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Abstract 

We present a natural language interface system which is 
based entirely on trained statistical models. The system 
consists of three stages of processing: parsing, semantic 
interpretation, and discourse. Each of these stages is 
modeled as a statistical process. The models are fully 
integrated, resulting in an end-to-end system that maps input 
utterances into meaning representation frames. 

1. Introduction 
A recent trend in natural language processing has been 
toward a greater emphasis on statistical approaches, 
beginning with the success of statistical part-of-speech 
tagging programs (Church 1988), and continuing with other 
work using statistical part-of-speech tagging programs, such 
as BBN PLUM (Weischedel et al. 1993) and NYU Proteus 
(Grishman and Sterling 1993). More recently, statistical 
methods have been applied to domain-specific semantic 
parsing (Miller et al. 1994), and to the more difficult problem 
of wide-coverage syntactic parsing (Magerman 1995). 
Nevertheless, most natural language systems remain 
primarily rule based, and even systems that do use statistical 
techniques, such as AT&T Chronus (Levin and Pieraccini 
1995), continue to require a significant rule based 
component. Development of a complete end-to-end 
statistical understanding system has been the focus of several 
ongoing research efforts, including (Miller et al. 1995) and 
(Koppelman et al. 1995). In this paper, we present such a 
system. The overall structure of our approach is 
conventional, consisting of a parser, a semantic interpreter, 
and a discourse module. The implementation and integration 
of these elements is far less conventional. Within each 
module, every processing step is assigned a probability value, 
and very large numbers of alternative theories are pursued in 
parallel. The individual modules are integrated through an 
n-best paradigm, in which many theories are passed from one 
stage to the next, together with their associated probability 
scores. The meaning of a sentence is determined by taking 
the highest scoring theory from among the n-best possibilities 
produced by the final stage in the model. 

Some key advantages to statistical modeling techniques are: 

• All knowledge required by the system is acquired 
through training examples, thereby eliminating the need 
for hand-written rules. In parsing for example, it is 

sufficient to provide the system with examples 
specifying the correct parses for a set of training 
examples. There is no need to specify an exact set of 
rules or a detailed procedure for producing such parses. 

• All decisions made by the system are graded, and there 
are principled techniques for estimating the gradations. 
The system is thus free to pursue unusual theories, while 
remaining aware of the fact that they are unlikely. In the 
event that a more likely theory exists, then the more 
likely theory is selected, but if no more likely 
interpretation can be found, the unlikely interpretation is 
accepted. 

The focus of this work is primarily to extract sufficient 
information from each utterance to give an appropriate 
response to a user's request. A variety of problems regarded 
as standard in computational linguistics, such as 
quantification, reference and the like, are thus ignored. 

To evaluate our approach, we trained an experimental system 
using data from the Air Travel Information (ATIS) domain 
(Bates et al. 1990; Price 1990). The selection of ATIS was 
motivated by three concerns. First, a large corpus of ATIS 
sentences already exists and is readily available. Second, 
ATIS provides an existing evaluation methodology, complete 
with independent training and test corpora, and scoring 
programs. Finally, evaluating on a common corpus makes it 
easy to compare the performance of the system with those 
based on different approaches. 

We have evaluated our system on the same blind test sets 
used in the ARPA e.valuations (Pallett et al. 1995), and 
present a preliminary result at the conclusion of this paper. 

The remainder of the paper is divided into four sections, one 
describing the overall structure of our models, and one for 
each of the three major components of parsing, semantic 
interpretation and discourse. 

55 

2. Model Structure 
Given a string of input words W and a discourse history H ,  
the task of a statistical language understanding system is to 
search among the many possible discourse-dependent 
meanings Mo for the most likely meaning M0: 

M 0 = argmax P(M o I W, H).  
Mo 



Directly modeling P(Mo I W,/-/) is difficult because the gap 
that the model must span is large. A common approach in 
non-statistical natural language systems is to bridge this gap 
by introducing intermediate representations such as parse 
structure and pre-discourse sentence meaning. Introducing 
these intermediate levels into the statistical framework gives: 

M 0 =argmax EP(MD IW, H, Ms,T)P(Ms,TIW, H) 
MD M s,T 

where T denotes a semantic parse tree, and Ms denotes pre- 
discourse sentence meaning. This expression can be 
simplified by introducing two independence assumptions: 

1. Neither the parse tree T, nor the pre-discourse meaning 
Ms, depends on the discourse history H. 

2. The post-discourse meaning Mo does not depend on the 
words W or the parse structure T, once the pre-discourse 
meaning Ms is determined. 

