the algorithms behind 
SemHe; (2) discusses the issues involved in compil- 
ing non-linear descriptions; and (3) proposes exten- 
sion/solutions to make writing non-linear rules eas- 
ier and more elegant. The paper assumes knowledge 
of multi-tape two-level morphology (Kay, 1987; Ki- 
raz, 1994c). 

2 L i n g u i s t i c  D e s c r i p t i o n s  

The linguist provides SemHe with three pieces of 
data: a lexicon, two-level rules and word formation 
grammar• All entries take the form of Prolog terms. 4 
(Identifiers starting with an uppercase letter denote 
variables, otherwise they are instantiated symbols•) 
A lexical entry is described by the term 

synword( <morpheme>, (category)). 

Categories are of the form 

(category_symbol) : [(f eature_attrl = value1>, 

<]eature_attrn = wlu n) ] 

a notational variant of the PATR-II category formal- 
ism (Shieber, 1986). 

3The name SemHe (Syriac .semh~ 'rays') is not an 
acronym, but the title of a grammatical treatise writ- 
ten by the Syriac polymath (inter alia mathematician 
and grammarian) Bar 'EbrSy5 (1225-1286), viz. k tSb5 
d.semh.~ 'The Book of Rays'. 

aWe describe here the terms which are relevant to this 
paper. For a full description, see (Kiraz, 1996). 
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tl_alphabet(0, [k, t , b ,  a, el ). % surface alphabet 
tl_alphabet(1, [c l ,  c2, c3,v,  ~] ). tl_alphabet(2, [k, t , b ,  ~] ). tl_alphabet (3, [a, e,~] ). % lexical alphabets 
t l_set(radical,  [ k , t , b ] ) .  tl_set(vowel, [a, el).  tl_set(clc3, [cl ,  c3]). % variable sets 
tl_rule(R1, [ [ ] ,  [ ] ,  []1, [[~], [~], [~]], [ [ ] ,  [ ] ,  [ ]] ,  =>, [], [], [], 

[ 3 , [ [ 3 , [ 3 , [ ] ] ) .  
tl_rule(R2, [ [ ] ,  [ ] ,  [3], [ [P] ,  [C], []3, [ [1, [ ] ,  []3, =>, [ ] ,  [C], [3, 

[c lc3(P)  , rad ica l (C)1 ,  [ [ ] ,  [1, []]) .  
tl_rule(R3, [ [ ] ,  [ ] ,  []1, [ [v ] ,  [1, IV]l, [ [ ] ,  [1, []1, =>, [], IV], [1, 

[vowel(V)], [ [ ] ,  [ ] ,  [3]). 
tl_rule(R4, [ [ ] ,  [1, [1], [ [v ] ,  [1, IV]l, [ [ c2 ,v ] ,  [ ] ,  [ ]] ,  <=>, [1, [1, [], 

[vowel(V)], [ [ ] ,  [ ] ,  []]) .  
tLrule(Rb, [[1,  [1, []1, [[c21, [C], [1], [ [ ] ,  [ ] ,  [ ]] ,  <=>, [], [C], [], 

[radical(C) ], [ [], [root : [measure=p' al] ] , [] ] ). 
tl_rule(R6, [ [ ] ,  [ ] ,  [ ] ] ,  [ [c2] ,  [ e l ,  [ ] ] ,  [ [ ] ,  [ ] ,  [ ]] ,  <=>, [], [C,C], [], 

[radical(C)], [[], [root:[measure=pa''el]], []]). 

List ing 1 

A two-level rule is described using a syntactic vari- 
ant of the formalism described by (Ruessink, 1989; 
Pulman and Hepple, 1993), including the extensions 
by (Kiraz, 1994c), 

t l_rule(  <id),<LLC>, (Lex}, (RLC}, COp>, 
<LSC>, <RSC>, 
(variables>, (features)). 

