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Abstract 

Large-scale natural language generation re- 
quires the integration of vast mounts of 
knowledge: lexical, grammatical, and concep- 
tual. A robust generator must be able to 
operate well even when pieces of knowledge 
axe missing. It must also be robust against 
incomplete or inaccurate inputs. To attack 
these problems, we have built a hybrid gen- 
erator, in which gaps in symbolic knowledge 
are filled by statistical methods. We describe 
algorithms and show experimental results. We 
also discuss how the hybrid generation model 
can be used to simplify current generators and 
enhance their portability, even when perfect 
knowledge is in principle obtainable. 

1 I n t r o d u c t i o n  

A large-scale natural language generation (NLG) 
system for unrestricted text should be able to op- 
erate in an environment of 50,000 conceptual terms 
and 100,000 words or phrases. Turning conceptual 
expressions into English requires the integration of 
large knowledge bases (KBs), including grammar, 
ontology, lexicon, collocations, and mappings be- 
tween them. The quality of an NLG system depends 
on the quality of its inputs and knowledge bases. 
Given that perfect KBs do not yet exist, an impor- 
tant question arises: can we build high-quality NLG 
systems that are robust against incomplete KBs and 
inputs? Although robustness has been heavily stud- 
ied in natural language understanding (Weischedel 
and Black, 1980; Hayes, 1981; Lavie, 1994), it has 
received much less attention in NLG (Robin, 1995). 

We describe a hybrid model for natural language 
generation which offers improved performance in the 
presence of knowledge gaps in the generator (the 
grammar and the lexicon), and of errors in the se- 
mantic input. The model comes out of our practi- 
cal experience in building a large Japanese-English 
newspaper machine translation system, JAPAN- 
GLOSS (Knight et al., 1994; Knight et al., 1995). 
This system translates Japanese into representations 
whose terms are drawn from the SENSUS ontol- 

ogy (Knight and Luk, 1994), a 70,000-node knowl- 
edge base skeleton derived from resources like Word- 
Net (Miller, 1990), Longman's Dictionary (Procter, 
1978), and the PENMAN Upper Model (Bateman, 
1990). These representations are turned into En- 
glish during generation. Because we are processing 
unrestricted newspaper text, all modules in JAPAN- 
GLOSS must be robust. 

In addition, we show how the model is useful in 
simplifying the design of a generator and its knowl- 
edge bases even when perfect knowledge is available. 
This is accomplished by relegating some aspects of 
lexical choice (such as preposition selection and non- 
compositional interlexical constraints) to a statisti- 
cal component. The generator can then use simpler 
rules and combine them more freely; the price of this 
simplicity is that some of the output may be invalid. 
At this point, the statistical component intervenes 
and filters from the output all but the fluent expres- 
sions. The advantage of this two-level approach is 
that the knowledge bases in the generator become 
simpler, easier to develop, more portable across do- 
mains, and more accurate and robust in the presence 
of knowledge gaps. 

2 K n o w l e d g e  G a p s  

In our machine translation experiences, we traced 
generation disfluencies to two sources: 1 (1) incom- 
plete or inaccurate conceptual (interlingua) struc- 
tures, caused by knowledge gaps in the source lan- 
guage analyzer, and (2) knowledge gaps in the gen- 
erator itself. These two categories of gaps include: 

• Interlingual analysis often does not include ac- 
curate representations of number, definiteness, 
or time. (These are often unmarked in Japanese 
and require exceedingly difficult inferences to 
recover). 

• The generation lexicon does not mark rare 
words and generally does not distinguish be- 
tween near synonyms (e.g., finger vs. ?digil). 

1See also (Kukich, 1988) for a discussion of fluency 
problems in NLG systems. 
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• The generation lexicon does not contain much 
collocational knowledge (e.g., on the field vs. 
*on the end zone). 

• Lexico-syntactic constraints (e.g., tell her hi vs. 
*say her hi), syntax-semantics mappings (e.g., 
the vase broke vs. *the food ate), and selectional 
restrictions are not always available or accurate. 

The generation system we use, PENMAN (Pen- 
man, 1989), is robust because it supplies appropriate 
defaults when knowledge is missing. But the default 
choices frequently are not the optimM ones; the hy- 
brid model we describe provides more satisfactory 
solutions. 