Under these assumptions, 

M 0 = argmax E P ( M D  IH'Ms) P(Ms'TIW) " 
Mo M s ,T 

Next, the probability P(Ms,TIW) can be rewritten using 

Bayes rule as: 

P(M s,T I W) = 

leading to: 

P( M s ,T) P(W I M S ,T) 
P(W) 

M 0 = argmax E P(MD IH'Ms) P(Ms'T) P(WI Ms,T) 
MD Ms,r P(W) 

Now, since P(W) is constant for any given word string, the 
problem of finding meaning 34o that maximizes 

P(M S,T) P(WI M S,T) 
E P(M D IH, M s) 

P(W) 
M s ,T 

is equivalent to finding Mo that maximizes 

E P(M D I H, ,T) P(WI M S,T). Ms) P(Ms 
M s ,T 

M 0 = argmax EP(MD IH, M s) P(Ms,T) P(WI Ms,T). 
Mo M s ,T 

We now introduce a third independence assumption: 

3. The probability of words W does not depend on meaning 
Ms, given that parse Tis known. 

This assumption is justified because the word tags in our 
parse representation specify both semantic and syntactic class 
information. Under this assumption: 

M 0 = argmax E P ( M o  IH, M s) P(Ms,T) P(WIT) 
MD M s ,T 

Finally, we assume that most of the probability mass for each 
discourse-dependent meaning is focused on a single parse 
tree and on a single pre-discourse meaning. Under this 
(Viterbi) assumption, the summation operator can be 
replaced by the maximization operator, yielding: 

Mo = arg max( max ( P( M o l H, M s ) P( M s,T) P(W I T) ) ] 
M D ~.Ms,T 

This expression corresponds to the computation actually 
performed by our system which is shown in Figure 1. 

Processing proceeds in three stages: 

1. Word string W arrives at the parsing model. The full 
space of possible parses T is searched for n-best 
candidates according to the measure P(T)P(WIT). 
These parses, together with their probability scores, are 
passed to the semantic interpretation model. 

2. The constrained space of candidate parses T (received 
from the parsing model), combined with the full space 
of possible pre-discourse meanings Ms, is searched for 
n-best candidates according to the measure 
P(M s,T) P(W I T). These pre-discourse meanings, 

together with their associated probability scores, are 
passed to the discourse model. 

Thus, 

_ _ _  Parsing ~ lnterpretati°n I f [  Model Model j \ Model y \ 

/ / / 
P(T)P(WIT) P(Ms,T)P(WIT) P(MolMs,H)P(Ms,T)P(WIT) 

Figure 1: Overview of statistical processing. 
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3. The constrained space of candidate pre-discourse 
meanings Ms (received from the semantic interpretation 
model), combined with the full space of possible post- 

discourse meanings Mo, is searched for the single 
candidate that maximizes 
P( M o I H, M s)  P( M s ,T)  P(W I T ) ,  conditioned on the 

current history H. The discourse history is then updated 
and the post-discourse meaning is returned. 

We now proceed to a detailed discussion of each of these 
three stages, beginning with parsing. 

3. P a r s i n g  
Our parse representation is essentially syntactic in form, 
patterned on a simplified head-centered theory of phrase 
structure. In content, however, the parse trees are as much 
semantic as syntactic. Specifically, each parse node indicates 
both a semantic and a syntactic class (excepting a few types 
that serve purely syntactic functions). Figure 2 shows a 
sample parse of a typical ATIS sentence. The 
semantic/syntactic character of this representation offers 
several advantages: 

1. Annotation: Well-founded syntactic principles provide 
a framework for designing an organized and consistent 
annotation schema. 

2. Decoding: Semantic and syntactic constraints are 
simultaneously available during the decoding process; 
the decoder searches for parses that are both 
syntactically and semantically coherent. 

3. Semantic Interpretation: Semantic/syntactic parse trees 
are immediately useful to the semantic interpretation 

process: semantic labels identify the basic units of 
meaning, while syntactic structures help identify 
relationships between those units. 