The arguments are: (1) a rule identifier, id; (2) the 
left-lexical-context, LLC, the lexical center, Lex, and 
the right-lexical-context, RLC, each in the form of a 
list-of-lists, where the ith list represents the /th lex- 
ical tape; (3) an operator, => for optional rules or 
<=> for obligatory rules; (4) the left-surface-context, 
LSC, the surface center, Sur], and the right-surface- 
context, RSC, each in the form of a list; (5) a list 
of the variables used in the lexical and surface ex- 
pressions, each member in the form of a predicate 
indicating the set identifier (see in]ra) and an argu- 
ment indicating the variable in question; and (6) a 
set of features (i.e. category forms) in the form of a 
list-of-lists, where the ith item must unify with the 
feature-structure of the morpheme affected by the 
rule on the ith lexical tape. 

A lexical string maps to a surface string iff (1) 
they can be partitioned into pairs of lexical-surface 
subsequences, where each pair is licenced by a rule, 
and (2) no partition violates an obligatory rule. 

Alphabet declarations take the form 
t l_alphabet( ( tape> , <symbol_list)), and variable 
sets are described by the predicate tl_set({id), 
{symbol_list}). Word formation rules take the form of 
unification-based CFG rules, synrule(<identifier), 
(mother), [(daughter1},..., (daughtern}l). 

The following example illustrates the derivation 

of Syriac /ktab/5 'he wrote' (in the simple p'al 
measure) 6 from the pattern morpheme {cvcvc} 'ver- 
bal pattern', root {ktb} 'notion of writing', and vo- 
calism {a}. The three morphemes produce the un- 
derlying form */katab/,  which surfaces as /k tab/  
since short vowels in open unstressed syllables are 
deleted. The process is illustrated in (1) /  

a 

~'~ */katab/~ /ktab/ ( 1 )  c v c v c = 

I I L 
k t b 

The pa "el measure of the same verb, viz. /katteb/ ,  is 
derived by the gemination of the middle consonant 
(i.e. t) and applying the appropriate vocalism {ae}. 

The two-level grammar (Listing 1) assumes three 
lexical tapes. Uninstantiated contexts are denoted 
by an empty list. R1 is the morpheme boundary 
(= ~) rule. R2 and R3 sanction stem consonants 
and vowels, respectively. R4 is the obligatory vowel 
deletion rule. R5 and R6 map the second radical, 
[t], for p'al and pa"el forms, respectively. In this 
example, the lexicon contains the entries in (2). 8 
(2) synword(clvc2vca,pattern : 0)- 

synword(ktb, r o o t :  [measure = M]). 
synword(aa, vocal ism : [measure = p'al]). 
synword(ae, vocal ism : [measure = pa"el]). 

Note that the value of 'measure' in the root entry is 

SSpirantization is ignored here; for a discussion on 
Syriac spirantization, see (Kiraz, 1995). 

6Syriac verbs are classified under various measures 
(forms). The basic ones are: p'al, pa "el and 'a]'el. 

7This analysis is along the lines of (McCarthy, 1981) 
- based on autosegmental phonology (Goldsmith, 1976). 

SSpreading is ignored here; for a discussion, see (Ki- 
raz, 1994c). 
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uninstantiated; it is determined from the feature val- 
ues in R5, R6 and/or  the word grammar (see infra, 
§4.3). 

3 I m p l e m e n t a t i o n  

There are two current methods for implement- 
ing two-level rules (both implemented in Semi{e): 
(1) compiling rules into finite-state automata (multi- 
tape transducers in our case), and (2) interpreting 
rules directly. The former provides better perfor- 
mance, while the latter facilitates the debugging of 
grammars (by tracing and by providing debugging 
utilities along the lines of (Carter, 1995)). Addi- 
tionally, the interpreter facilitates the incremental 
compilation of rules by simply allowing the user to 
toggle rules on and off. 

The compilation of the above formalism into au- 
tomata is described by (Grimley-Evans et al., 1996). 
The following is a description of the interpreter. 

