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A b s t r a c t  

In this paper we present some novel ap- 
plications of Explanation-Based Learning 
(EBL) technique to parsing Lexicalized 
Tree-Adjoining grammars. The novel as- 
pects are (a) immediate generalization of 
parses in the training set, (b) generaliza- 
tion over recursive structures and (c) rep- 
resentation of generalized parses as Finite 
State Transducers. A highly impoverished 
parser called a "stapler" has also been in- 
troduced. We present experimental results 
using EBL for different corpora and archi- 
tectures to show the effectiveness of our ap- 
proach. 

1 I n t r o d u c t i o n  

In this paper we present some novel applications of 
the so-called Explanation-Based Learning technique 
(EBL) to parsing Lexicalized Tree-Adjoining gram- 
mars (LTAG). EBL techniques were originally intro- 
duced in the AI literature by (Mitchell et al., 1986; 
Minton, 1988; van Harmelen and Bundy, 1988). The 
main idea of EBL is to keep track of problems solved 
in the past and to replay those solutions to solve 
new but somewhat similar problems in the future. 
Although put in these general terms the approach 
sounds attractive, it is by no means clear that EBL 
will actually improve the performance of the system 
using it, an aspect which is of great interest to us 
here. 

Rayner (1988) was the first to investigate this 
technique in the context of natural language pars- 
ing. Seen as an EBL problem, the parse of a sin- 
gle sentence represents an explanation of why the 
sentence is a part of the language defined by the 
grammar. Parsing new sentences amounts to find- 
ing analogous explanations from the training sen- 
tences. As a special case of EBL, Samuelsson and 

*This work was partiaJly supported by ARC) grant 
DAAL03-89-0031, ARPA grant N00014-90-J-1863, NSF 
STC grsmt DIR-8920230, and Ben Franklin Partnership 
Program (PA) gremt 93S.3078C-6 

Rayner (1991) specialize a grammar for the ATIS 
domain by storing chunks of the parse trees present 
in a treebank of parsed examples. The idea is to 
reparse the training examples by letting the parse 
tree drive the rule expansion process and halting the 
expansion of a specialized rule if the current node 
meets a 'tree-cutting' criteria. However, the prob- 
lem of specifying an optimal 'tree-cutting' criteria 
was not addressed in this work. Samuelsson (1994) 
used the information-theoretic measure of entropy to 
derive the appropriate sized tree chunks automati- 
cally. Neumann (1994) also attempts to specialize 
a grammar given a training corpus of parsed exam- 
pies by generalizing the parse for each sentence and 
storing the generalized phrasal derivations under a 
suitable index. 

Although our work can be considered to be in 
this general direction, it is distinct in that it ex- 
ploits some of the key properties of LTAG to (a) 
achieve an immediate generalization of parses in the 
training set of sentences, (b) achieve an additional 
level of generalization of the parses in the training 
set, thereby dealing with test sentences which are 
not necessarily of the same length as the training 
sentences and (c) represent the set of generalized 
parses as a finite state transducer (FST), which is 
the first such use of FST in the context of EBL, to 
the best of our knowledge. Later in the paper, we 
will make some additional comments on the relation- 
ship between our approach and some of the earlier 
approaches. 

In addition to these special aspects of our work, 
we will present experimental results evaluating the 
effectiveness of our approach on more than one kind 
of corpus. We also introduce a device called a "sta- 
pler", a considerably impoverished parser, whose 
only job is to do term unification and compute alter- 
nate attachments for modifiers. We achieve substan- 
tial speed-up by the use of "stapler" in combination 
with the output of the FST. 

The paper is organized as follows. In Section 2 
we provide a brief introduction to LTAG with the 
help of an example. In Section 3 we discuss our 
approach to using EBL and the advantages provided 
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Figure 1: Substitution and Adjunction in LTAG 
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by LTAG. The FST representation used for EBL is 
illustrated in Section 4. In Section 5 we present the 
"stapler" in some detail. The  results of some of the 
experiments based on our approach are presented 
in Section 6. In Section 7 we discuss the relevance 
of our approach to other lexicalized grammars. In 
Section 8 we conclude with some directions for future 
work. 

