
S. EMH. E: A Generalised Two-Level System

G e o r g e A n t o n K i r a z *

C o m p u t e r L a b o r a t o r y

U n i v e r s i t y o f C a m b r i d g e (St J o h n ' s Co l l ege)

E m a i l : G e o r g e . K i r a z O c l . cam. a c . uk

U R L : h t t p : / /www. c 1 . cam. a c . u k / u s e r s / g k l 0 5

A b s t r a c t

This paper presents a generalised two-
level implementation which can handle lin-
ear and non-linear morphological opera-
tions. An algorithm for the interpretation
of multi-tape two-level rules is described.
In addition, a number of issues which arise
when developing non-linear grammars are
discussed with examples from Syriac.

1 I n t r o d u c t i o n

The introduction of two-level morphology (Kosken-
niemi, 1983) and subsequent developments has made
implementing computational-morphology models a
feasible task. Yet, two-level formalisms fell short
from providing elegant means for the description of
non-linear operations such as infixation, circumfix-
ation and root-and-pattern morphology} As a re-
sult, two-level implementations - e.g. (Antworth,
1990; Karttunen, 1983; Kar t tunen and Beesley,
1992; Ritchie et al., 1992) - have always been bi-
ased towards linear morphology.

The past decade has seen a number of proposals
for handling non-linear morphology; 2 however, none

* Supported by a Benefactor Studentship from St
John's College• This research was done under the super-
vision of Dr Stephen G. Pulman. Thanks to the anony-
mous reviewers for their comments. All mistakes remain
mine.

1Although it is possible to express some classes of
non-linear rules using standard two-level formalisms by
means of ad hoc diacritics, e.g., infixation in (Antworth,
1990, p. 156), there are no means for expressing other
classes as root-and-pattern phenomena.

2(Kay, 1987), (Kataja and Koskenniemi, 1988),
(Beesley et al., 1989), (Lavie et al., 1990), (Beesley,
1990), (Beesley, 1991), (Kornai, 1991), (Wiebe, 1992),
(Pulman and Hepple, 1993), (Narayanan and Hashem,
1993), and (Bird and Ellison, 1994). See (Kiraz, 1996)
for a review.

(apart from Beesley's work) seem to have been im-
plemented over large descriptions, nor have they pro-
vided means by which the grammarian can develop
non-linear descriptions using higher level notation•

To test the validity of one's proposal or formalism,
minimally a medium-scale description is a desider-
atum. SemHe 3 fulfils this requirement• It is a gen-
eralised multi-tape two-level system which is being
used in developing non-linear grammars.

This paper (1) presents the algorithms behind
SemHe; (2) discusses the issues involved in compil-
ing non-linear descriptions; and (3) proposes exten-
sion/solutions to make writing non-linear rules eas-
ier and more elegant. The paper assumes knowledge
of multi-tape two-level morphology (Kay, 1987; Ki-
raz, 1994c).

2 L i n g u i s t i c D e s c r i p t i o n s

The linguist provides SemHe with three pieces of
data: a lexicon, two-level rules and word formation
grammar• All entries take the form of Prolog terms. 4
(Identifiers starting with an uppercase letter denote
variables, otherwise they are instantiated symbols•)
A lexical entry is described by the term

synword(<morpheme>, (category)).

Categories are of the form

(category_symbol) : [(f eature_attrl = value1>,

<]eature_attrn = wlu n)]

a notational variant of the PATR-II category formal-
ism (Shieber, 1986).

3The name SemHe (Syriac .semh~ 'rays') is not an
acronym, but the title of a grammatical treatise writ-
ten by the Syriac polymath (inter alia mathematician
and grammarian) Bar 'EbrSy5 (1225-1286), viz. k tSb5
d.semh.~ 'The Book of Rays'.

aWe describe here the terms which are relevant to this
paper. For a full description, see (Kiraz, 1996).