3.1 Statistical Parsing Model 

The parsing model is a probabilistic recursive transition 
network similar to those described in (Miller et ai. 1994) and 
(Seneff 1992). The probability of a parse tree T given a word 
string Wis rewritten using Bayes role as: 

P(T) P(W I T) 
P(TIW)  = 

P(W) 

Since P(W) is constant for any given word string, candidate 
parses can be ranked by considering only the product P(T) 
P(W I 7"). The probability P(T) is modeled by state transition 
probabilities in the recursive transition network, and P(W I T) 
is modeled by word transition probabilities. 

* State transition probabilities have the form 
P(state n I staten_l, stateup) . For example, 

P(location/pp I arrival/vp-head, arrival/vp) is the 
probability of a location/pp following an arrival/vp- 

head within an arrival/vp constituent. 

• Word transition probabilities have the form 
P(word n I wordn_ l,tag) . For example, 

P("class" I "first", class-of-service/npr) is the probability 
of the word sequence "first class" given the tag 

class-of-service/npr. 

Each parse tree T corresponds directly with a path through 
the recursive transition network. The probability 
P(T) P(W I 1") is simply the product of each transition 

/wh-question 

// 
/ /  // 

/ / 1 / / / / ~v~P a~re 

/ I / 
/wh-head /aux /det /np-head /comp /vp-head /prep /apt 

I I I I I I I I 
When do the flights that leave from Boston 

/vp /vp 

ation 
p 

Q 
arrival location city 
/vp-head /prep /npr 

J J I 
arrive in Atlanta 

Figure 2: A sample parse tree. 
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probability along the path corresponding to T. 

3.2 Training the Parsing Model 

Transition probabilities are estimated directly by observing 
occurrence and transition frequencies in a training corpus of 
annotated parse trees. These estimates are then smoothed to 
overcome sparse data limitations. The semantic/syntactic 
parse labels, described above, provide a further advantage in 
terms of smoothing: for cases of undertrained probability 
estimates, the model backs off to independent syntactic and 
semantic probabilities as follows: 

Ps(semlsyn n I semlsynn_ 1 ,semlsyn up) = 

~.( semlsyn n I semlsynn_ l ,seral syn up) 

x P(semlsyn n I semlsynn_ 1 ,sem/syn up) 

+ (1 - ,].(semlsyn n I semlsynn_ ! ,semlsyn up) 

X P(sem n I semup) P(syn n I synn_l,synup) 

where Z is estimated as in (Placeway et al. 1993). Backing 
off to independent semantic and syntactic probabilities 
potentially provides more precise estimates than the usual 
strategy of backing off directly form bigram to unigram 
models. 

3.3 Searching the Parsing Model 

In order to explore the space of possible parses efficiently, 
the parsing model is searched using a decoder based on an 
adaptation of the Earley parsing algorithm (Earley 1970). 
This adaptation, related to that of (Stolcke 1995), involves 
reformulating the Earley algorithm to work with probabilistic 
recursive transition networks rather than with deterministic 
production rules. For details of the decoder, see (Miller 
1996). 

4. Semantic Interpretation 
Both pre-discourse and post-discourse meanings in our 
current system are represented using a simple frame 
representation. Figure 3 shows a sample semantic frame 
corresponding to the parse in Figure 2. 

Air-Transportation 

Show: (Arrival-Time) 

Origin: (City "Boston") 

Destination: (City "Atlanta") 

Figure 3: A sample semantic frame. 

Recall that the semantic interpreter is required to compute 
P(Ms ,T )  P ( W I T  ) .  The conditional word probability 

P(WIT)  has already been computed during the parsing 

phase and need not be recomputed. The current problem, 
then, is to compute the prior probability of meaning Ms and 
parse T occurring together. Our strategy is to embed the 
instructions for constructing Ms directly into parse T o 

resulting in an augmented tree structure. For example, the 
instructions needed to create the frame shown in Figure 3 are: 

1. Create an Air-Transportation frame. 

2. Fill the Show slot with Arrival-Time. 

3. Fill the Origin slot with (City "Boston") 

4. Fill the Destination slot with (City "Atlanta") 

These instructions are attached to the parse tree at the points 
indicated by the circled numbers (see 

Figure 2). The probability P ( M s , T  ) is then simply the 

prior probability of producing the augmented tree structure. 