3.1 Internal Representation 

The word grammar is compiled into a shift-reduce 
parser. In addition, a first-and-follow algorithm, 
based on (Aho and Ullman, 1977), is applied to 
compute the feasible follow categories for each cat- 
egory type. The set of feasible follow categories, 
NextCats, of a particular category Cat is returned 
by the predicate FOLLOW(+Cat, -NextCats). Ad- 
ditionally, FOLLOW(bos, NextCats) returns the set 
of category symbols at the beginning of strings, and 
cos E NextCats indicates that  Cat may occur at the 
end of strings. 

The lexical component is implemented as charac- 
ter tries (Knuth, 1973), one per tape. Given a list 
of lexical strings, Lex, and a list of lexical pointers, 
LexPtrs, the predicate 

LEXICAL-TRANSITIONS( q-Lex, +LexPtrs ,  
- New Lex Ptrs, - LexC ats ) 

succeeds iff there are transitions on Lex from LexP- 
trs; it returns NewLexPtrs, and the categories, Lex- 
Cats, at the end of morphemes, if any. 

Two-level predicates are converted into an inter- 
nal representation: (1) every left-context expression 
is reversed and appended to an uninstantiated tail; 
(2) every right-context expression is appended to an 
uninstantiated tail; and (3) each rule is assigned a 
6-bit 'precedence value' where every bit represents 
one of the six lexical and surface expressions. If an 
expression is not an empty list (i.e. context is spec- 
ified), the relevant bit is set. In analysis, surface 
expressions are assigned the most significant bits, 
while lexical expressions are assigned the least sig- 
nificant ones. In generation, the opposite state of 

affairs holds. Rules are then reasserted in the or- 
der of their precedence value. This ensures that 
rules which contain the most specified expressions 
are tested first resulting in better performance. 

3.2 T h e  I n t e r p r e t e r  A l g o r i t h m  

The algorithms presented below are given in terms 
of prolog-like non-deterministic operations. A clause 
is satisfied iff all the conditions under it are satisfied. 
The predicates are depicted top-down in (3). (SemHe 
makes use of an earlier implementation by (Pulman 
and Hepple, 1993).) 

(3) 
Two-Level-Analysis l 

i I 1 
l Invalid-partition ) 

In order to minimise accumulator-passing ar- 
guments, we assume the following initially-empty 
stacks: ParseStack accumulates the category struc- 
tures of the morphemes identified, and FeatureStack 
maintains the rule features encountered so far. ( '+ '  
indicates concatenation.) 

PARTITION partitions a two-level analysis into se- 
quences of lexical-surface pairs, each licenced by a 
rule. The base case of the predicate is given in List- 
ing 2, 9 and the recursive case in Listing 3. 

The recursive COERCE predicate ensures that no 
partition is violated by an obligatory rule. It takes 
three arguments: Result is the output of PARTITION 
(usually reversed by the calling predicate, hence, 
COERCE deals with the last partition first), PrevCats 
is a register which keeps track of the last morpheme 
category encountered, and Partition returns selected 
elements from Result. The base case of the predicate 
is simply COERCE([], _, []) - i.e., no more par- 
titions. The recursive case is shown in Listing 4. 
CurrentCats keeps track of the category of the mor- 
pheme which occures in the current partition. The 
invalidity of a partition is determined by INVALID- 
PARTITION (Listing 5). 

TwO-LEVEL-ANALYSIS (Listing 6) is the main 
predicate. It takes a surface string or lexical 
string(s) and returns a list of partitions and a 

9For efficiency, variables appearing in left-context 
and centre expressions are evaluated after LEXICAL- 
TRANSITIONS since they will be fully instantiated then; 
only right-contexts are evaluated after the recursion. 
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PARTITION(SurfDone, SurfToDo, LexDone, LexToDo, LexPtrs, NextCats, Result) 
SurfToDo - - - -  [J & % surface string exhausted 
LexToDo = [ [ ] ,  [] , . . - ,  [] ] & % all lexical strings exhausted 
LexPtrs = [ r z , r t , - . . , r t ]  & % all lexical pointers are at the root node 
eos E NextCats ~ % end-of-string 
Result = [].  % output: no more results 