1 5 9 -

tl_alphabet(0, [k, t , b , a, el). % surface alphabet
tl_alphabet(1, [c l , c2, c3,v, ~]). tl_alphabet(2, [k, t , b , ~]). tl_alphabet (3, [a, e,~]). % lexical alphabets
t l_set(radical, [k , t , b]) . tl_set(vowel, [a, el). tl_set(clc3, [cl , c3]). % variable sets
tl_rule(R1, [[] , [] , []1, [[~], [~], [~]], [[] , [] , []] , =>, [], [], [],

[3 , [[3 , [3 , []]) .
tl_rule(R2, [[] , [] , [3], [[P] , [C], []3, [[1, [] , []3, =>, [] , [C], [3,

[c lc3(P) , rad ica l (C)1 , [[] , [1, []]) .
tl_rule(R3, [[] , [] , []1, [[v] , [1, IV]l, [[] , [1, []1, =>, [], IV], [1,

[vowel(V)], [[] , [] , [3]).
tl_rule(R4, [[] , [1, [1], [[v] , [1, IV]l, [[c2 ,v] , [] , []] , <=>, [1, [1, [],

[vowel(V)], [[] , [] , []]) .
tLrule(Rb, [[1, [1, []1, [[c21, [C], [1], [[] , [] , []] , <=>, [], [C], [],

[radical(C)], [[], [root : [measure=p' al]] , []]).
tl_rule(R6, [[] , [] , []] , [[c2] , [e l , []] , [[] , [] , []] , <=>, [], [C,C], [],

[radical(C)], [[], [root:[measure=pa''el]], []]).

List ing 1

A two-level rule is described using a syntactic vari-
ant of the formalism described by (Ruessink, 1989;
Pulman and Hepple, 1993), including the extensions
by (Kiraz, 1994c),

t l_rule(<id),<LLC>, (Lex}, (RLC}, COp>,
<LSC>, <RSC>,
(variables>, (features)).

The arguments are: (1) a rule identifier, id; (2) the
left-lexical-context, LLC, the lexical center, Lex, and
the right-lexical-context, RLC, each in the form of a
list-of-lists, where the ith list represents the /th lex-
ical tape; (3) an operator, => for optional rules or
<=> for obligatory rules; (4) the left-surface-context,
LSC, the surface center, Sur], and the right-surface-
context, RSC, each in the form of a list; (5) a list
of the variables used in the lexical and surface ex-
pressions, each member in the form of a predicate
indicating the set identifier (see in]ra) and an argu-
ment indicating the variable in question; and (6) a
set of features (i.e. category forms) in the form of a
list-of-lists, where the ith item must unify with the
feature-structure of the morpheme affected by the
rule on the ith lexical tape.

A lexical string maps to a surface string iff (1)
they can be partitioned into pairs of lexical-surface
subsequences, where each pair is licenced by a rule,
and (2) no partition violates an obligatory rule.

Alphabet declarations take the form
t l_alphabet((tape> , <symbol_list)), and variable
sets are described by the predicate tl_set({id),
{symbol_list}). Word formation rules take the form of
unification-based CFG rules, synrule(<identifier),
(mother), [(daughter1},..., (daughtern}l).

The following example illustrates the derivation

of Syriac /ktab/5 'he wrote' (in the simple p'al
measure) 6 from the pattern morpheme {cvcvc} 'ver-
bal pattern', root {ktb} 'notion of writing', and vo-
calism {a}. The three morphemes produce the un-
derlying form */katab/, which surfaces as /k tab/
since short vowels in open unstressed syllables are
deleted. The process is illustrated in (1) /

a

~'~ */katab/~ /ktab/ (1) c v c v c =

I I L
k t b

The pa "el measure of the same verb, viz. /katteb/ , is
derived by the gemination of the middle consonant
(i.e. t) and applying the appropriate vocalism {ae}.

The two-level grammar (Listing 1) assumes three
lexical tapes. Uninstantiated contexts are denoted
by an empty list. R1 is the morpheme boundary
(= ~) rule. R2 and R3 sanction stem consonants
and vowels, respectively. R4 is the obligatory vowel
deletion rule. R5 and R6 map the second radical,
[t], for p'al and pa"el forms, respectively. In this
example, the lexicon contains the entries in (2). 8
(2) synword(clvc2vca,pattern : 0)-

synword(ktb, r o o t : [measure = M]).
synword(aa, vocal ism : [measure = p'al]).
synword(ae, vocal ism : [measure = pa"el]).