3 I s s u e s  i n  L e x i c a l  C h o i c e  

The process of selecting words that  will lexicalize 
each semantic concept is intrinsically linked with 
syntactic, semantic, and discourse structure issues. 2 
Multiple constraints apply to each lexical decision, 
often in a highly interdependent manner. However, 
while some lexical decisions can affect future (or 
past) lexical decisions, others are purely local, in 
the sense that  they do not affect the lexicMization 
of other semantic roles. Consider the case of time 
adjuncts that  express a single point in time, and as- 
sume that  the generator has already decided to use 
a prepositional phrase for one of them. There are 
several forms of such adjuncts, e.g., 

at five. 
She left on Monday. 

in February. 

In terms of their interactions with the rest of 
the sentence, these manifestations of the adjunct 
are identical. The use of different prepositions is 
an interlexical constraint between the semantic and 
syntactic heads of the PP that  does not propagate 
outside the PP. Consequently, the selection of the 
preposition can be postponed until the very end. 

Existing generation models however select the 
preposition according to defaults or randomly. 
among possible alternatives or by explicitly encod- 
ing the lexical constraints. The PENMAN gener- 
ation system (Penman, 1989) defaults the preposi- 
tion choice for point-time adjuncts to at, the most 
commonly used preposition in such cases. The 
F UF /S UR GE (Elhadad, 1993) generation system is 
an example where prepositional lexical restrictions 
in time adjuncts are encoded by hand, producing 
fluent expressions but at the cost of a larger gram- 
mar. 

Collocational restrictions are another example of 
lexical constraints. Phrases such as three straight 

~We consider lexical choice as a general problem for 
both open and closed class words, not limiting it to 
the former only as is sometimes done in the generation 
literature. 

victories, which are frequently used in sports reports 
to express historical information, can be decomposed 
semantically into the head noun plus its modifiers. 
However, when ellipsis of the head noun is consid- 
ered, a detailed corpus analysis of actual basketball 
game reports (Robin, 1995) shows that  the forms 
wonflost three straight X, won~lost ~hree consecutive 
X, and won~lost three straight are regularly used, 
but  the form *won~lost three consecutive is not. To 
achieve fluent output  within the knowledge-based 
generation paradigm, lexical constraints of this type 
must be explicitly identified and represented. 

Both the above examples indicate the presence of 
(perhaps domain-dependent) lexical constraints that  
are not explainable on semantic grounds. In the case 
of prepositions in time adjuncts, the constraints are 
institutionalized in the language, but  still nothing 
about the concept MONTH relates to the use of the 
preposition in with month names instead of, say, on 
(Herskovits, 1986). Furthermore, lexical constraints 
are not limited to the syntagmatic,  interlexical con- 
straints discussed above. For a generator to be able 
to produce sufficiently varied text, multiple rendi- 
tions of the same concept must be accessible. Then, 
the generator is faced with paradigmatic choices 
among alternatives that  without sufficient informa- 
tion may look equivalent. These choices include 
choices among synonyms (and near-synonyms), and 
choices among alternative syntactic realizations of a 
semantic role. However, it is possible that  not all the 
alternatives actually share the same level of fluency 
or currency in the domain, even if they are rough 
paraphrases. 

In short, knowledge-based generators are faced 
with multiple, complex, and interacting lexical con- 
straints, 3 and the integration of these constraints is 
a difficult problem, to the extent  that  the need for 
a different specialized architecture for lexical choice 
in each domain has been suggested (Danlos, 1986). 
However, compositional approaches to lexical choice 
have been successful whenever detailed representa- 
tions of lexical constraints can be collected and en- 
tered into the lexicon (e.g., (Elhadad, 1993; Ku- 
kich et al., 1994)). Unfortunately, most of these 
constraints must be identified manually, and even 
when automatic  methods for the acquisition of some 
types of this lexical knowledge exist (Smadja and 
McKeown, 1991), the extracted constraints must 
still be transformed to the generator's representa- 
tion language by hand. This narrows the scope of 
the lexicon to a specific domain; the approach fails 
to scale up to unrestricted language. When the goal 
is domain-independent generation, we need to inves- 
tigate methods for producing reasonable output  in 
the absence of a large part  of the information tradi- 

3Including constraints not discussed above, originat- 
ing for example from discourse structure, the user models 
for the speaker and hearer, and pragmatic needs. 
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tionally available to the lexical chooser. 