2 Lexicalized Tree-Adjoining 
Grammar 

Lexicalized Tree-Adjoining Grammar  (LTAG) (Sch- 
abes et al., 1988; Schabes, 1990) consists of ELE- 
MENTARY TREES, with each elementary tree hav- 
ing a lexical i tem (anchor) on its frontier. An el- 
ementary tree serves as a complex description of 
the anchor and provides a domain of locality over 
which the anchor can specify syntactic and semantic 
(predicate-argument) constraints. Elementary trees 
are of two kinds - (a) INITIAL TREES and (b) AUX- 
ILIARY TREES. 

Nodes on the frontier of initial trees are marked 
as substi tution sites by a '~'. Exactly one node on 
the frontier of an auxiliary tree, whose label matches 
the label of the root of the tree, is marked as a foot 
node by a ' . ' ;  the other nodes on the frontier of an 
auxiliary tree are marked as substitution sites. El- 
ementary trees are combined by S u b s t i t u t i o n  and 
A d j u n c t i o n  operations. 

Each node of an elementary tree is associated with 
the top and the bo t tom feature structures (FS). The 
bot tom FS contains information relating to the sub- 
tree rooted at the node, and the top FS contains 
information relating to the supertree at that  node. 1 
The features may get their values from three differ- 
ent sources such as the morphology of anchor, the 
structure of the tree itself, or by unification during 
the derivation process. FS are manipulated by sub- 
sti tution and adjunction as shown in Figure 1. 

The initial trees (as) and auxiliary trees (/3s) for 
the sentence show me the flights from Boston to 
Philadelphia are shown in Figure 2. Due to the lim- 
ited space, we have shown only the features on the a l  
tree. The result of combining the elementary trees 

1Nodes marked for substitution are associated with 
only the top FS. 

shown in Figure 2 is the d e r i v e d  t r e e ,  shown in Fig- 
ure 2(a). The process of combining the elementary 
trees to yield a parse of the sentence is represented 
by the d e r i v a t i o n  t r e e ,  shown in Figure 2(b). The 
nodes of the derivation tree are the tree names that  
are anchored by the appropriate lexical items. The 
combining operation is indicated by the nature of 
the arcs-broken line for substitution and bold line 
for adjunction-while the address of the operation is 
indicated as part  of the node label. The  derivation 
tree can also be interpreted as a dependency tree 2 
with unlabeled arcs between words of the sentence 
as shown in Figure 2(c). 

Elementary trees of LTAG are the domains for 
specifying dependencies. Recursive structures are 
specified via the auxiliary trees. The three aspects 
of LTAG - (a) lexicalization, (b)-extended domain of 
locality and (c) factoring of recursion, provide a nat- 
ural means for generalization during the EBL pro- 
ce88. 

3 Overv iew of our approach to using 
EBL 

We are pursuing the EBL approach in the context 
of a wide-coverage grammar  development system 
called XTAG (Doran et al., 1994). The XTAG sys- 
tem consists of a morphological analyzer, a part-of- 
speech tagger, a wide-coverage LTAG English gram- 
mar, a predictive left-to-right Early-style parser for 
LTAG (Schabes, 1990) and an X-windows interface 
for grammar development (Paroubek et al., 1992). 
Figure 3 shows a flowchart of the XTAG system. 
The input sentence is subjected to morphological 
analysis and is parts-of-speech tagged before being 
sent to the parser. The parser retrieves the elemen- 
tary trees tha t  the words of the sentence anchor and 
combines them by adjunction and substitution op- 
erations to derive a parse of the sentence. 

Given this context, the training phase of the EBL 
process involves generalizing the derivation trees 
generated by XTAG for a training sentence and stor- 
ing these generalized parses in the generalized parse 

2There axe some differences between derivation trees 
and conventional dependency trees. However we will not  
discuss these differences in this paper as they are not 
relevant to the present work. 
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Figure 2: (as and/~s) Elementary trees, (a) Derived Tree, (b) Derivation Tree, and (c) Dependency tree for 
the sentence: show me the flights from Boston to Philadelphia. 
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Figure 4: F lowchar t  of  the  XTAG sys t em wi th  
t he  EBL c o m p o n e n t  

database under an index computed from the mor- 
phological features of the sentence. The application 
phase of EBL is shown in the flowchart in Figure 4. 
An index using the morphological features of the 
words in the input sentence is computed. Using this 
index, a set of generalized parses is retrieved from 
the generalized parse database created in the train- 
ing phase. If the retrieval fails to yield any gener- 
alized parse then the input sentence is parsed using 
the full parser. However, if the retrieval succeeds 
then the generalized parses are input to the "sta- 
pler". Section 5 provides a description of the "sta- 
pler". 

