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A b s t r a c t  

This paper introduces to the finite-state 
calculus a family of directed replace op- 
erators. In contrast to the simple re- 
place expression, UPPER -> LOWER, defined 
in Kar t tunen (1995), the new directed ver- 
sion, UPPER ©-> LOWER, yields an unam- 
biguous transducer if the lower language 
consists of a single string. It transduces 
the input string from left to right, mak- 
ing only the longest possible replacement 
at each point. 

A new type of replacement expression, 
UPPER @-> PREFIX . . .  SUFFIX, yields a 
transducer that  inserts text around strings 
that  are instances of UPPER. The symbol 
... denotes the matching part of the input 
which itself remains unchanged. PREFIX 
and SUFFIX are regular expressions describ- 
ing the insertions. 

Expressions of the type UPPER @-> PI~EFIX 
• . .  SUFFIX may be used to compose a de- 
terministic parser for a "local grammar" in 
the sense of Gross (1989). Other useful ap- 
plications of directed replacement include 
tokenization and filtering of text streams. 

1 I n t r o d u c t i o n  

Transducers compiled from simple replace expres- 
sions UPPER -> LOWER (Karttunen 1995, Kempe and 
Kart tunen 1996) are generally nondeterministic in 
the sense that  they may yield multiple results even 
if the lower language consists of a single string. For 
example, let us consider the transducer in Figure 1, 
representing a b I b I b a I a b a - >  x. 1 

1The regular expression formalism and other nota- 
tional cdnventions used in the paper are explained in the 
Appendix at the end. 

a:x 

b:O 

b:x 

a:x 

Figure 1: a b I b I b a I a b a - >  x . The 
four paths with "aba" on the upper side are: 
<0 a 0 b :x  2 a 0>, <0 a 0 b :x  2 a :0  0>, 
<0 a :x  1 b :0  2 a 0>, and <0 a :x  1 b :0  2 a :0  0>. 

The application of this transducer to the input 
"aba" produces four alternate results, "axa", "ax", 
"xa", and "x", as shown in Figure 1, since there are 
four paths in the network that  contain "aba" on the 
upper side with different strings on the lower side. 

This nondeterminism arises in two ways. First 
of all, a replacement can start  at any point. Thus 
we get different results for the "aba" depending on 
whether we start  at the beginning of the string or in 
the middle at the "b". Secondly, there may be alter- 
native replacements with the same starting point. In 
the beginning of "aba", we can replace either "ab" 
or "aba". Starting in the middle, we can replace ei- 
ther "b" or "ba". The underlining in Figure 2 shows 

a b a  a b a  a b a  a b a  

a X a a X X a X 

Figure 2: Four factorizations of "aba". 

the four alternate factorizations of the input string, 
that  is, the four alternate ways to partit ion the string 
"aba" with respect to the upper language of the re- 
placement expression. The corresponding paths in 
the transducer are listed in Figure 1. 

For many applications, it is useful to define an- 

108 



other version of replacement that produces a unique 
outcome whenever the lower language of the rela- 
tion consists of a single string. To limit the number 
of alternative results to one in such cases, we must 
impose a unique factorization on every input. 

The desired effect can be obtained by constrain- 
ing the directionality and the length of the replace- 
ment. Directionality means that the replacement 
sites in the input string are selected starting from 
the left or from the right, not allowing any overlaps. 
The length constraint forces us always to choose the 
longest or the shortest replacement whenever there 
are multiple candidate strings starting at a given lo- 
cation. We use the term d i r e c t e d  r e p l a c e m e n t  to 
describe a replacement relation that is constrained 
by directionality and length of match. (See the end 
of Section 2 for a discussion about the choice of the 
term.) 

With these two kinds of constraints we can define 
four types of directed replacement, listed in Figure 
3. 

longest shortest 

mat ch mat ch 

left-to-right ~-> @> 

right-to-left ->~ >@ 

Figure 3: Directed replacement operators 

For reasons of space, we discuss here only the left- 
to-right, longest-match version. The other cases are 
similar. 