4 C u r r e n t  S o l u t i o n s  

Two strategies have been used in lexical choice when 
knowledge gaps exist: selection of a default, 4 and 
random choice among alternatives. Default choices 
have the advantage that  they can be carefully chosen 
to mask knowledge gaps to some extent. For exam- 
ple, PENMAN defaults article selection to the and 
tense to present, so it will produce The dog chases 
the cat in the absence of definiteness information. 
Choosing the is a good tactic, because the works 
with mass, count, singular, plural, and occasionally 
even proper nouns, while a does not. On the down 
side, the's only outnumber a's and an's by about  
two-to-one (Knight and Chander, 1994), so guess- 
ing the will frequently be wrong. Another ploy is to 
give preference to nominalizations over clauses. This 
generates sentences like They plan the statement of 
the filing for bankruptcy, avoiding disasters like They 
plan that it is said to file for bankruptcy. Of course, 
we also miss out on sparkling renditions like They 
plan to say that they will file for bankruptcy. The 
alternative of randomized decisions offers increased 
paraphrasing power but  also the risk of producing 
some non-fluent expressions; we could generate sen- 
tences like The dog chased a cat and A dog will chase 
the cat, but also An earth circles a sun. 

To sum up, defaults can help against knowledge 
gaps, but they take t ime to construct, limit para- 
phrasing power, and only return a mediocre level of 
quality. We seek methods that  can do better. 

5 S t a t i s t i c a l  M e t h o d s  

Another approach to the problem of incomplete 
knowledge is the following. Suppose that  according 
to our knowledge bases, input I may be rendered as 
sentence A or sentence B. If we had a device that  
could invoke new, easily obtainable knowledge to 
score the input /ou tput  pair (I, A) against (I, B), we 
could then choose A over B, or vice-versa. An alter- 
native to this is to forget I and simply score A and B 
on the basis of fluency. This essentially assumes that  
our generator produces valid mappings from I, but 
may be unsure as to which is the correct rendition. 
At this point, we can make another approximat ion- -  
modeling fluency as likelihood. In other words, how 
often have we seen A and B in the past? If A has oc- 
curred fifty times and B none at all, then we choose 
A. But i fA and B are long sentences, then probably 
we have seen neither. In that  case, further approxi- 
mations are required. For example, does A contain 
frequent three-word sequences? Does B? 

Following this reasoning, we are led into statisti- 
cal language modeling. We built a language model 

4See also (Harbusch et al., 1994) for a thorough dis- 
cussion of defaulting in NLG systems. 

for the English language by estimating bigram and 
trigram probabilities from a large collection of 46 
million words of Wall Street Journal material. 5 We 
smoothed these estimates according to class mem- 
bership for proper names and numbers, and accord- 
ing to an extended version of the enhanced Good- 
Turing method (Church and Gale, 1991) for the re- 
maining words. The latter smoothing operation not 
only optimally regresses the probabilities of seen n- 
grams but  also assigns a non-zero probabili ty to all 
unseen n-grams which depends on how likely their 
component m-grams (m < n, i.e., words and bi- 
grams) are. The resulting conditional probabilities 
are converted to log-likelihoods for reasons of nu- 
merical accuracy and used to estimate the overall 
probability P(S)  of any English sentence S accord- 
ing to a Markov assumption, i.e., 

log P(S)  = Z log P(w, [Wi_l) for bigrams 
i 

log P(S)  = Z log P(wilwi_z, w i - 2 )  for trigrams 
i 

Because both equations would assign lower and 
lower probabilities to longer sentences and we need 
to compare sentences of different lengths, a heuristic 
strictly increasing function of sentence length, f ( l )  = 
0.5l, is added to the log-likelihood estimates. 

6 F i r s t  E x p e r i m e n t  

Our first goal was to integrate the symbolic knowl- 
edge in the PENMAN system with the statistical 
knowledge in our language model. We took a se- 
mantic representation generated automatical ly from 
a short Japanese sentence. We then used PEN- 
MAN to generate 3,456 English sentences corre- 
sponding to the 3,456 (= 2 ' .  33) possible com- 
binations of the values of seven binary and three 
ternary features that  were unspecified in the se- 
mantic input. These features were relevant to the 
semantic representation but  their values were not 
extractable from the Japanese sentence, and thus 
each of their combinations corresponded to a par- 
ticular interpretation among the many possible in 
the presence of incompleteness in the semantic in- 
put. Specifying a feature forced PENMAN to make 
a particular linguistic decision. For example, adding 
( : i d e n t i f i a b i l i t y - q  t )  forces the choice of de- 
terminer, while the : l e x  feature offers explicit con- 
trol over the selection of open-class words. A literal 
translation of the input sentence was something like 
As for new company, there is plan to establish in 
February. Here are three randomly selected transla- 
tions; note that  the object of the "establishing" ac- 
tion is unspecified in the Japanese input,  but PEN- 
MAN supplies a placeholder it when necessary, to 
ensure grammaticality:  

SAvailable from the ACL Data Collection Initiative, 
as CD ROM 1. 
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A new company will have in mind that it 
is establishing it on February. 