3.1 Impl ica t ions  of  LTAG rep re sen t a t i on  
for EBL 

An LTAG parse of a sentence can be seen as a se- 
quence of elementary trees associated with the lexi- 
cal items of the sentence along with substitution and 
adjunction links among the elementary trees. Also, 
the feature values in the feature structures of each 
node of every elementary tree are instantiated by the 

parsing process. Given an LTAG parse, the general- 
ization of the parse is truly immediate in that a gen- 
eralized parse is obtained by (a) uninstantiating the 
particular lexical items that anchor the individual el- 
ementary trees in the parse and (h) uninstantiating 
the feature values contributed by the morphology of 
the anchor and the derivation process. This type of 
generalization is called feature-generalization. 

In other EBL approaches (Rayner, 1988; Neu- 
mann, 1994; Samuelsson, 1994) it is necessary to 
walk up and down the parse tree to determine the 
appropriate subtrees to generalize on and to sup- 
press the feature values. In our approach, the pro- 
cess of generalization is immediate, once we have the 
output of the parser, since the elementary trees an- 
chored by the words of the sentence define the sub- 
trees of the parse for generalization. Replacing the 
elementary trees with unistantiated feature values is 
all that is needed to achieve this generalization. 

The generalized parse of a sentence is stored in- 
dexed on the part-of-speech (POS) sequence of the 
training sentence. In the application phase, the POS 
sequence of the input sentence is used to retrieve a 
generalized parse(s) which is then instantiated with 
the features of the sentence. This method of retriev- 
ing a generalized parse allows for parsing of sen- 
tences of the same lengths and the same POS se- 
quence as those in the training corpus. However, 
in our approach there is another generalization that 
falls out of the LTAG representation which allows for 
flexible matching of the index to allow the system to 
parse sentences that are not necessarily of the same 
length as any sentence in the training corpus. 

Auxiliary trees in LTAG represent recursive struc- 
tures. So if there is an auxiliary tree that is used in 
an LTAG parse, then that tree with the trees for 
its arguments can be repeated any number of times, 
or possibly omitted altogether, to get parses of sen- 
tences that differ from the sentences of the training 
corpus only in the number of modifiers. This type of 
generalization is called modifier-generalization. This 
type of generalization is not possible in other EBL 
approaches. 

This implies that the POS sequence covered by 
the auxiliary tree and its arguments can be repeated 
zero or more times. As a result, the index of a gener- 
alized parse of a sentence with modifiers is no longer 
a string but a regular expression pattern on the POS 
sequence and retrieval of a generalized parse involves 
regular expression pattern matching on the indices. 
If, for example, the training example was 

(1) Show/V me/N the/D fiights/N from/P 
Boston/N to/P Philadelphia/N. 

then, the index of this sentence is 

(2) V N D N ( P N ) *  

since the two prepositions in the parse of this sen- 
tence would anchor (the same) auxiliary trees. 
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The most efficient method of performing regular 
expression pattern matching is to construct a finite 
state machine for each of the stored patterns and 
then traverse the machine using the given test pat- 
tern. If the machine reaches the final state, then the 
test pattern matches one of the stored patterns. 

Given that the index of a test sentence matches 
one of the indices from the training phase, the gen- 
eralized parse retrieved will be a parse of the test 
sentence, modulo the modifiers. For example, if the 
test sentence, tagged appropriately, is 

(3) Show/V me/S  the/D flights/N from/P 
Boston/N to /P  Philadelphia/N on/P 
Monday/N. 

then, Mthough the index of the test sentence 
matches the index of the training sentence, the gen- 
eralized parse retrieved needs to be augmented to 
accommodate the additional modifier. 

To accommodate the additional modifiers that 
may be present in the test sentences, we need to pro- 
vide a mechanism that assigns the additional modi- 
fiers and their arguments the following: 

1. The elementary trees that they anchor and 

2. The substitution and adjunction links to the 
trees they substitute or adjoin into. 

We assume that the additional modifiers along 
with their arguments would be assigned the same 
elementary trees and the same substitution and ad- 
junction links as were assigned to the modifier and 
its arguments of the training example. This, of 
course, means that we may not get all the possi- 
ble attachments of the modifiers at this time. (but 
see the discussion of the "stapler" Section 5.) 