The effect of the directionality and length con- 
straints is that  some possible replacements are ig- 
nored. For example, a b I b I b a [ a b a @-> 
x maps "aba" uniquely into "x", Figure 4. 

a:x 

b:O 

Figure 4: a b [ b [ b a [ a b a @-> x. The 
single path with "aba" on the upper side is: 
<0 a :x  I b:O 2 a:O 0>. 

Because we must start from the left and have to 
choose the longest match, "aba" must be replaced, 

ignoring the possible replacements for "b", "ba", 
and "ab". The ©-> operator allows only the last 
factorization of "aba" in Figure 2. 

Left-to-right, longest-match replacement can be 
thought of as a pr.ocedure that rewrites an input 
string sequentially from left to right. It copies the in- 
put until it finds an instance of UPPER. At that  point 
it selects the longest matching substring, which is 
rewritten as LOWER, and proceeds from the end of 
that  substring without considering any other alter- 
natives. Figure 5 illustrates the idea. 

Scan Scan Scan 
. . . .  ~ r . . . .  I r - - -  - - ~ "  

i C o p y  ' R e p l a c e  I C o p y  ' R e p l a c e '  ~[ ~ I  C o p y  ~ .~ ' f 

Longest Longest 
Match Match 

Figure 5: Left-to-right, longest-match replacement 

It is not obvious at the outset that  the operation 
can in fact be encoded as a finite-state transducer 
for arbitrary regular patterns. Although a unique 
substring is selected for replacement at each point, in 
general the transduction is not unambiguous because 
LOWER is not required to be a single string; it can be 
any regular language. 

The idea of treating phonological rewrite rules in 
this way was the starting point of Kaplan and Kay 
(1994). Their notion of obligatory rewrite rule in- 
corporates a directionality constraint. They observe 
(p. 358), however, that this constraint does not by 
itself guarantee a single output. Kaplan and Kay 
suggest that  additional restrictions, such as longest- 
match, could be imposed to further constrain rule 
application. 2 We consider this issue in more detail. 

The crucial observation is that  the two con- 
straints, left-to-right and longest-match, force a 
unique factorization on the input string thus making 
the transduction unambiguous if the L01gER language 
consists of a single string. In effect, the input string 
is unambiguously p a r s e d  with respect to the UPPER 
language. This property turns out to be important 
for a number of applications. Thus it is useful to pro- 
vide a replacement operator that  implements these 
constraints directly. 

The definition of the UPPER @-> LOWER relation is 
presented in the next section. Section 3 introduces 
a novel type of replace expression for constructing 
transducers that unambiguously recognize and mark 

2The tentative formulation of the longest-match con- 
straint in (Kaplan and Kay, 1994, p. 358) is too weak. 
It does not cover all the cases. 
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instances of a regular language without actually re- 
placing them. Section 4 identifies some useful appli- 
cations of the new replacement expressions. 

2 D i r e c t e d  R e p l a c e m e n t  

We define directed replacement by means of a com- 
position of regular relations. As in Kaplan and Kay 
(1994), Kar t tunen (1995), and other previous works 
on related topics, the intermediate levels of the com- 
position introduce auxiliary symbols to express and 
enforce constraints on the replacement relation. Fig- 
ure 6 shows the component relations and how they 
are composed with the input. 

Input string 
.o. 

Initial match 
.0. 

Left-to-right constraint 

.0o 

Longest-match constraint 
.0o 

Replacement 

by a caret that  are instances of the upper language. 
The initial caret is replaced by a <, and a closing 
> is inserted to mark the end of the match. We 
permit  carets to appear freely while matching. No 
carets are permit ted outside the matched substrings 
and the ignored internal carets are eliminated. In 
this case, there are four possible outcomes, shown 
in Figure 8, but  only two of them are allowed under 
the constraint that  there can be no carets outside 
the brackets. 

ALLOWED 

" a" b a " a'b a 

<a b> a < a b a> 

NOT ALLOWED 

a " b  a " a ' b  a 
a < b > a  - a < b  a >  

Figure 8: Left-to-right constraint. No caret outside 
a bracketed region. 

Figure 6: Composition of directed replacement 

If the four relations on the bot tom of Figure 6 are 
composed in advance, as our compiler does, the ap- 
plication of the replacement to an input string takes 
place in one step without any intervening levels and 
with no auxiliary symbols. But it helps to under- 
stand the logic to see where the auxiliary marks 
would be in the hypothetical intermediate results. 