The new company plans the launching 
on February. 

New companies will have as a goal 
the launching at February. 

We then ranked the 3,456 sentences using the 
bigram version of our statistical language model, 
with the hope that  good renditions would come out 
on top. Here is an abridged list of outputs, log- 
likelihood scores heuristically corrected for length, 
and rankings: 

1 The new company plans to  
launch i t  in February. [ -13.568260 ] 

2 The new company plans the 
foundation in February. [ -13.755152 ] 

3 The new company plans the 
establishment in February. [ -13.821412 ] 

4 The new company plans to 
e s t a b l i sh  i t  in February. [ -14. 121367 ] 

. . . . .  , , .  . . . .  , . , .  . . . .  , . , ,  . . . . .  * o  . . . .  * o  

60 The new c o m p a n i e s  plan the 
establishment on February. [ -16.350112 ] 

61 The  new c o m p a n i e s  plan the 
launching in February. [ -16.530286 ] 

. . . ,  . . . . .  * *  . . . . .  . , .  . . . . . .  ° ,  . . . . . .  , . . .  

400 The new c o m p a n i e s  h a v e  as a goal t h e  
foundation at February. [ -23.836556 ] 

401 The  new companies wi l l  have in mind to 
e s t a b l i sh  i t  at  February. [ -23.842337 ] 

, , , .  . . . . .  ° ,  . . . . .  , , . ,  . . . . .  , . .  . . . . .  . . . .  

While this experiment shows that  statistical mod- 
els can help make choices in generation, it fails as a 
computational strategy. Running PENMAN 3,456 
times is expensive, but  nothing compared to the 
cost of exhaustively exploring all combinations in 
larger input representations corresponding to sen- 
tences typically found in newspaper text. Twenty or 
thirty choice points typically multiply into millions 
or billions of potential sentences, and it is infeasible 
to generate them all independently. This leads us to 
consider other algorithms. 

7 M a n y - P a t h s  G e n e r a t i o n  

Instead of explicitly constructing all possible rendi- 
tions of a semantic input and running PENMAN 
on them, we use a more efficient data  structure 
and control algorithm to express possible ambigui- 
ties. The data  structure is a word laltice--an acyclic 
state transition network with one start  state, one fi- 
nal state, and transitions labeled by words. Word 
lattices are commonly used to model uncertainty in 
speech recognition (Waibel and Lee, 1990) and are 
well adapted for use with n-gram models. 

As we discussed in Section 3, a number of gen- 
eration difficulties can be traced to the existence of 

constraints between words and phrases. Our genera- 
tor operates on lexical islands, which do not interact 
with other words or concepts. 6 How to identify such 
islands is an important  problem in NLG: grammat-  
ical rules (e.g., agreement) may help group words 
together, and collocational knowledge can also mark 
the boundaries of some lexical islands (e.g., nomi- 
nal compounds). When no explicit information is 
present, we can resort to treating single words as lex- 
ical islands, essentially adopting a view of maximum 
compositionality. Then, we rely on the statistical 
model to correct this approximation, by identifying 
any violations of the compositionality principle on 
the fly during actual text generation. 

The type of the lexical islands and the manner 
by which they have been identified do not affect the 
way our generator processes them. Each island cor- 
responds to an independent component of the final 
sentence. Each individual word in an island specifies 
a choice point in the search and causes the creation 
of a state in the lattice; all continuations of alterna- 
tive lexicalizations for this island become paths that  
leave this state. Choices between alternative lexi- 
cal islands for the same concept also become states 
in the lattice, with arcs leading to the sub-lattices 
corresponding to each island. 

Once the semantic input to the generator has 
been transformed to a word lattice, a search com- 
ponent identifies the N highest scoring paths from 
the start  to the final state, according to our statisti- 
cal language model. We use a version of the N-best 
algorithm (Chow and Schwartz, 1989), a Viterbi- 
style beam search algorithm that  allows extraction 
of more than just  the best scoring path. (Hatzivas- 
siloglou and Knight, 1995) has more details on our 
search algorithm and the method we applied to es- 
t imate the parameters of the statistical model. 