4.1 Statistical Interpretation Model 

Meanings Ms are decomposed into two parts: the frame type 
FT, and the slot fillers S. The frame type is always attached 
to the topmost node in the augmented parse tree, while the 
slot filling instructions are attached to nodes lower down in 
the tree. Except for the topmost node, all parse nodes are 
required to have some slot filling operation. For nodes that 
do not directly trigger any slot fill operation, the special 
operation null is attached. The probability P(Ms, T) is then: 

P( Ms ,T)  = P( FT, S ,T )=  P( FT) P(T  I FT) P(S I FT, T) .  

Obviously, the prior probabilities P(FT) can be obtained 
directly from the training data. To compute P(T I FT), each 
of the state transitions from the previous parsing model are 
simply rescored conditioned on the frame type. The new 
state transition probabilities are: 

P(state n I staten_ t, stateup, FT) . 

To compute P(S I FT, T) , we make the independence 
assumption that slot filling operations depend only on the 
frame type, the slot operations already performed, and on the 
local parse structure around the operation. This local 
neighborhood consists of the parse node itself, its two left 
siblings, its two right siblings, and its four immediate 
ancestors. Further, the syntactic and semantic components of 
these nodes are considered independently. Under these 
assumptions, the probability of a slot fill operation is: 

P(slot n I FT, Sn_l,semn_ 2 ..... sem n ..... semn+2, 

Synn-2 ..... synn ..... Synn+2, 

semupl ..... semup4, Synupl ..... synup4 ) 

and the probability P(S I FT, T) is simply the product of all 
such slot fill operations in the augmented tree. 

4.2 Training the Semantic Interpretation 
Model 

Transition probabilities are estimated from a training corpus 
of augmented trees. Unlike probabilities in the parsing 
model, there obviously is not sufficient training data to 
estimate slot fill probabilities directly. Instead, these 
probabilities are estimated by statistical decision trees similar 
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to those used in the Spatter parser (Magerman 1995). Unlike 
more common decision tree classifiers, which simply classify 
sets of conditions, statistical decision trees give a probability 
distribution over all possible outcomes. Statistical decision 
trees are constructed in a two phase process. In the first 
phase, a decision tree is constructed in the standard fashion 
using entropy reduction to guide the construction process. 
This phase is the same as for classifier models, and the 
distributions at the leaves are often extremely sharp, 
sometimes consisting of one outcome with probability I, and 
all others with probability 0. In the second phase, these 
distributions are smoothed by mixing together distributions 
of various nodes in the decision tree. As in (Magerman 
1995), mixture weights are determined by deleted 
interpolation on a separate block of training data. 

4.3 Searching the Semantic Interpretation 
Model 

Searching the interpretation model proceeds in two phases. 
In the first phase, every parse T received from the parsing 
model is rescored for every possible frame type, computing 
P(T I FT) (our current model includes only a half dozen 
different types, so this computation is tractable). Each of 
these theories is combined with the corresponding prior 
probability P(FT) yielding P(FT) P(T I FT).  The n-best of 

these theories are then passed to the second phase of the 
interpretation process. This phase searches the space of slot 
filling operations using a simple beam search procedure. For 
each combination of FT and T, the beam search procedure 
considers all possible combinations of fill operations, while 
pruning partial theories that fall beneath the threshold 
imposed by the beam limit. The surviving theories are then 
combined with the conditional word probabilities P(W I T), 
computed during the parsing model. The final result of these 
steps is the n-best set of candidate pre-discourse meanings, 
scored according to the measure P(M s,T) P(WIT) .  

5. Discourse Processing 
The discourse module computes the most probable post- 
discourse meaning of an utterance from its pre-discourse 
meaning and the discourse history, according to the measure: 

P(M o I H, M S) P(M S , T) P(W I T).  

Because pronouns can usually be ignored in the ATIS 
domain, our work does not treat the problem of pronominal 

reference. Our probability model is instead shaped by the 
key discourse problem of the ATIS domain, which is the 
inheritance of constraints from context. This inheritance 
phenomenon, similar in spirit to one-anaphora, is illustrated 
by the following dialog:: 

USER 1: 

SYSTEM 1: 

USER2: 

I want to fly from Boston to Denver. 

<displays Boston to Denver flights> 

Which flights are available on Tuesday? 