Let us consider the c a s e o f a  b [ b I b a [ a b 
a ~-> x applying to the string "aba" and see in de- 
tail how the mapping implemented by the transducer 
in Figure 4 is composed from the four component re- 
lations. We use three auxiliary symbols, caret ( ' ) ,  
left bracket (<) and right bracket (>), assuming here 
that  they do not occur in any input. The first step, 
shown in Figure 7, composes the input string with a 
transducer that  inserts a caret, in the beginning of 
every substring that  belongs to the upper language. 

a b a 

a " b a 

Figure 7: Initial match. Each caret marks the be- 
ginning of a substring that  matches "ab", "b", "ba", 
or ~aba". 

Note that  only one " is inserted even if there are 
several candidate strings starting at the same loca- 
tion. 

In the left-to-right step, we enclose in angle brack- 
ets all the substrings starting at a location marked 

In effect, no starting location for a replacement 
can be skipped over except in the context of an- 
other replacement starting further left in the input 
string. (Roche and Schabes (1995) introduce a sim- 
ilar technique for imposing the left-to-right order on 
the transduction.) Note that  the four alternatives in 
Figure 8 represent the four factorizations in Figure 
2. 

The longest-match constraint is the identity rela- 
tion on a certain set of strings. It forbids any re- 
placement that  starts at the same location as an- 
other, longer replacement. In the case at hand, it 
means that  the internal > is disallowed in the context 
< a b > a. Because "aba" is in the upper language, 
there is a longer, and therefore preferred, < a b a > 
alternative at the same starting location, Figure 9. 

ALLOWED NOT ALLOWED 

< a  b a >  < a  b > a  

Figure 9: Longest match constraint. No upper lan- 
guage str ing with an ini t ial  < and a nonfinal  > in 
the middle. 

In the final replacement step, the bracketed re- 
gions of the input string, in the case at hand, just 
< a b a > , are replaced by the strings of the lower 
language, yielding "x" as the result for our example. 

Note that  longest match constraint ignores any 
internal brackets. For example, the bracketing < a 

110 



> < a > is not allowed if the upper language con- 
tains "aa" as well as "a". Similarly, the left-to-right 
constraint ignores any internal carets. 

As the first step towards a formal definition of 
UPPER ©-> LOWER it is useful to make the notion of 
"ignoring internal brackets" more precise. Figure 10 
contains the auxiliary definitions. For the details of 
the formalism (briefly explained in the Appendix), 
please consult Kart tunen (1995), Kempe and Kart- 
tunen (1996). 3 

UPPER' = UPPER/[Y, ̂ ] - [?* 7''] 

UPPER'' = UPPER/[7,<IT'>] - [?* [7,<[7,>]'] 

Figure 10: Versions of UPPER that freely allow non- 
final diacritics. 

The precise definition of the UPPER ~-> LOWER re- 
lation is given in Figure 11. It is a composition of 
many auxiliary relations. We label the major  com- 
ponents in accordance with the outline in Figure 6. 
The formulation of the longest-match constraint is 
based on a suggestion by Ronald M. Kaplan (p.c.). 

Initial match 

"$[ Y," 1 7'< 17'> "I 

.0. 

[..] -> 7" II _ UPPER 

°0° 

Left to right 

[ '$[7 ,"]  [7,':7,< UPPER' 0:7,>]'1, "$[7,':] 
, O ,  

7,- -> [] 
. O o  

Longest match 

"$[7,< [UPPER'' ~ $[7,>']']] 
, O .  

Replacement 

Z< "$[Z>] Y,> -> LOWER ; 

Figure 11: Definition of UPPER @-> LOWER 

The logic of ~-> replacement could be encoded in 
many other ways, for example, by using the three 
pairs of auxiliary brackets, <i, >i, <c, >c, and <a, 
>a, introduced in Kaplan and Kay (1994). We take 
here a more minimalist approach. One reason is 
that  we prefer to think of the simple unconditional 
(uncontexted) replacement as the basic case, as in 
Kart tunen (1995). Without  the additional complex- 
ities introduced by contexts, the directionality and 

3UPPER' is the same language as UPPER except that 
carets may appear freely in all nonfinal positions. Simi- 
larly, UPPER'' accepts any nonfinal brackets. 
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length-of-match constraints can be encoded with 
fewer diacritics. (We believe that  the conditional 
case can also be handled in a simpler way than in 
Kaplan and Kay (1994).) The number of auxiliary 
markers is an important  consideration for some of 
the applications discussed below. 