Our approach differs from traditional top-down 
generation in the same way that  top-down and 
bot tom-up parsing differ. In top-down parsing, 
backtracking is employed to exhaustively examine 
the space of possible alternatives. Similarly, tra- 
ditional control mechanisms in generation operate 
top-down, either deterministically (Meteer et al., 
1987; Tomita  and Nyberg, 1988; Penman, 1989) or 
by backtracking to previous choice points (Elhadad, 
1993). This mode of operation can unnecessarily du- 
plicate a lot of work at run time, unless sophisticated 
control directives are included in the search engine 
(Elhadad and Robin, 1992). In contrast, in bot tom- 
up parsing and in our generation model, a special 
data  structure (a chart or a lattice respectively) is 
used to efficiently encode multiple analyses, and to 
allow structure sharing between many alternatives, 
eliminating repeated search. 

What  should the word lattices produced by a gen- 
erator look like? If the generator has complete 

6At least as far as the generator knows. 
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knowledge, the word lattice will degenerate to a 
string, e.g.: 

the _ ~ large _/"% Federal L/"~ deficit ~,q.~ fell 

Suppose we are uncertain about  definiteness and 
number. We can generate a lattice with eight paths 
instead of one: 

the deficit 

(* stands for the empty string.) But we run the risk 
that the n-gram model will pick a non-grammatical  
path like a large Federal deficits fell. So we can pro- 
duce the following lattice instead: 

large -~J-J~ Federal ~ )  deficits a ( ~  

In this case, we use knowledge about  agreement to 
constrain the choices offered to the statistical model, 
from eight paths down to six. Notice that  the six- 
path lattice has more states and is more complex 
than the eight-path one. Also, the n-gram length is 
critical. When long-distance features control gram- 
maticality, we cannot rely on the statistical model. 
Fortunately, long-distance features like agreement 
are among the first that  go into any symbolic gen- 
erator. This is our first example of how symbolic 
and statistical knowledge sources contain comple- 
mentary information, which is why there is a sig- 
nificant advantage to combining them. 

Now we need an algorithm for converting gener- 
ator inputs into word lattices. Our approach is to 
assign word lattices to each fragment of the input, 
in a bot tom-up compositional fashion. For example, 
consider the following semantic input, which is writ- 
ten in the PENMAN-style Sentence Plan Language 
(SPL) (Penman, 1989), with concepts drawn from 
the SENSUS ontology (Knight and Luk, 1994), and 
may be rendered in English as It  is easy f o r  Amer i -  
cans to obtain guns: 

(A / Ihave the qua l i t y  of beingl 
:DOMAIN (P / Iprocurel 

:AGENT (A2 /]American]) 
:PATIENT (G / [gun, arm[)) 

:RANGE (E / Jeasy, e f f o r t l e s s J ) )  

We process semantic subexpressions in a bot tom- 
up order, e.g., A2, G, P, ~., and finally A. The grammar 
assigns what we call an e-structure to each subex- 
pression. An e-structure consists of a list of dis- 
tinct syntactic categories, paired with English word 

lattices: (<syn,  l a t > ,  <syn,  l a t > ,  . . . ) .  As we 
climb up the input expression, the grammar  glues 
together various word lattices. The grammar  is 
organized around semantic feature pat terns rather 
than English syn tax- - ra ther  than having one S -> 
NP-VP rule with many semantic triggers, we have one 
AGENT-PATIENT rule with many English renderings. 
Here is a sample rule: 

((xl  :agent) (x2 :patient) (x3 :rest) 
-> 
(s (seq (xl rip) (x3 v-tensed) (x2 np))) 
(s (seq (xl np) (x3 v-tensed) (wrd "that") 

(x2 s ) ) )  
(s (seq (xl np) (x3 v-tensed) 

(x2 (*OR* in,  in f -ra i se ) ) ) )  
(s (seq (x2 np) (x3 v-passive) (vrd "by") 

(xl rip))) 
( in ,  (seq (wrd "for") (xl np) (wrd "to") 

(x3 v) (x2 np))) 
( inf-raise  (seq (xl np) 

(or (seq (wrd "of") (x3 np) 
(x2 np)) 

(seq (wrd "to 't ) (x3 v) 
(x2 rip))))) 

(rip (seq (x3 rip) (vrd "of f' ) (x2 np) 
(wrd "by") (xl np)))) 

Given an input semantic pat tern,  we locate the 
first grammar  rule that  matches it, i.e., a rule whose 
left-hand-side features except : r e s t  are contained in 
the input pattern.  The feature : r e s t  is our mech- 
anism for allowing partial matchings between rules 
and semantic inputs. Any input features that  are 
not matched by the selected rule are collected in 
: r e s t ,  and recursively matched against other gram- 
mar rules. 