Listing 2 

PARTITION( SurfDone, SurfToDo, LexDone, LexToDo, LexPtrs, NextCats, 
[ ResultHead I Resuit Tai~) 

t h e r e  is tl_rule(Id, LLC, Lex, RLC, Op, LSC, Surf, RSC, Variables, Features) su ch  t h a t  
( Op = (=> or  <=>), LexDone = LLC, SurfDone -= LSC, 
SurfToDo = Surf + RSC and LexToDo = Lex + RLC) & 

LEXICAL-TRANSITIONS(Lex, LexPtrs, NewLexPtrs, LexCats) & 
p u s h  Features o n t o  FeatureStack ~z % keep track of rule features 
i f  LexCats ¢ n i l  t h e n  % found a morpheme boundary? 

whi le  FeatureStaek is n o t  e m p t y  % unify rule and lexical features 
u n i f y  LexCats w i t h  (p o p  FeatureStaek) & 

p u s h  LexCats o n t o  ParseStack ~z % update  the parse stack 
if  LexCats E NextCats t h e n  % get next category 

FOLLOW( LexCats, NewNextCats) 
e n d  i f  
ResultHead = Id/SurfDone/Surf/RSC/ 

LexDone/Lex/RL C/LexCats 
NewSurfDone = SurfDone + r e v e r s e  Surf & % make new arguments ... 
NewSurfToDo = RSC & % ... and recurse 
NewLexDone = LexDone ÷ r e v e r s e  Lex & 
NewLexToDo =- RLC & 
PARTITION( NewSurfDone, NewSurfToDo, 

NewLexDone, NewLex To Do, 
NewLexPtrs, NewNextCats, ResultTail) & 

for  all  SetId(Var) e Variables % check variables 
t h e r e  is tLset(SetId, Set) such  t h a t  Vat E Set. 

Listing 3 

CoERcF~([Id/LSC/Surf/RSC/LLC//Lex//RLC//LexCats l ResultTai~, PrevCats, 
[Id/Surf//Lex l Partition Tai~) 

i f  LexCats yt n i l  t h e n  
CurrentCats = LexCats 

else 
CurrentCats = PrevCats &: 

n o t  INVALID-PARTITION(LSC~ Surf, RSC, LLC, Lex, RLC, CurrentCats) & 
CoERCE( Result Tail, CurrentCats, Partition TaiO. 

Listing 4 

INVALID-PARTITION(LSC, Surf, RSC, LLC, Lex, RLC, Cats) 
t h e r e  is tl_rule(Id, LLC, Lex, RLC, <=>, LSC, NotSur~, RSC, Variables, Features) su ch  t h a t  

NotSurf ¢ Surf 
for  all Setld(Var) e Variables % check variables 

t h e r e  is tl_set(SetId, Set) such  t h a t  Vat E Set & 
un i f y  Cats w i t h  Features & 
fail. 

Listing 5 
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TwO-LEVEL-ANALYSIS(?Surf, ? Lex, -Partition, -Parse) 
FOLLOW(bos, NextCats) &: 
PARTITION([], Surf, [[1, [] , - " ,  [11, Lex, [ r t , r t , . . . , r t ] ,  NextCats, Result) 
CoERcE(reverse Result, n i l ,  Partition) &: 
SHIFT-REDUCE( ParseStack, Parse). 

Listing 6 

morphosyntactic parse tree. To analyse a sur- 
face form, one calls TwO-LEVEL-ANALYSIS(+Surf, 
-Lex, -Partition, -Parse). To generate a surface 
form, one calls TwO-LEVEL-ANALYSIS(-Surf, +Lex, 
-Partition, -Parse). 

4 D e v e l o p i n g  N o n - L i n e a r  G r a m m a r s  

When developing Semitic grammars, one comes 
across various issues and problems which normally 
do not arise with linear grammars. Some can be 
solved by known methods or 'tricks'; others require 
extensions in order to make developing grammars 
easier and more elegant. This section discuss issues 
which normally do not arise when compiling linear 
grammars. 