In a phonological or morphological rewrite rule, 
the center part of the rule is typically very small: 
a modification, deletion or insertion of a single seg- 
ment. On the other hand, in our text processing ap- 
plications, the upper language may involve a large 
network representing, for example, a lexicon of mul- 
tiword tokens. Practical experience shows that  the 
presence of many auxiliary diacritics makes it diffi- 
cult or impossible to compute the left-to-right and 
longest-match constraints in such cases. The size of 
intermediate states of the computation becomes a 
critical issue, while it is irrelevant for simple phono- 
logical rules. We will return to this issue in the dis- 
cussion of tokenizing transducers in Section 4. 

The transducers derived from the definition in 
Figure 11 have the property that they unambigu- 
ously parse the input string into a sequence of sub- 
strings that  are either copied to the output  un- 
changed or replaced by some other strings. How- 
ever they do not fall neatly into any standard class 
of transducers discussed in the literature (Eilenberg 
1974, Schiitzenberger 1977, Berstel 1979). If the 
LOWER language consists of a single string, then the 
relation encoded by the transducer is in Berstel's 
terms a r a t i o n a l  f u n c t i o n ,  and the network is an 
u n a m b i g o u s  transducer, even though it may con- 
tain states with outgoing transitions to two or more 
destinations for the same input symbol. An unam- 
biguous transducer may also be s e q u e n t i a b l e ,  in 

• which case it can be turned into an equivalent se- 
q u e n t i a l  transducer (Mohri, 1994), which can in 
turn be minimized. A transducer is sequential just 
in case there are no states with more than one transi- 
tion for the same input symbol. Roche and Sehabes 
(1995) call such transducers d e t e r m i n i s t i c .  

Our replacement transducers in general are not 
unambiguous because we allow LOWER to be any reg- 
ular language. It may well turn out that, in all cases 
that  are of practical interest, the lower language is in 
fact a singleton, or at least some finite set, but it is 
not so by definition. Even if the replacement trans- 
ducer is unambiguous, it may well be unsequentiable 
if UPPER is an infinite language. For example, the 
simple transducer for a+ b ~-> x in Figure 12 can- 
not be sequentialized. It has to replace any string of 
"a"s by "x" or copy it to the output  unchanged de- 
pending on whether the string eventually terminates 
at "b ' .  It is obviously impossible for any finite-state 



b:O 

Figure 13, a simple parallel replacement of the two 
auxiliary brackets that  mark the selected regions. 
Because the placement of < and > is strictly con- 
trolled, they do not occur anywhere else. 

Insertion 

7,< -> PREFIX, 7.> -> SUFFIX ; 

Figure 12: a+ b ~-> x. This transducer is unam- 
biguous but  cannot be sequentialized. 

device to accumulate an unbounded amount of de- 
layed output .  On the other hand, the transducer 
in Figure 4 is sequentiable because there the choice 
between a and a : x  just depends on the next input 
symbol. 

Because none of the classical terms fits exactly, we 
have chosen a novel term, d i r e c t e d  t r a n s d u c t i o n ,  
to describe a relation induced by the definition in 
Figure 11. It  is meant to suggest that  the mapping 
from the input into the output  strings is guided by 
the directionality and length-of-match constraints. 
Depending on the characteristics of the UPPER and 
LOWER languages, the resulting transducers may be 
unambiguous and even sequential, but that  is not 
guaranteed in the general case. 

3 I n s e r t i o n  

The effect of the left-to-right and longest-match con- 
straint is to factor any input string uniquely with 
respect to the upper language of the replace expres- 
sion, to parse it into a sequence of substrings that  
either belong or do not belong to the language. In- 
stead of replacing the instances of the upper lan- 
guage in the input by other strings, we can also take 
advantage of the unique factorization in other ways. 
For example, we may insert a string before and after 
each substring that  is an instance of the language in 
question simply to mark it as such. 