For the remaining features, we compute new e- 
structures using the rule's right-hand side. In this 
example, the rule gives four ways to make a syntactic 
S, two ways to make an infinitive, and one way to 
make an NP. Corresponding word lattices are built 
out of elements that  include: 

• ( s eq  x y . . .  ) - -c rea te  a lattice by sequentially 
gluing together the lattices x, y, and . . .  

• ( o r  x y . . .  ) - -c rea te  a lattice by branching on 
x, y, and . . .  

• (wrd w)--create  the smallest lattice: a single 
arc labeled with the word w. 

• (xn < s y n > ) - - i f  the e-structure for the se- 
mantic material  under the xn feature contains 
< s y n ,  l a t > ,  return the word lattice l a t ;  oth- 
erwise fail. 

Any failure inside an alternative right-hand side of 
a rule causes that  alternative to fail and be ignored. 
When all alternatives have been processed, results 
are collected into a new e-structure.  If two or more 
word lattices can be created from one rule, they are 
merged with a final or .  
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Because our g r am m ar  is organized around seman- 
tic patterns,  it nicely concentrates all of the mate-  
rial required to build word lattices. Unfortunately, 
it forces us to restate the same syntactic constraint 
in many  places. A second problem is tha t  sequential 
composition does not allow us to insert new words 
inside old lattices, as needed to generate sentences 
like John looked it up. We have extended our no- 
tat ion to allow such constructions, but  the full so- 
lution is to move to a unification-based framework, 
in which e-structures are replaced by arbi t rary fea- 
ture structures with syn, sere, and l a t  fields. Of 
course, this requires extremely efficient handling of 
the disjunctions inherent in large word lattices. 

8 R e s u l t s  

We implemented a medium-sized g r am m ar  of En- 
glish based on the ideas of the previous section, for 
use in experiments and in the JAPANGLOSS ma-  
chine translation system. The system converts a se- 
mant ic  input into a word lattice, sending the result 
to one of three sentence extraction programs: 

• RANDOM--follows a random path  through the 
lattice. 

• DEFAULT--follows the topmost  pa th  in the lat- 
tice. All alternatives are ordered by the gram- 
mar  writer, so that  the topmost  lattice pa th  cor- 
responds to various defaults. In our g rammar ,  
defaults include singular noun phrases, the def- 
inite article, nominal  direct objects, in versus 
on, active voice, that versus who, the alphabet-  
ically first synonym for open-class words, etc. 

• STATISTICAL--a sentence extractor based on 
word bigram probabilities, as described in Sec- 
tions 5 and 7. 

For evaluation, we compare English outputs from 
these three sources. We also look at lattice prop- 
erties and execution speed. Space limitations pre- 
vent us from tracing the generation of many long 
sentences--we show instead a few short ones. Note 
that the sample sentences shown for the RANDOM ex- 
traction model are not of the quality that would nor- 
mally be expected from a knowledge-based genera- 
tor, because of the high degree of ambigui ty  (un- 
specified features) in our semantic input. This in- 
completeness can be in turn a t t r ibuted in par t  to 
the lack of such information in Japanese source text  
and in part  to our own desire to find out how much 
of the ambiguity can be automatical ly  resolved with 
our statistical model. 

INPUT 

(A / [accusel 
:AGENT SHE 
:PATIENT (T / [thieve[ 

:AGENT HE 
:PATIENT (M / Imotorcar]))) 

LATTICE CREATED 

44 nodes, 217 arcs, 381,440 paths; 
59 distinct unigrams, 430 distinct bigrams. 

RANDOM EXTRACTION 

Her incriminates for him to thieve an 
automobiles. 

She am accusing for him to steal autos. 

She impeach that him thieve that there 
was the auto. 

DEFAULT EXTRACTION 

She accuses that he steals the auto. 

STATISTICAL BIGRAM EXTRACTION 

1 She charged that he stole the car. 
2 She charged that he stole the cars. 
3 She charged that he stole cars. 
4 She charged that he stole car. 
5 She charges that he stole the car. 

TOTAL EXECUTION TIME: 22.77 CPU seconds. 

INPUT 

(A / Ihave the q u a l i t y  of beingl  
:DOMAIN (P / [procurel  

:AGENT (A2 / [American[) 
:PATIENT (G / [gun, arml))  

:RANGE (E / [easy, effortless[)) 

LATTICE CREATED 

64 nodes,  229 a r c s ,  1,345,536 pa ths ;  
47 d i s t i n c t  unigrams, 336 d i s t i n c t  bigrams.  