4.1 Linear i ty  vs. Non-Linear i ty  

In Semitic languages, non-linearity occurs only in 
stems. Hence, lexical descriptions of stems make 
use of three lexical tapes (pattern, root & vocalism), 
while those of prefixes and suffixes use the first lexi- 
cal tape. This requires duplicating rules when stat- 
ing lexical constraints. Consider rule R4 (Listing 1). 
It allows the deletion of the first stem vowel by the 
virtue of RLC (even if c2 was not indexed); hence 
/katab/--+ /ktab/.  Now consider adding the suffix 
{eh} 'him/it': /katab/+{eh} ~ / k a t b e h / ,  where the 
second stem vowel is deleted since deletion applies 
right-to-left; however, RLC can only cope with stem 
vowels. Rule R7 (Listing 7) is required. One might 
suggest placing constraints on surface expressions in- 
stead. However, doing so causes surface expressions 
to be dependent on other rules. 

Additionally, Lex in R4 and R7 deletes stem vow- 
els. Consider adding the prefix {wa} 'and': {wa} 
+ /katab/ + {eh} --+ /wkatbeh/, where the prefix 
vowel is also deleted. To cope with this, two addi- 
tional rules like R4 and R7 are required, but with 
Lex = [[V], [] ,  [1]. 

We resolve this by allowing the user to write ex- 
pansion rules of the from 

expand( (symbol), (expansion), (variables)). 

In our example, the expansion rules in (4) are 
needed. 

(4) expand(C, [[C], [] ,  []] ,  [ radica l (C)]) .  
expand(C, [ [c ] ,  [C], []],  [ radica l (C)]) .  
expand(V, [ [V], [] ,  [11, [vowel (V) ]). 
expand(V, [ [v] ,  [] ,  IV]l, [vowel(V)]). 

The linguist can then rewrite R4 as R8 (Listing 7), 
and expand it with the command expand(RS). This 
produces four rules of the form of R4, but with the 
following expressions for Lex and RLC: 1° 

Lex  
[ [ v l ] , [ ] , [ ] ]  
[ [ v l ] , [ ] , [ ] ]  
[ [v], [] ,  [vl] ] 
[ [v], [],  [vi]]  

4.2 Vocalisation 

RLC 
[ [C,V2], [] ,  [] ] 
[ [c, v] ,  [C], [V2] ] 
[ [C,V2] , [ ] ,  []] 
[ [c, v] ,  [C], [V21 ] 

Orthographically, Semitic texts are written without 
short vowels. It was suggested by (Beesley et al., 
1989, et. seq.) and (Kiraz, 1994c) to allow short 
vowels to be optionally deleted. This, however, puts 
a constraint on the grammar: no surface expres- 
sion can contain a vowel, lest the vowel is optionally 
deleted. 

We assume full vocalisation in writing rules. A 
second set of rules can allow the deletion of vowels. 
The whole grammar can be taken as the composition 
of the two grammars: e.g. {cvcvc},{ktb},{aa} --+ 
/ k t a b / - ~  [ktab, ktb]. 

4.3 Morphosyn tac t i c  Issues 

Finite-state models of two-level morphology im- 
plement morphotactics in two ways: using 'con- 
tinuation patterns/classes' (Koskenniemi, 1983; 
Antworth, 1990; Karttunen, 1993) or unification- 
based grammars (Bear, 1986; Ritchie et al., 1992). 
The former fails to provide elegant morphosyntactic 
parsing for Semitic languages, as will be illustrated 
in this section. 