To implement this idea, we introduce the special 
symbol ... on the right-hand side of the replacement 
expression to mark the place around which the in- 
sertions are to be made. Thus we allow replace- 
ment expressions of the form UPPER ~-> PREFIX 

• . .  SUFFIX. The corresponding transducer locates 
the instances of UPPER in the input string under the 
left-to-right, longest-match regimen just described. 
But instead of replacing the matched strings, the 
transducer just  copies them, inserting the specified 
prefix and suffix. For the sake of generality, we allow 
PREFIX and SUFFIX to denote any regular language. 

The definition of UPPER ~-> PREFIX . . .  SUFFIX 
is just  as in Figure 11 except that  the Replacement 
expression is replaced by the Insertion formula in 

Figure 13: Insertion expression in the definition of 
UPPER ~-> PREFIX ... SUFFIX. 

With the ... expressions we can construct trans- 
ducers that  mark maximal instances of a regular 
language. For example, let us assume that  noun 
phrases consist of an optional determiner, (d) ,  any 
number of adjectives, a*, and one or more nouns, n+. 
The expression (d) a* a+ ~-> 7,[ . . .  %3 com- 
piles into a transducer that  inserts brackets around 
maximal instances of the noun phrase pattern.  For 
example, it maps "damlvaan" into "[dann]  v [aan] ", 
as shown in Figure 14. 

d a n n  v aan 

[ d a n a ]  v [ a a n ]  

Figure 14: Application of (d) a* n+ ©-> ~,[...Y,] 
to " d  a.t l I ' tv aa.L-rl" 

Although the input string "dannvaan" contains 
many other instances of the noun phrase pattern,  
"n",  "an",  "nn",  etc., the left-to-right and longest- 
match constraints pick out just  the two maximal 
ones. The transducer is displayed in Figure 15. Note 
that  ? here matches symbols, such as v, that  are not 
included in the alphabet of the network. 

Figure 15: (d) a* n+ e-> ~,[ . . .~,] .  The one path 
with "dannvaan" on the upper side is: < 0 0 :  [ 7 d 3 
a 3 n 4 n 4 0 : ]  5 v 0 0 : [ 7 a 3 a 3 a 4 0 : ]  5>. 
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4 A p p l i c a t i o n s  

The directed replacement operators have many use- 
ful applications. We describe some of them. Al- 
though the same results could often be achieved 
by using lex and yacc, sed, awk, perl, and other 
Unix utilities, there is an advantage in using finite- 
state transducers for these tasks because they can 
then be smoothly integrated with other finite-state 
processes, such as morphological analysis by lexi- 
cal transducers (Kart tunen et al 1992, Kart tunen 
1994) and rule-based part-of-speech disambiguation 
(Chanod and Tapanainen 1995, Roche and Schabes 
1995). 

4.1 T o k e n i z a t i o n  

A tokenizer is a device that  segments an input string 
into a sequence of tokens. The insertion of end-of- 
token marks can be accomplished by a finite-state 
transducer that  is compiled from tokenization rules. 
The tokenization rules may be of several types. For 
example, [WHITE_SPACE+ ~-> SPACE] is a normal- 
izing transducer that  reduces any sequence of tabs, 
spaces, and newlines to a single space. [LETTER+ 
~-> . . .  END_0F_TOKEN] inserts a special mark, 
e.g. a newtine, at the end of a letter sequence. 

Although a space generally counts as a token 
boundary, it can also be part of a multiword to- 
ken, as in expressions like "at least", "head over 
heels", "in spite of", etc. Thus the rule that  intro- 
duces the END_0F_TOKEN symbol needs to combine 
the LETTER+ pat tern with a list of multiword tokens 
which may include spaces, periods and other delim- 
iters. 

Figure 16 outlines the construction of a simple 
tokenizing transducer for English. 

WHITEY,_SPACE+ ©-> SPACE 

.O. 