SYSTEM2: <displays Boston to Denver flights for 
Tuesday> 

In USER2, it is obvious from context that the user is asking 
about flights whose ORIGIN is BOSTON and whose 
DESTINATION is DENVER, and not all flights between any 
two cities. Constraints are not always inherited, however. 
For example, in the following continuation of this dialogue: 

USER3: Show me return flights from Denver to Boston, 

it is intuitively much less likely that the user means the "on 
Tuesday" constraint to continue to apply. 

The discourse history H simply consists of the list of all post- 
discourse frame representations for all previous utterances in 
the current session with the system. These frames are the 
source of candidate constraints to be inherited. For most 
utterances, we make the simplifying assumption that we need 
only look at the last (i.e. most recent) frame in this list, which 
we call Me. 

5.1 Statistical Discourse Model 

The statistical discourse model maps a 23 element input 
vector X onto a 23 element output vector Y. These vectors 
have the following interpretations: 

• X represents the combination of previous meaning Me 
and the pre-discourse meaning Ms. 

• Y represents the post-discourse meaning Mo. 

Thus, 
P( M D I H, Ms) = P(YI X)  . 

The 23 elements in vectors X and Y correspond to the 23 
possible slots in the frame schema. Each element in X can 
have one of five values, specifying the relationship between 
the filler of the corresponding slot in Me and Ms: 

INITIAL - slot filled in Ms but not in Me 

TACIT - slot filled in Me but not in Ms 

REITERATE - slot filled in both Me and Ms; value the 
same 

CHANGE - slot filled in both Me and Ms; value 
different 

IRRELEVANT - slot not filled in either Me or Ms 

Output vector Y is constructed by directly copying all fields 
from input vector X except those labeled TACIT. These 
direct copying operations are assigned probability 1. For 
fields labeled TACIT, the corresponding field in Y is filled 
with either INHERITED or NOT-INHERITED. The 
probability of each of these operations is determined by a 
statistical decision tree model. The discourse model contains 
23 such statistical decision trees, one for each slot position. 
An ordering is imposed on the set of frame slots, such that 
inheritance decisions for slots higher in the order are 
conditioned on the decisions for slots lower in the order. 
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The probability P(YIX) is then the product of all 23 

decision probabilities: 

P(Y I X) = P(YllX) P(Y2 1X,yl)... P(Y23 1X,Yl,y 2 ..... Y22) • 

5.2 Training the Discourse Model 

The discourse model is trained from a corpus annotated with 
both pre-discourse and post-discourse semantic frames. 
Corresponding pairs of input and output (X, I,') vectors a r e  

computed from these annotations, which are then used to 
train the 23 statistical decision trees. The training procedure 
for estimating these decision tree models is similar to that 
used for training the semantic interpretation model. 

5.3 Searching The Discourse Model 

Searching the discourse model begins by selecting a meaning 
frame Me from the history stack H, and combining it with 
each pre-discourse meaning Ms received from the semantic 
interpretation model. This process yields a set of candidate 
input vectors X. Then, for each vector X, a search process 
exhaustively constructs and scores all possible output vectors 
Y according to the measure P(Y I X) (this computation is 
feasible because the number of TACIT fields is normally 
small). These scores are combined with the pre-discourse 
scores P(M s,T) P(W I T) ,  already computed by the 

semantic interpretation process. This computation yields: 

P(YI X) P(M S,r) P(WIT), 

which is equivalent to: 

P(M D I H, Ms) P(Ms,T) P(W IT). 

The highest scoring theory is then selected, and a 
straightforward computation derives the final meaning frame 
Mo from output vector Y. 

6. Experimental Results 
We have trained and evaluated the system on a common 
corpus of utterances collected from naive users in the ATIS 
domain. In this test, the system was trained on approximately 
4000 ATIS 2 and ATIS 3 sentences, and then evaluated on 
the December 1994 test material (which was held aside as a 
blind test set). The combined system produced an error rate 
of 21.6%. Work on the system is ongoing, however, and 
interested parties are encouraged to contact the authors for 
more recent results. 

7. Conclusion 
We have presented a fully trained statistical natural language 
interface system, with separate models corresponding to the 
classical processing steps of parsing, semantic interpretation 
and discourse. Much work remains to be done in order to 
refine the statistical modeling techniques, and to extend the 

statistical models to additional linguistic phenomena such as 
quantification and anaphora resolution. 
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