4.3.1 Stems and  X-Theory  

A pattern, a root and a vocalism do not alway 
produce a free stem which can stand on its own. In 
Syriac, for example, some verbal forms are bound: 
they require a s t em m o r p h e m e  which indicates the 
measure in question, e.g. the prefix {~a} for a/'el 

1°Note, however, that the expand command does not 
insert [~ randomly in context expressions. 
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tl_rule(RT, [ [ ] ,  [ ] ,  [ ]] ,  [ [v ] ,  [] ,  [V]], [ [ c3 ,b , e ] ,  [ ] ,  [ ]] ,  <=>, [], [], [], 
[vowel(V)], [[], [], []]). 

tl_rule(K8, [], [Vl], [C,V2], <=>, [], [], [], 
[vowel (Vl),  vowel (V2), r a d i c a l  (C) ], [ [ ] ,  [ ] ,  [] ] ). 

Listing 7 

synrule(rulel,  

synrule(rule2, 

synrule(rule3, 

synrule(rule4, 

synrule(rule5, 

synrule(rule6, 

synrule(rule7, 

synrule(rule8, 

stem: [X=-2, measure=M, measure=p' a l  I pa'  ' e l ] ,  
[pat tern:  [], roo t  : [measure=M,measure=p' a l  I pa'  ' e l ] ,  
vocalism: [measure=M, measure=p' a l  ]pa' ' e l]  ]). 

stem: [X=-2,measure=M], 
[stem_affix: [measure=M], 
pattern: [], root: [measure=M], vocalism: [measure=M]]). 
stem: IX =- i, measure=M, mood=act], 
[st em: [bar= - 2, measure=M, mood=act ] ]). 
st em: IX=- I, measure=M, mood=pas s], 
[reflexive:[], stem: [X=-2,measure=S,mood=pass]]). 
st em: [X=O, measure=M, mood=MD, npg=s~3&m], 
[stem: IX=-1 ,measure=S,mood=MD] ]). 
stem: [X=O, measure=M ,mood=MD ,npg=NPG], 
[stem: IX=-1 ,measure=M ,mood=MD], vim: [type=surf, circum=no ,npg=NPG] ]). 
st em: IX=O, measure=M, mood=MD, npg=NPG], 
[vim: [t ype=pref, cir cure=no, npg=NPG], st em: [X=- I, measure=M, mood=MD] ]). 
stem: [X=O, measure=M ,mood=MD ,npg=NPG], 
[vim: [type=pref, circum=yes ,npg=NPG], stem: IX=-1 ,measure=M ,mood=MD], 
vim: [type=suf f, circum=yes, npg=NPG] ]). 

Listing 8 

stems. Additionally, passive forms are marked by 
the reflexive m o r p h e m e  {yet}, while active forms 
are not marked at all. 

This structure of stems can be handled hierarchi- 
cally using X-theory. A stem whose stem morpheme 
is known is assigned X=-2 (Rules 1-2 in Listing 8). 
Rules which indicate mood can apply only to stems 
whose measure has been identified (i.e. they have 
X=-2). The resulting stems are assigned X=-I (Rules 
3-4 in Listing 8). The parsing of Syriac /~etkteb/ 
(from {~et}+/kateb/after the deletion o f / a / b y  R4) 
appears in (5). n 

(5) 

reflexive s t y 2 ]  

Yet pattern root vocalism 

J J J 
cvcvc ktb ae 

Now free stems which may stand on their own 
can be assigned X=0. However, some stems require 

nIn the remaining examples, it is assumed that the 
lexicon and two-level rules are expanded to cater for the 
new material. 

verbal inflectional markers. 

4.3.2 Verbal  Inflect ional  Marke r s  

With respect to verbal inflexional markers 
(VIMs), there are various types of Semitic verbs: 
those which do not require a VIM (e.g. sing. 3rd 
masc.), and those which require a VIM in the form 
of a prefix (e.g. perfect), suffix (e.g. some imperfect 
forms), or circumfix (e.g. other imperfect forms). 

Each VIM is lexically marked inter alia with two 
features: 'type' which states whether it is a prefix or 
a suffix, and 'circum' which denotes whether it is a 
circumfix. Rules 5-8 (Listing 8) handle this. 