[ LETTER+ I 

a t ~, 1 e a s t I 

h e a d Y. o v e r Y. h e e 1 s I 

i n Y, s p i t e Z o f ] 

©-> ... ENDY,_OF~,_TOKEN 

,O. 

SPACE-> [] If .#. ] ENDY,_OFY,_TOKEN _ ; 

Figure 16: A simple tokenizer 

The tokenizer in Figure 16 is composed of three 
transducers. The first reduces strings of whitespace 
characters to a single space. The second transducer 
inserts an END_0F_TOKEN mark after simple words 
and the, listed multiword expressions. The third re- 
moves the spaces that  are not part of some multi- 

word token. The percent sign here means that  the 
following blank is to be taken literally, that  is, parsed 
as a symbol. 

Without  the left-to-right, longest-match con- 
straints, the tokenizing transducer would not pro- 
duce deterministic output.  Note that it must intro- 
duce an END_0F_TOKEN mark after a sequence of let- 
ters just in case the word is not part of some longer 
multiword token. This problem is complicated by 
the fact that the list of multiword tokens may con- 
tain overlapping expressions. A tokenizer for French, 
for example, needs to recognize "de plus" (more- 
over), "en plus" (more), "en plus de" (in addition 
to), and "de plus en plus" (more and more) as sin- 
gle tokens. Thus there is a token boundary after 
"de plus" in de plus on ne le fai~ plus (moreover one 
doesn't do it anymore) but not in on le ]:air de plus 
en plus (one does it more and more) where "de plus 
en plus" is a single token. 

If the list of multiword tokens contains hundreds 
of expressions, it may require a lot of time and space 
to compile the tokenizer even if the final result is not 
too large. The number of auxiliary symbols used to 
encode the constraints has a critical effect on the ef- 
ficiency of that computation. We first observed this 
phenomenon in the course of building a tokenizer for 
the British National Corpus according to the specifi- 
cations of the BNC Users Guide (Leech, 1995), which 
lists around 300 multiword tokens and 260 foreign 
phrases. With the current definition of the directed 
replacement we have now been able to compute sim- 
ilar tokenizers for several other languages (French, 
Spanish, Italian, Portuguese, Dutch, German). 

4.2 F i l t e r i n g  

Some text processing applications involve a prelimi- 
nary stage in which the input stream is divided into 
regions that  are passed on to the calling process and 
regions that  are ignored. For example, in processing 
an SGML-coded document, we may wish to delete all 
the material that appears or does not appear in a 
region bounded by certain SGML tags, say <A> and 
</A>. 

Both types of filters can easily be constructed us- 
ing the directed replace operator. A negative filter 
that deletes all the material between the two SGML 
codes, including the codes themselves, is expressed 
as in Figure 17. 

"<A>" -$["<A>"I"</A>"] "</A>" ~-> [] ; 

Figure 17: A negative filter 

A positive filter that excludes everything else can 
be expressed as in Figure 18. 
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"$"</A> .... <A>" ©-> "<A>" 

.O. 

"</A>" "$"<A>" @-> "</A>" ; 

dann v a a n  

[NP d a n n ] [VP v [NP a a n ] ] 

Figure 18: A positive filter Figure 21: Application of an NP-VP parser 

The positive filter is composed of two transducers. 
The first reduces to <A> any string that ends with 
it and does not contain the </A> tag. The second 
transducer does a similar transduction on strings 
that  begin with </A>. Figure 12 illustrates the effect 
of the positive filter. 

<B>one</B><A>two</A><C>three</C><A>f our</A> 

<A> two </A> <A>four</A> 

By means of this simple "bottom-up" technique, 
it is possible to compile finite-state transducers that  
approximate a context-free parser up to a chosen 
depth of embedding. Of course, the left-to-right, 
longest-match regimen implies that  some possible 
analyses are ignored. To produce all possible parses, 
we may introduce the ... notation to the simple re- 
place expressions in Kart tunen (1995). 

5 E x t e n s i o n s  

Figure 19: Application of a positive filter 

The idea of filtering by finite-state transduction 
of course does not depend on SGML codes. It can 
be applied to texts where the interesting and unin- 
teresting regions are defined by any kind of regular 
pattern.  