4 F S T  R e p r e s e n t a t i o n  

The representation in Figure 6 combines the gener- 
alized parse with the POS sequence (regular expres- 
sion) that it is indexed by. The idea is to annotate 
each of the finite state arcs of the regular expression 
matcher with the elementary tree associated with 
that POS and also indicate which elementary tree it 
would be adjoined or substituted into. This results 
in a Finite State Transducer (FST)  representation, 
illustrated by the example below. Consider the sen- 
tence (4) with the derivation tree in Figure 5. 

(4) show me the flights from Boston to 
Philadelphia. 

An alternate representation of the derivation tree 
that is similar to the dependency representation, 
is to associate with each word a tuple (this_tree, 
head_word, head_tree, number). The description of 
the tuple components is given in Table 1. 

Following this notation, the derivation tree in Fig- 
ure 5 (without the addresses of operations) is repre- 
sented as in (5). 

al  [d~ow] 
oo'%% 

~2 [me] (2.~) a~ [n~,ht~] (Z3) 

as l t l~ l  (1) I~ [frem] (0) 1~2 [to] (0) 
Z I ! ! 

a5 [m~tou] (2.2) ~ []~t-&lpU~] (2.2) 

Figure 5: Derivation Tree for the sentence: show m e  
the flights from B o s t o n  to  Philadelphia 

this_tree : the elementary tree that the word 
anchors 

head_word : the word on which the current 
word is dependent on; "-" if the 
current word does not 
depend on any other word. 

head_tree : the tree anchored by the head word; 
"-" if the current word does not 
depend on any other word. 

number : a signed number that indicates the 
direction and the ordinal position of 
the particular head elementary tree 
from the position of the current 
word OR 

: an unsigned number that indicates 
the Gorn-address (i.e., the node 
address) in the derivation tree to 
which the word attaches OR 

: "-" if the current word does not 
depend on any other word. 

Table 1: Description of the tuple components 

(5) 
show/(al,  -, -, -) 
the/(a3, flights, ~4,+1) 
from/(fll, flights, a4, 2) 
to/(fi2, flights,a4, 2) 

me/(a2, show,al,-l) 
fiights/ ( a4,show , ~I , - I ) 
Boston/(as, from, fll -1) 
Philadelphia/(as, to, f12,-1) 

Generalization of this derivation tree results in the 
representation in (6). 

(6) 
- ,  - ,  - )  

D/(a3, N, a4,+l) 
(P/(fil, N, a4, 2) 
(P/(fl2, N, a4, 2) 

N/(a~,  V,al,-1) 
N/(c~4,V, C~l,-1) 
N/(as,  P, fl,-1))* 
N/(a6, P, fl,-1))* 

After generalization, the trees /h and f12 are no 
longer distinct so we denote them by ft. The trees 
a5 and a6 are also no longer distinct, so we denote 
them by a. With this change in notation, the two 
Kleene star regular expressions in (6) can be merged 
into one, and the resulting representation is (7) 
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v/(al,-,- ,-) N/(a2,v,a1,-t) I)/(%, l~.a 4 ,+t) N/(a4,v, at,-1 ) P/( ~.N.a 4,2) 

~Y( a, P, ~, -t) 

Figure 6: Finite State Transducer Representation for the sentences: show me the flights from Boston to 
Philadelphia, show me the flights from Boston to Philadelphia on Monday, . . .  

(v) 
- ,  - ,  - )  

D/(as ,  N, o~4,+1) 
(P/(3, N, o~4, 2) 

V,al,-1) 
N/(~4,V, ~1,-1)  
N / ( a ,  P, 3 , - 1 )  )* 

which can be seen as a path in an FST as in Figure 6. 
This FST representation is possible due to the lex- 

icalized nature of the elementary trees. This repre- 
sentation makes a distinction between dependencies 
between modifiers and complements. The number in 
the tuple associated with each word is a signed num- 
ber if a complement dependency is being expressed 
and is an unsigned number if a modifier dependency 
is being expressed, s 

5 S t a p l e r  

In this section, we introduce a device called "sta- 
pler", a very impoverished parser that  takes as in- 
put  the result of the EBL lookup and returns the 
parse(s) for the sentence. The output  of the EBL 
lookup is a sequence of elementary trees annotated 
with dependency links - an almost parse. To con- 
struct a complete parse, the "stapler" performs the 
following tasks: 

• Identify the nature of link: The dependency 
links in the almost parse are to be distinguished 
as either substitution links or adjunction links. 
This task is extremely straightforward since the 
types (initial or auxiliary) of the elementary 
trees a dependency link connects identifies the 
nature of the link. 