Note that the value of 'measure' in the root entry is

SSpirantization is ignored here; for a discussion on
Syriac spirantization, see (Kiraz, 1995).

6Syriac verbs are classified under various measures
(forms). The basic ones are: p'al, pa "el and 'a]'el.

7This analysis is along the lines of (McCarthy, 1981)
- based on autosegmental phonology (Goldsmith, 1976).

SSpreading is ignored here; for a discussion, see (Ki-
raz, 1994c).

160

uninstantiated; it is determined from the feature val-
ues in R5, R6 and/or the word grammar (see infra,
§4.3).

3 I m p l e m e n t a t i o n

There are two current methods for implement-
ing two-level rules (both implemented in Semi{e):
(1) compiling rules into finite-state automata (multi-
tape transducers in our case), and (2) interpreting
rules directly. The former provides better perfor-
mance, while the latter facilitates the debugging of
grammars (by tracing and by providing debugging
utilities along the lines of (Carter, 1995)). Addi-
tionally, the interpreter facilitates the incremental
compilation of rules by simply allowing the user to
toggle rules on and off.

The compilation of the above formalism into au-
tomata is described by (Grimley-Evans et al., 1996).
The following is a description of the interpreter.

3.1 Internal Representation

The word grammar is compiled into a shift-reduce
parser. In addition, a first-and-follow algorithm,
based on (Aho and Ullman, 1977), is applied to
compute the feasible follow categories for each cat-
egory type. The set of feasible follow categories,
NextCats, of a particular category Cat is returned
by the predicate FOLLOW(+Cat, -NextCats). Ad-
ditionally, FOLLOW(bos, NextCats) returns the set
of category symbols at the beginning of strings, and
cos E NextCats indicates that Cat may occur at the
end of strings.

The lexical component is implemented as charac-
ter tries (Knuth, 1973), one per tape. Given a list
of lexical strings, Lex, and a list of lexical pointers,
LexPtrs, the predicate

LEXICAL-TRANSITIONS(q-Lex, +LexPtrs ,
- New Lex Ptrs, - LexC ats)

succeeds iff there are transitions on Lex from LexP-
trs; it returns NewLexPtrs, and the categories, Lex-
Cats, at the end of morphemes, if any.

Two-level predicates are converted into an inter-
nal representation: (1) every left-context expression
is reversed and appended to an uninstantiated tail;
(2) every right-context expression is appended to an
uninstantiated tail; and (3) each rule is assigned a
6-bit 'precedence value' where every bit represents
one of the six lexical and surface expressions. If an
expression is not an empty list (i.e. context is spec-
ified), the relevant bit is set. In analysis, surface
expressions are assigned the most significant bits,
while lexical expressions are assigned the least sig-
nificant ones. In generation, the opposite state of

affairs holds. Rules are then reasserted in the or-
der of their precedence value. This ensures that
rules which contain the most specified expressions
are tested first resulting in better performance.

3.2 T h e I n t e r p r e t e r A l g o r i t h m

The algorithms presented below are given in terms
of prolog-like non-deterministic operations. A clause
is satisfied iff all the conditions under it are satisfied.
The predicates are depicted top-down in (3). (SemHe
makes use of an earlier implementation by (Pulman
and Hepple, 1993).)

(3)
Two-Level-Analysis l

i I 1
l Invalid-partition)

In order to minimise accumulator-passing ar-
guments, we assume the following initially-empty
stacks: ParseStack accumulates the category struc-
tures of the morphemes identified, and FeatureStack
maintains the rule features encountered so far. ('+ '
indicates concatenation.)

PARTITION partitions a two-level analysis into se-
quences of lexical-surface pairs, each licenced by a
rule. The base case of the predicate is given in List-
ing 2, 9 and the recursive case in Listing 3.

The recursive COERCE predicate ensures that no
partition is violated by an obligatory rule. It takes
three arguments: Result is the output of PARTITION
(usually reversed by the calling predicate, hence,
COERCE deals with the last partition first), PrevCats
is a register which keeps track of the last morpheme
category encountered, and Partition returns selected
elements from Result. The base case of the predicate
is simply COERCE([], _, []) - i.e., no more par-
titions. The recursive case is shown in Listing 4.
CurrentCats keeps track of the category of the mor-
pheme which occures in the current partition. The
invalidity of a partition is determined by INVALID-
PARTITION (Listing 5).