4.3 M a r k i n g  

As we observed in section 3, by using the ... symbol 
on the lower side of the replacement expression, we 
can construct transducers that  mark instances of a 
regular language without changing the text in any 
other way. Such transducers have a wide range of 
applications. They can be used to locate all kinds of 
expressions that  can be described by a regular pat- 
tern, such as proper names, dates, addresses, social 
security and phone numbers, and the like. Such a 
marking transducer can be viewed as a deterministic 
parser for a "local grammar" in the sense of Gross 
(1989), Roche (1993), Silberztein (1993) and others. 

By composing two or more marking transduc- 
ers, we can also construct a single transducer that  
builds nested syntactic structures, up to any desired 
depth. To make the construction simpler, we can 
start  by defining auxiliary symbols for the basic reg- 
ular patterns.  For example, we may define NP as 
[ (d)  a* n+J. With that  abbreviatory convention, 
a composition of a simple NP and VP spotter can be 
defined as in Figure 20. 

NP @-> ~[NP ... ~,] 

.0. 

v Y.[NP NP Y,] @-> ~,[VP . . .  Y,] ; 

Figure 20: Composition of an NP and a VP spotter 

Figure 21 shows the effect of applying this com- 
posite transducer to the string "dannvaan".  

The definition of the left-to-right, longest-match re- 
placement can easily be modified for the three other 
directed replace operators mentioned in Figure 3. 
Another extension, already implemented, is a di- 
rected version of parallel replacement (Kempe and 
Kart tunen 1996), which allows any number of re- 
placements to be done simultaneously without in- 
terfering with each other. Figure 22 is an example 
of a directed parallel replacement. It yields a trans- 
ducer that  maps a string of "£ 's  into a single "b" 
and a string of "b"s into a single '%'. 

a+ @-> b,  b+ ~-> a ; 

Figure 22: Directed, parallel replacement 

The definition of directed parallel replacement re- 
quires no additions to the techniques already pre- 
sented. In the near future we also plan to allow direc- 
tional and length-of-match constraints in the more 
complicated case of conditional context-constrained 
replacement. 
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7 A p p e n d i x :  N o t a t i o n a l  c o n v e n t i o n s  

The regular expression formalism used in this paper 
is essentially the same as in Kaplan and Kay (1994), 
in Karttunen (1995), and in Kempe and Karttunen 
(1996). Upper-case strings, such as UPPER, represent 
regular languages, and lower-case letters, such as x, 
represent symbols. We recognize two types of sym- 
bols: unary symbols (a, b, c, etc) and symbol pairs 
(a:x, b:0, etc. ). 

A symbol pair a :x may be thought of as the 
crossproduct of a and x, the minimal relation con- 
sisting of a (the upper symbol) and x (the lower 
symbol). To make the notation less cumbersome, 
we systematically ignore the distinction between the 
language A and the identity relation that maps every 
string of A into itself. Consequently, we also write 
a :a  as just a. 

Three special symbols are used in regular expres- 
sions: 0 (zero) represents the empty string (often de- 
noted by c); ? stands for any symbol in the known 
alphabet and its extensions; in replacement expres- 
sions, .#. marks the start (left context) or the end 
(right context) of a string. The percent sign, Y,, is 
used as an escape character. It allows letters that 
have a special meaning in the calculus to be used 
as ordinary symbols. Thus Z[ denotes the literal 
square bracket as opposed to [, which has a special 
meaning as a grouping symbol; %0 is the ordinary 
zero symbol. 

The following simple expressions appear freqently 
in the formulas: [] the empty string language, ?* 
the universal ("sigma star") language. 

The regular expression operators used in the pa- 
per are: * zero or more (Kleene star), + one or more 
(Kleene plus), - not (complement), $ contains, / 
ignore, I or (union), t~ and (intersection), - minus 
(relative complement), .x. crossproduct, .o. com- 
position, -> simple replace. 

In the transducer diagrams (Figures 1, 4, etc.), the 
nonfinal states are represented by single circles, final 
states by double circles. State 0 is the initial state. 
The symbol ? represents any symbols that are not 
explicitly present in the network. Transitions that 
differ only with respect to the label are collapsed 
into a single multiply labelled arc. 
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