• Modifier Attachment:  The EBL lookup is not 
guaranteed to output  all possible modifier- 
head dependencies for a give input, since 
the modifier-generalization assigns the same 
modifier-head link, as was in the training ex- 
ample, to all the additional modifiers. So it is 
the task of the stapler to compute all the alter- 
nate at tachments for modifiers. 

• Address of Operation: The substitution and ad- 
junction links are to be assigned a node ad- 
dress to indicate the location of the operation. 
The "staPler" assigns this using the structure of 

3In a complement auxiliary tree the anchor subcat- 
egorizes for the foot node, which is not the case for a 
modifier auxiliaxy tree. 

the elementary trees tha t  the words anchor and 
their linear order in the sentence. 

Feature Instantiation: The values of the fea- 
tures on the nodes of the elementary trees are 
to be instantiated by a process of unification. 
Since the features in LTAGs are finite-valued 
and only features within an elementary tree 
can be co-indexed, the "stapler" performs term- 
unification to instantiate the features. 

6 E x p e r i m e n t s  a n d  R e s u l t s  

We now present experimental results from two dif- 
ferent sets of experiments performed to show the 
effectiveness of our approach. The first set of ex- 
periments, (Experiments l (a)  through 1(c)), are in- 
tended to measure the coverage of the FST represen- 
tation of the parses of sentences from a range of cor- 
pora (ATIS, IBM-Manual and Alvey). The results 
of these experiments provide a measure of repeti- 
tiveness of patterns as described in this paper, at 
the sentence level, in each of these corpora. 
E x p e r i m e n t  l (a ) :  The details of the experiment 
with the ATIS corpus are as follows. A total of 465 
sentences, average length of 10 words per sentence, 
which had been completely parsed by the XTAG sys- 
tem were randomly divided into two sets, a train- 
ing set of 365 sentences and a test set of 100 sen- 
tences, using a random number generator. For each 
of the training sentences, the parses were ranked us- 
ing heuristics 4 (Srinivas et al., 1994) and the top 
three derivations were generMized and stored as an 
FST. The FST was tested for retrieval of a gener- 
alized parse for each of the test sentences that  were 
pretagged with the correct POS sequence (In Ex- 
periment 2, we make use of the POS tagger to do 
the tagging). When a match is found, the output  
of the EBL component is a generalized parse that  
associates with each word the elementary tree that  
it anchors and the elementary tree into which it ad- 
joins or substitutes into - an almost parse, s 

4We axe not using stochastic LTAGs. For work on 
Stochastic LTAGs see (Resnik, 1992; Schabes, 1992). 

SSee (Joshi and Srinivas, 1994) for the role of almost 
parse in supertag disaanbiguation. 
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Corpus 

ATIS 
IBM 
Alvey 

Size of # of states % Coverage Response Time 
Training set (sees) 

365 6000 80% 1.00 see/sent 
1100 21000 40% 4.00 sec/sent 
80 500 50% 0.20 sec/NP 

Table 2: Coverage and Retrieval times for various corpora 

E x p e r i m e n t  l ( b )  and  1(c): Similar experiments 
were conducted using the IBM-manual corpus and a 
set of noun definitions from the LDOCE dictionary 
that were used as the Alvey test set (Carroll, 1993). 

Results of these experiments are summarized in 
Table 2. The size of the FST obtained for each of the 
corpora, the coverage of the FST and the traversal 
time per input are shown in this table. The cover- 
age of the FST is the number of inputs that were as- 
signed a correct generalized parse among the parses 
retrieved by traversing the FST. 

Since these experiments measure the performance 
of the EBL component on various corpora we will 
refer to these results as the 'EBL-Lookup times'. 