TwO-LEVEL-ANALYSIS (Listing 6) is the main
predicate. It takes a surface string or lexical
string(s) and returns a list of partitions and a

9For efficiency, variables appearing in left-context
and centre expressions are evaluated after LEXICAL-
TRANSITIONS since they will be fully instantiated then;
only right-contexts are evaluated after the recursion.

161

PARTITION(SurfDone, SurfToDo, LexDone, LexToDo, LexPtrs, NextCats, Result)
SurfToDo - - - - [J & % surface string exhausted
LexToDo = [[] , [] , . . - , []] & % all lexical strings exhausted
LexPtrs = [r z , r t , - . . , r t] & % all lexical pointers are at the root node
eos E NextCats ~ % end-of-string
Result = []. % output: no more results

Listing 2

PARTITION(SurfDone, SurfToDo, LexDone, LexToDo, LexPtrs, NextCats,
[ResultHead I Resuit Tai~)

t h e r e is tl_rule(Id, LLC, Lex, RLC, Op, LSC, Surf, RSC, Variables, Features) su ch t h a t
(Op = (=> or <=>), LexDone = LLC, SurfDone -= LSC,
SurfToDo = Surf + RSC and LexToDo = Lex + RLC) &

LEXICAL-TRANSITIONS(Lex, LexPtrs, NewLexPtrs, LexCats) &
p u s h Features o n t o FeatureStack ~z % keep track of rule features
i f LexCats ¢ n i l t h e n % found a morpheme boundary?

whi le FeatureStaek is n o t e m p t y % unify rule and lexical features
u n i f y LexCats w i t h (p o p FeatureStaek) &

p u s h LexCats o n t o ParseStack ~z % update the parse stack
if LexCats E NextCats t h e n % get next category

FOLLOW(LexCats, NewNextCats)
e n d i f
ResultHead = Id/SurfDone/Surf/RSC/

LexDone/Lex/RL C/LexCats
NewSurfDone = SurfDone + r e v e r s e Surf & % make new arguments ...
NewSurfToDo = RSC & % ... and recurse
NewLexDone = LexDone ÷ r e v e r s e Lex &
NewLexToDo =- RLC &
PARTITION(NewSurfDone, NewSurfToDo,

NewLexDone, NewLex To Do,
NewLexPtrs, NewNextCats, ResultTail) &

for all SetId(Var) e Variables % check variables
t h e r e is tLset(SetId, Set) such t h a t Vat E Set.

Listing 3

CoERcF~([Id/LSC/Surf/RSC/LLC//Lex//RLC//LexCats l ResultTai~, PrevCats,
[Id/Surf//Lex l Partition Tai~)

i f LexCats yt n i l t h e n
CurrentCats = LexCats

else
CurrentCats = PrevCats &:

n o t INVALID-PARTITION(LSC~ Surf, RSC, LLC, Lex, RLC, CurrentCats) &
CoERCE(Result Tail, CurrentCats, Partition TaiO.

Listing 4

INVALID-PARTITION(LSC, Surf, RSC, LLC, Lex, RLC, Cats)
t h e r e is tl_rule(Id, LLC, Lex, RLC, <=>, LSC, NotSur~, RSC, Variables, Features) su ch t h a t

NotSurf ¢ Surf
for all Setld(Var) e Variables % check variables

t h e r e is tl_set(SetId, Set) such t h a t Vat E Set &
un i f y Cats w i t h Features &
fail.

Listing 5

162

TwO-LEVEL-ANALYSIS(?Surf, ? Lex, -Partition, -Parse)
FOLLOW(bos, NextCats) &:
PARTITION([], Surf, [[1, [] , - " , [11, Lex, [r t , r t , . . . , r t] , NextCats, Result)
CoERcE(reverse Result, n i l , Partition) &:
SHIFT-REDUCE(ParseStack, Parse).