RANDOM EXTRACTION 

Procurals of guns by Americans were easiness. 

A procurements of guns by a Americans will 
be an effortlessness. 

It is easy that Americans procure that 
there is gun. 

DEFAULT EXTRACTION 

The procural of the gun by the American is 
easy. 

STATISTICAL BIGRAM EXTRACTION 

1 It is easy for Americans to obtain a gun. 
2 It will be easy for Americans to obtain a 
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gun. 
3 It is easy for Americans to obtain gun. 
4 It is easy for American to obtain a gun. 
5 It was easy for Americans to obtain a gun. 

TOTAL EXECUTION TIME: 23.30 CPU seconds. 

INPUT 

(H / [have the quality of being[ 
:DOMAIN (H2 / [have the quality of being] 

:DOMAIN (E / l e a r ,  t ake  inl 
:AGENT YOU 
:PATIENT (P / IpouletJ)) 

:RANGE (0 / Jobligatory[)) 
:RANGE (P2 / [possible, potential[)) 

LATTICE CREATED 

260 nodes, 703 arcs, 10,734,304 paths; 
48 distinct unigrams, 345 distinct bigrams. 

RANDOM EXTRACTION 

You may be obliged to eat that there was 
the poulet. 

An consumptions of poulet by you may be 
the requirements. 

It might be the requirement that the chicken 
are eaten by you. 

DEFAULT EXTRACTION 

That the consumption of the chicken by you 
is obligatory is possible. 

STATISTICAL BIGRAM EXTRACTION 

1 You may have to  ea t  ch icken .  
2 You might have to  ea t  ch icken .  
3 You may be r e q u i r e d  to  ea t  ch icken .  
4 You might be r e q u i r e d  to  ea t  ch icken .  
5 You may be obliged to eat chicken. 

TOTAL EXECUTION TIME: 58.78 CPU seconds.  

A final (abbreviated) example comes from interlin- 
gua expressions produced by the semantic analyzer 
of JAPANGLOSS, involving long sentences charac- 
teristic of newspaper text. Note that  although the 
lattice is not much larger than in the previous ex- 
amples, it now encodes many more paths. 

LATTICE CREATED 

267 nodes ,  726 a r c s ,  
4 ,831 ,867 ,621 ,815 ,091 ,200  pa ths ;  
67 d i s t i n c t  un igrams,  332 d i s t i n c t  bigraras.  

RANDOM EXTRACTION 

Subsidiary on an Japan's of Perkin Elmer 
Co.'s hold a stocks's majority, and as for 
a beginnings, productia of an stepper and 
an dry etching devices which were applied 
for an constructia of microcircuit 
microchip was planed. 

STATISTICAL BIGRAM EXTRACTION 

Perk in  Elmer C o . ' s  Japanese s u b s i d i a r y  
ho lds  m a j o r i t y  of s t o c k s ,  and as f o r  t h e  
b e g i n n i n g ,  p r o d u c t i o n  of s t e p p e r s  and dry 
e t c h i n g  dev ices  t h a t  w i l l  be used to  
c o n s t r u c t  m i c r o c i r c u i t  ch ips  are  p l anned .  

TOTAL EXECUTION TIME: 106.28 CPU seconds .  

9 S t r e n g t h s  a n d  W e a k n e s s e s  

Many-paths generation leads to a new style of incre- 
mental  grammar  building. When dealing with some 
new construction, we first rather mindlessly overgen- 
erate, providing the grammar  with many ways to ex- 
press the same thing. Then we watch the statistical 
component make its selections. If the selections are 
correct, there is no need to refine the grammar.  

For example, in our first grammar,  we did not 
make any lexical or grammatical  case distinctions. 
So our lattices included paths like Him saw I as 
well as He saw me. But the statistical model stu- 
diously avoided the bad paths, and in fact, we have 
yet to see an incorrect case usage from our genera- 
tor. Likewise, our grammar  proposes both his box 
and the box of he/him, but the former is statistically 
much more likely. Finally, we have no special rule 
to prohibit articles and possessives from appearing 
in the same noun phrase, but the bigram the his is 
so awful that  the null article is always selected in 
the presence of a possessive pronoun. So we can get 
away with t rea t ing  possessive p ronouns  like regular  
adjectives, great ly  s impl i fy ing  our g r a m m a r .  