The parsing of Syriac /netkatbun/ (from {ne}+ 
{~et)+/katab/+{un}) appears in (6). 
(6) 

s t e m ~  

vim s t y 1 ]  

ne reflexive s t y 2 ]  

yet pattern root vocalism 

f f I 
cvcvc ktb aa 

vim 
I 

u n  
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Verb Class Inflections Analysed 1st Analysis Subsequent Analysis Mean 
(sec/word) (sec/word) (sec/word) 

Strong 78 5.053 0.028 2.539 
Initial n~n 52 6.756 0.048 3.404 
Initial 5laph 57 4.379 0.077 2.228 
Middle 51aph 67 5.107 0.061 2.584 
Overall mean 63.5 5.324 0.054 2.689 

T a b l e  1 

(Beesley et al., 1989) handle this problem by find- 
ing a logical expression for the prefix and suffix por- 
tions of circumfix morphemes, and use unification to 
generate only the correct forms - see (Sproat, 1992, 
p. 158). This approach, however, cannot be used 
here since, unlike Arabic, not all Syriac VIMs are in 
the form of circumfixes. 

4.3.3 Interfacing wi th  a Syntact ic  Parser  

A Semitic 'word' (string separated by word bound- 
ary) may in fact be a clause or a sentence. There- 
fore, a morphosyntactic parsing of a 'word' may be a 
(partial) syntactic parsing of a sentence in the form 
of a (partial) tree. The output of a morphologi- 
cal analyser can be structured in a manner suitable 
for syntactic processing. Using tree-adjoining gram- 
mars (Joshi, 1985) might be a possibility. 

5 P e r f o r m a n c e  

To test the integrity, robustness and performance 
of the implementation, a two-level grammar of the 
most frequent words in the Syriac New Testament 
was compiled based on the data in (Kiraz, 1994b). 
The grammar covers most classes of verbal and nom- 
inal forms, in addition to prepositions, proper nouns 
and words of Greek origin. A wider coverage would 
involve enlarging the lexicon (currently there are 165 
entries) and might triple the number of two-level 
rules (currently there are c. 50 rules). 

Table 1 provides the results of analysing verbal 
classes. The test for each class represents analysing 
most of its inflexions. The test was executed on a 
Sparc ELC computer. 

By constructing a corpus which consists only of 
the most frequent words, one can estimate the per- 
formance of analysing the corpus as follows, 

n 4 
p _- 5.324n + ~i=1 0.05 (fi - 1) sec/word 

~i~=l fi 

where n is the number of distinct words in the corpus 
and fi is the frequency of occurrence of the ith word. 
The SEDRA database (Kiraz, 1994a) provides such 
data. All occurrences of the 100 most frequent lex- 
emes in their various inflections (a total of 72,240 

occurrences) can be analysed at the rate of 16.35 
words/sec. (Performance will be less if additional 
rules are added for larger coverage.) 

The results may not seem satisfactory when com- 
pared with other prolog implementations of the same 
formalism (cf. 50 words/sec, in (Carter, 1995)). One 
should, however, keep in mind the complexity of Syr- 
iac morphology. In addition to morphological non- 
linearity, phonological conditional changes - conso- 
nantal and vocalic - occur in all stems, and it is 
not unusual to have more than five such changes 
per word. Once developed, a grammar is usually 
compiled into automata which provides better per- 
formance. 

6 C o n c l u s i o n  

This paper has presented a computational morphol- 
ogy system which is adequate for handling non-linear 
grammars. We are currently expanding the gram- 
mar to cover the whole of New Testament Syriac. 
One of our future goals is to optimise the prolog im- 
plementation for speedy processing and to add de- 
bugging facilities along the lines of (Carter, 1995). 

For useful results, a Semitic morphological anal- 
yser needs to interact with a syntactic parser in order 
to resolve ambiguities. Most non-vocalised strings 
give more than one solution, and some inflectional 
forms are homographs even if fully vocalised (e.g. in 
Syriac imperfect verbs: sing. 3rd masc. = plural 1st 
common, and sing. 3rd fern. = sing. 2nd masc.). We 
mentioned earlier the possibility of using TAGs. 
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