Listing 6

morphosyntactic parse tree. To analyse a sur-
face form, one calls TwO-LEVEL-ANALYSIS(+Surf,
-Lex, -Partition, -Parse). To generate a surface
form, one calls TwO-LEVEL-ANALYSIS(-Surf, +Lex,
-Partition, -Parse).

4 D e v e l o p i n g N o n - L i n e a r G r a m m a r s

When developing Semitic grammars, one comes
across various issues and problems which normally
do not arise with linear grammars. Some can be
solved by known methods or 'tricks'; others require
extensions in order to make developing grammars
easier and more elegant. This section discuss issues
which normally do not arise when compiling linear
grammars.

4.1 Linear i ty vs. Non-Linear i ty

In Semitic languages, non-linearity occurs only in
stems. Hence, lexical descriptions of stems make
use of three lexical tapes (pattern, root & vocalism),
while those of prefixes and suffixes use the first lexi-
cal tape. This requires duplicating rules when stat-
ing lexical constraints. Consider rule R4 (Listing 1).
It allows the deletion of the first stem vowel by the
virtue of RLC (even if c2 was not indexed); hence
/katab/--+ /ktab/. Now consider adding the suffix
{eh} 'him/it': /katab/+{eh} ~ / k a t b e h / , where the
second stem vowel is deleted since deletion applies
right-to-left; however, RLC can only cope with stem
vowels. Rule R7 (Listing 7) is required. One might
suggest placing constraints on surface expressions in-
stead. However, doing so causes surface expressions
to be dependent on other rules.

Additionally, Lex in R4 and R7 deletes stem vow-
els. Consider adding the prefix {wa} 'and': {wa}
+ /katab/ + {eh} --+ /wkatbeh/, where the prefix
vowel is also deleted. To cope with this, two addi-
tional rules like R4 and R7 are required, but with
Lex = [[V], [] , [1].

We resolve this by allowing the user to write ex-
pansion rules of the from

expand((symbol), (expansion), (variables)).

In our example, the expansion rules in (4) are
needed.

(4) expand(C, [[C], [] , []] , [radica l (C)]) .
expand(C, [[c] , [C], []], [radica l (C)]) .
expand(V, [[V], [] , [11, [vowel (V)]).
expand(V, [[v] , [] , IV]l, [vowel(V)]).

The linguist can then rewrite R4 as R8 (Listing 7),
and expand it with the command expand(RS). This
produces four rules of the form of R4, but with the
following expressions for Lex and RLC: 1°

Lex
[[v l] , [] , []]
[[v l] , [] , []]
[[v], [] , [vl]]
[[v], [], [vi]]

4.2 Vocalisation

RLC
[[C,V2], [] , []]
[[c, v] , [C], [V2]]
[[C,V2] , [] , []]
[[c, v] , [C], [V21]

Orthographically, Semitic texts are written without
short vowels. It was suggested by (Beesley et al.,
1989, et. seq.) and (Kiraz, 1994c) to allow short
vowels to be optionally deleted. This, however, puts
a constraint on the grammar: no surface expres-
sion can contain a vowel, lest the vowel is optionally
deleted.

We assume full vocalisation in writing rules. A
second set of rules can allow the deletion of vowels.
The whole grammar can be taken as the composition
of the two grammars: e.g. {cvcvc},{ktb},{aa} --+
/ k t a b / - ~ [ktab, ktb].

4.3 Morphosyn tac t i c Issues

Finite-state models of two-level morphology im-
plement morphotactics in two ways: using 'con-
tinuation patterns/classes' (Koskenniemi, 1983;
Antworth, 1990; Karttunen, 1993) or unification-
based grammars (Bear, 1986; Ritchie et al., 1992).
The former fails to provide elegant morphosyntactic
parsing for Semitic languages, as will be illustrated
in this section.

4.3.1 Stems and X-Theory

A pattern, a root and a vocalism do not alway
produce a free stem which can stand on its own. In
Syriac, for example, some verbal forms are bound:
they require a s t em m o r p h e m e which indicates the
measure in question, e.g. the prefix {~a} for a/'el

1°Note, however, that the expand command does not
insert [~ randomly in context expressions.