We have also been able to s impl i fy  the genera- 
t ion  of morphological variants. While true irregular 
forms (e.g., child~children) must be kept in a small 
exception table, the problem of "multiple regular" 
patterns usually increases the size of this table dra- 
matically. For example, there are two ways to plu- 
ralize a noun ending in -o, but often only one is cor- 
rect for a given noun (potatoes, but photos). There 
are many such inflectional and derivational patterns. 
Our approach is to apply all patterns and insert all 
results into the word lattice. Fortunately, the statis- 
tical model steers clear of sentences containing non- 
words like potatos and photoes. We thus get by with 
a very small exception table, and furthermore,  our 
spelling habits automatically adapt  to the training 
corpus. 
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Most importantly,  the two-level generation model 
allows us to indirectly apply lexical constraints for 
the selection of open-class words, even though these 
constraints are not explicitly represented in the gen- 
erator's lexicon. For example, the selection of a 
word from a pair of frequently co-occurring adja- 
cent words will automatically create a strong bias 
for the selection of the other member of the pair, if 
the latter is compatible with the semantic concept 
being lexicalized. This type of collocational knowl- 
edge, along with additional collocational information 
based on long- and variable-distance dependencies, 
has been successfully used in the past to increase 
the fluency of generated text (Smadja and McKe- 
own, 1991). But, although such collocational infor- 
mation can be extracted automatically, it has to be 
manually reformulated into the generator's represen- 
tational framework before it can be used as an addi- 
tional constraint during pure knowledge-based gen- 
eration. In contrast, the two-level model provides 
for the automatic collection and implicit represen- 
tation of collocational constraints between adjacent 
words. 

In addition, in the absence of external lexical con- 
straints the language model prefers words more typ- 
ical of and common in the domain, rather than 
generic or overly specialized or formal alternatives. 
The result is text that  is more fluent and closely sim- 
ulates the style of the training corpus in this respect. 
Note for example the choice of obtain in the second 
example of the previous section in favor of the more 
formal procure. 

Many times, however, the statistical model does 
not finish the job. A bigram model will happily se- 
lect a sentence like I only hires men who is good 
pilots. If we see plenty of output  like this, then 
grammatical work on agreement is needed. Or con- 
sider They planned increase in production, where 
the model drops an article because planned in- 
crease is such a frequent bigram. This is a subtle 
interaction--is  planned a main verb or an adjective? 
Also, the model prefers short sentences to long ones 
with the same semantic content, which favors con- 
ciseness, but sometimes selects bad n-grams to avoid 
a longer (but clearer) rendition. This an interesting 
problem not encountered in otherwise similar speech 
recognition models. We are currently investigating 
solutions to all of these problems in a highly exper- 
imental setting. 

10  C o n c l u s i o n s  

Statistical methods give us a way to address a wide 
variety of knowledge gaps in generation. They even 
make it possible to load non-traditional duties onto 
a generator, such as word sense disambiguation for 
machine translation. For example, bei in Japanese 
may mean either American or rice, and sha may 
mean shrine or company. If for some reason, the 

analysis of beisha fails to resolve these ambiguities, 
the generator can pass them along in the lattice it 
builds, e.g.: 

the American shrine 

In this case, the statistical model has a strong 
preference for the American company, which is 
nearly always the correct translation. 7 

Furthermore, our two-level generation model can 
implicitly handle both paradigmatic and syntag- 
matic lexical constraints, leading to the simplifica- 
tion of the generator's grammar and lexicon, and 
enhancing portability. By retraining the statisti- 
cal component on a different domain, we can au- 
tomatically pick up the peculiarities of the sublan- 
guage such as preferences for particular words and 
collocations. At the same time, we take advantage 
of the strength of the knowledge-based approach 
which guarantees grammatical  inputs to the statisti- 
cal component,  and reduces the amount  of language 
structure that  is to be retrieved from statistics. This 
approach addresses the problematic aspects of both 
pure knowledge-based generation (where incomplete 
knowledge is inevitable) and pure statistical bag gen- 
eration (Brown et al., 1993) (where the statistical 
system has no linguistic guidance). 

Of course, the results are not perfect. We can im- 
prove on them by enhancing the statistical model, 
or by incorporating more knowledge and constraints 
in the lattices, possibly using automatic knowledge 
acquisition methods. One direction we intend to 
pursue is the rescoring of the top N generated sen- 
tences by more expensive (and extensive) methods, 
incorporating for example stylistic features or ex- 
plicit knowledge of flexible collocations. 
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