The second set of experiments measure the perfor- 
mance improvement obtained by using EBL within 
the XTAG system on the ATIS corpus. The per- 
formance was measured on the same set of 100 sen- 
tences that was used as test data in Experiment l(a). 
The FST constructed from the generalized parses of 
the 365 ATIS sentences used in experiment l(a) has 
been used in this experiment as well. 
E x p e r i m e n t  2(a):  The performance of XTAG on 
the 100 sentences is shown in the first row of Table 3. 
The coverage represents the percentage of sentences 
that were assigned a parse. 
E x p e r i m e n t  2(b) :  This experiment is similar to 
Experiment l(a). It attempts to measure the cov- 
erage and response times for retrieving a general- 
ized parse from the FST. The results are shown in 
the second row of Table 3. The difference in the 
response times between this experiment and Exper- 
iment l(a) is due to the fact that we have included 
here the times for morphological analysis and the 
POS tagging of the test sentence. As before, 80% 
of the sentences were assigned a generalized parse. 
However, the speedup when compared to the XTAG 
system is a factor of about 60. 
E x p e r i m e n t  2(c):  The setup for this experiment is 
shown in Figure 7. The almost parse from the EBL 
lookup is input to the full parser of the XTAG sys- 
tem. The full parser does not take advantage of the 
dependency information present in the almost parse, 
however it benefits from the elementary tree assign- 
ment to the words in it. This information helps the 
full parser, by reducing the ambiguity of assigning 
a correct elementary tree sequence for the words of 
the sentence. The speed up shown in the third row 
of Table 3 is entirely due to this ambiguity reduc- 
tion. If the EBL lookup fails to retrieve a parse, 
which happens for 20% of the sentences, then the 

s . . . . . . . . . . . . . . . . .  . i  

l ~ . i v s t t m  l l m  

Figure 7: System Setup for Experiment 2(c). 

tree assignment ambiguity is not reduced and the 
full parser parses with all the trees for the words of 
the sentence. The drop in coverage is due to the fact 
that for 10% of the sentences, the generalized parse 
retrieved could not be instantiated to the features of 
the sentence. 

System Coverage % Average time 
(in  es) 

XTAG 100% 125.18 
EBL lookup 80% 1.78 

EBL+XTAG parser 90% 62.93 
EBL+Stapler 70% 8.00 

Table 3: Performance comparison of XTAG with 
and without EBL component 

Experiment 2(d): The setup for this experiment 
is shown in Figure 4. In this experiment, the almost 
parse resulting from the EBL lookup is input to the 
"stapler" that generates all possible modifier attach- 
ments and performs term unification thus generating 
all the derivation trees. The "stapler" uses both the 
elementary tree assignment information and the de- 
pendency information present in the almost parse 
and speeds up the performance even further, by a 
factor of about 15 with further decrease in coverage 
by 10% due to the same reason as mentioned in Ex- 
periment 2(c). However the coverage of this system 
is limited by the coverage of the EBL lookup. The 
results of this experiment are shown in the fourth 
row of Table 3. 
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7 R e l e v a n c e  t o  o t h e r  l e x i c a l i z e d  

g r a m m a r s  

Some aspects of our approach can be extended to 
other lexicalized grammars ,  in part icular  to catego- 
rial g r ammars  (e.g. Combina tory  Categorial  Gram-  
mar  (CCG) (Steedman,  1987)). Since in a categorial 
g r a m m a r  the category for a lexical i tem includes its 
arguments,  the process of generalization of the parse 
can also be immediate in the same sense of our ap- 
proach. The  generalization over recursive structures 
in a categorial g rammar ,  however, will require fur- 
ther annotat ions of the proof  trees in order to iden- 
tify the 'anchor '  of a recursive structure. I f  a lexi- 
cal i tem corresponds to a potential  recursive struc- 
ture then it will be necessary to encode this informa- 
tion by making the result par t  of the functor to be 
X --+ X.  Further annotat ion of the proof  tree will 
be required to keep track of dependencies in order 
to represent the generalized parse as an FST. 

8 Conclusion 

In this paper,  we have presented some novel applica- 
tions of EBL technique to parsing LTAG. We have 
also introduced a highly impoverished parser called 
the "stapler" tha t  in conjunction with the EBL re- 
suits in a speed up of a factor of about  15 over a 
system without  the EBL component.  To show the 
effectiveness of our approach we have also discussed 
the performance of EBL on different corpora, and 
different architectures. 

As par t  of the future work we will extend our ap- 
proach to corpora with fewer repetit ive sentence pat-  
terns. We propose to do this by generalizing at the 
phrasal level instead of at the sentence level. 
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