163

tl_rule(RT, [[] , [] , []] , [[v] , [] , [V]], [[c3 ,b , e] , [] , []] , <=>, [], [], [],
[vowel(V)], [[], [], []]).

tl_rule(K8, [], [Vl], [C,V2], <=>, [], [], [],
[vowel (Vl), vowel (V2), r a d i c a l (C)], [[] , [] , []]).

Listing 7

synrule(rulel,

synrule(rule2,

synrule(rule3,

synrule(rule4,

synrule(rule5,

synrule(rule6,

synrule(rule7,

synrule(rule8,

stem: [X=-2, measure=M, measure=p' a l I pa' ' e l] ,
[pat tern: [], roo t : [measure=M,measure=p' a l I pa' ' e l] ,
vocalism: [measure=M, measure=p' a l]pa' ' e l]]).

stem: [X=-2,measure=M],
[stem_affix: [measure=M],
pattern: [], root: [measure=M], vocalism: [measure=M]]).
stem: IX =- i, measure=M, mood=act],
[st em: [bar= - 2, measure=M, mood=act]]).
st em: IX=- I, measure=M, mood=pas s],
[reflexive:[], stem: [X=-2,measure=S,mood=pass]]).
st em: [X=O, measure=M, mood=MD, npg=s~3&m],
[stem: IX=-1 ,measure=S,mood=MD]]).
stem: [X=O, measure=M ,mood=MD ,npg=NPG],
[stem: IX=-1 ,measure=M ,mood=MD], vim: [type=surf, circum=no ,npg=NPG]]).
st em: IX=O, measure=M, mood=MD, npg=NPG],
[vim: [t ype=pref, cir cure=no, npg=NPG], st em: [X=- I, measure=M, mood=MD]]).
stem: [X=O, measure=M ,mood=MD ,npg=NPG],
[vim: [type=pref, circum=yes ,npg=NPG], stem: IX=-1 ,measure=M ,mood=MD],
vim: [type=suf f, circum=yes, npg=NPG]]).

Listing 8

stems. Additionally, passive forms are marked by
the reflexive m o r p h e m e {yet}, while active forms
are not marked at all.

This structure of stems can be handled hierarchi-
cally using X-theory. A stem whose stem morpheme
is known is assigned X=-2 (Rules 1-2 in Listing 8).
Rules which indicate mood can apply only to stems
whose measure has been identified (i.e. they have
X=-2). The resulting stems are assigned X=-I (Rules
3-4 in Listing 8). The parsing of Syriac /~etkteb/
(from {~et}+/kateb/after the deletion o f / a / b y R4)
appears in (5). n

(5)

reflexive s t y 2]

Yet pattern root vocalism

J J J
cvcvc ktb ae

Now free stems which may stand on their own
can be assigned X=0. However, some stems require

nIn the remaining examples, it is assumed that the
lexicon and two-level rules are expanded to cater for the
new material.

verbal inflectional markers.

4.3.2 Verbal Inflect ional Marke r s

With respect to verbal inflexional markers
(VIMs), there are various types of Semitic verbs:
those which do not require a VIM (e.g. sing. 3rd
masc.), and those which require a VIM in the form
of a prefix (e.g. perfect), suffix (e.g. some imperfect
forms), or circumfix (e.g. other imperfect forms).

Each VIM is lexically marked inter alia with two
features: 'type' which states whether it is a prefix or
a suffix, and 'circum' which denotes whether it is a
circumfix. Rules 5-8 (Listing 8) handle this.

The parsing of Syriac /netkatbun/ (from {ne}+
{~et)+/katab/+{un}) appears in (6).
(6)

s t e m ~

vim s t y 1]

ne reflexive s t y 2]

yet pattern root vocalism

f f I
cvcvc ktb aa

vim
I

u n

164

Verb Class Inflections Analysed 1st Analysis Subsequent Analysis Mean
(sec/word) (sec/word) (sec/word)

Strong 78 5.053 0.028 2.539
Initial n~n 52 6.756 0.048 3.404
Initial 5laph 57 4.379 0.077 2.228
Middle 51aph 67 5.107 0.061 2.584
Overall mean 63.5 5.324 0.054 2.689

T a b l e 1

(Beesley et al., 1989) handle this problem by find-
ing a logical expression for the prefix and suffix por-
tions of circumfix morphemes, and use unification to
generate only the correct forms - see (Sproat, 1992,
p. 158). This approach, however, cannot be used
here since, unlike Arabic, not all Syriac VIMs are in
the form of circumfixes.

4.3.3 Interfacing wi th a Syntact ic Parser

A Semitic 'word' (string separated by word bound-
ary) may in fact be a clause or a sentence. There-
fore, a morphosyntactic parsing of a 'word' may be a
(partial) syntactic parsing of a sentence in the form
of a (partial) tree. The output of a morphologi-
cal analyser can be structured in a manner suitable
for syntactic processing. Using tree-adjoining gram-
mars (Joshi, 1985) might be a possibility.

5 P e r f o r m a n c e

To test the integrity, robustness and performance
of the implementation, a two-level grammar of the
most frequent words in the Syriac New Testament
was compiled based on the data in (Kiraz, 1994b).
The grammar covers most classes of verbal and nom-
inal forms, in addition to prepositions, proper nouns
and words of Greek origin. A wider coverage would
involve enlarging the lexicon (currently there are 165
entries) and might triple the number of two-level
rules (currently there are c. 50 rules).

Table 1 provides the results of analysing verbal
classes. The test for each class represents analysing
most of its inflexions. The test was executed on a
Sparc ELC computer.

By constructing a corpus which consists only of
the most frequent words, one can estimate the per-
formance of analysing the corpus as follows,

n 4
p _- 5.324n + ~i=1 0.05 (fi - 1) sec/word

~i~=l fi

where n is the number of distinct words in the corpus
and fi is the frequency of occurrence of the ith word.
The SEDRA database (Kiraz, 1994a) provides such
data. All occurrences of the 100 most frequent lex-
emes in their various inflections (a total of 72,240

occurrences) can be analysed at the rate of 16.35
words/sec. (Performance will be less if additional
rules are added for larger coverage.)

The results may not seem satisfactory when com-
pared with other prolog implementations of the same
formalism (cf. 50 words/sec, in (Carter, 1995)). One
should, however, keep in mind the complexity of Syr-
iac morphology. In addition to morphological non-
linearity, phonological conditional changes - conso-
nantal and vocalic - occur in all stems, and it is
not unusual to have more than five such changes
per word. Once developed, a grammar is usually
compiled into automata which provides better per-
formance.

6 C o n c l u s i o n

This paper has presented a computational morphol-
ogy system which is adequate for handling non-linear
grammars. We are currently expanding the gram-
mar to cover the whole of New Testament Syriac.
One of our future goals is to optimise the prolog im-
plementation for speedy processing and to add de-
bugging facilities along the lines of (Carter, 1995).

For useful results, a Semitic morphological anal-
yser needs to interact with a syntactic parser in order
to resolve ambiguities. Most non-vocalised strings
give more than one solution, and some inflectional
forms are homographs even if fully vocalised (e.g. in
Syriac imperfect verbs: sing. 3rd masc. = plural 1st
common, and sing. 3rd fern. = sing. 2nd masc.). We
mentioned earlier the possibility of using TAGs.

R e f e r e n c e s

Aho, A. and Ullman, J. (1977). Principles of Com-
piler Design. Addison-Wesley.

Antworth, E. (1990). PC-KIMMO: A two-Level
Processor for Morphological Analysis. Occasional
Publications in Academic Computing 16. Summer
Institute of Linguistics, Dallas.

Bear, J. (1986). A morphological recognizer with
syntactic and phonological rules. In COLING-86,
pages 272-6.

165

Beesley, K. (1990). Finite-state description of Ara-
bic morphology. In Proceedings of the Second
Cambridge Conference: Bilingual Computing in
Arabic and English.

Beesley, K. (1991). Computer analysis of Arabic
morphology. In Comrie, B. and Eid, M., edi-
tors, Perspectives on Arabic Linguistics III: Pa-
pers from the Third Annual Symposium on Arabic
Linguistics. Benjamins, Amsterdam.

Beesley, K., Buckwalter, T., and Newton, S. (1989).
Two-level finite-state analysis of Arabic morphol-
ogy. In Proceedings of the Seminar on Bilingual
Computing in Arabic and English. The Literary
and Linguistic Computing Centre, Cambridge.

Bird, S. and Ellison, T. (1994). One-level phonology.
Computational Linguistics, 20(1):55-90.

Carter, D. (1995). Rapid development of morpho-
logical descriptions for full language processing
systems. In EACL-95, pages 202-9.

Goldsmith, J. (1976). Autosegmental Phonology.
PhD thesis, MIT. Published as Autosegmental
and Metrical Phonology, Oxford 1990.

Grimley-Evans, E., Kiraz, G., and Pulman, S.
(1996). Compiling a partition-based two-level for-
malism. In COLING-96. Forthcoming.

Joshi, A. (1985). Tree-adjoining grammars: How
much context sensitivity is required to provide
reasonable structural descriptions. In Dowty, D.,
Karttunen, L., and Zwicky, A., editors, Natural
Language Parsing. Cambridge University Press.

Karttunen, L. (1983).
phological processor.
22:165-86.

Kimmo: A general mor-
Texas Linguistic Forum,

Karttunen, L. (1993). Finite-state lexicon compiler.
Technical report, Palo Alto Research Center, Xe-
rox Corporation.

Karttunen, L. and Beesley, K. (1992). Two-level rule
compiler. Technical report, Palo Alto Research
Center, Xerox Corporation.

Kataja, L. and Koskenniemi, K. (1988). Finite state
description of Semitic morphology. In COLING-
88, volume 1, pages 313-15.

Kay, M. (1987). Nonconcatenative finite-state mor-
phology. In EACL-87, pages 2-10.

Kiraz, G. (1994a). Automatic concordance genera-
tion of Syriac texts. In Lavenant, R., editor, VI
Symposium Syriaeum 1992, Orientalia Christiana
Analecta 247, pages 461-75. Pontificio Institutum
Studiorum Orientalium.

Kiraz, G. (1994b). Lexical Tools to the Syriac New
Testament. JSOT Manuals 7. Sheffield Academic
Press.

Kiraz, G. (1994c). Multi-tape two-level morphology:
a case study in Semitic non-linear morphology. In
COLING-94, volume 1, pages 180-6.

Kiraz, G. (1995). Introduction to Syriae Spirantiza-
tion. Bar Hebraeus Verlag, The Netherlands.

Kiraz, G. (1996). Computational Approach to Non-
Linear Morphology. PhD thesis, University of
Cambridge.

Knuth, D. (1973). The Art of Computer Program-
ming, volume 3. Addison-Wesley.

Kornai, A. (1991). Formal Phonology. PhD thesis,
Stanford University.

Koskenniemi, K. (1983). Two-Level Morphology.
PhD thesis, University of Helsinki.

Lavie, A., Itai, A., and Ornan, U. (1990). On the
applicability of two level morphology to the in-
flection of Hebrew verbs. In Choueka, Y., editor,
Literary and Linguistic Computing 1988: Proceed-
ings of the 15th International Conference, pages
246-60.

McCarthy, J. (1981). A prosodic theory of non-
concatenative morphology. Linguistic Inquiry,
12(3):373-418.

Narayanan, A. and Hashem, L. (1993). On abstract
finite-state morphology. In EACL-93, pages 297-
304.

Pulman, S. and Hepple, M. (1993). A feature-based
formalism for two-level phonology: a description
and implementation. Computer Speech and Lan-
guage, 7:333-58.

Ritchie, G., Black, A., Russell, G., and Pulman,
S. (1992). Computational Morphology: Practical
Mechanisms for the English Lexicon. MIT Press,
Cambridge Mass.

Ruessink, H. (1989). Two level formalisms. Techni-
cal Report 5, Utrecht Working Papers in NLP.

Shieber, S. (1986). An Introduction to Unification-
Based Approaches to Grammar. CSLI Lecture
Notes Number 4. Center for the Study of Lan-
guage and Information, Stanford.

Sproat, R. (1992). Morphology and Computation.
MIT Press, Cambridge Mass.

Wiebe, B. (1992). Modelling autosegmental phonol-
ogy with multi-tape finite state transducers. Mas-
ter's thesis, Simon Fraser University.

166

