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We predict discourse segment boundaries 
from linguistic features of utterances, using 
a corpus of spoken narratives as data. We 
present two methods for developing seg- 
mentation algorithms from training data: 
hand tuning and machine learning. When 
multiple types of features are used, results 
approach human performance on an inde- 
pendent test set (both methods), and using 
cross-validation (machine learning). 

1 I n t r o d u c t i o n  

Many have argued that discourse has a global struc- 
ture above the level of individual utterances, and 
that linguistic phenomena like prosody, cue phra- 
ses, and nominal reference are partly conditioned by 
and reflect this structure (cf. (Grosz and Hirschberg, 
1992; Grosz and Sidner, 1986; Hirschberg and Grosz, 
1992; Hirschberg and Litman, 1993; Hirschberg and 
Pierrehumbert, 1986; Hobbs, 1979; Lascarides and 
Oberlander, 1992; Linde, 1979; Mann and Thomp- 
son, 1988; Polanyi, 1988; Reichman, 1985; Webber, 
1991)). However, an obstacle to exploiting the rela- 
tion between global structure and linguistic devices 
in natural language systems is that there is too little 
data about how they constrain one another. We 
have been engaged in a study addressing this gap. 
In previous work (Passonneau and Litman, 1993), 
we reported on a method for empirically validating 
global discourse units, and on our evaluation of algo- 
rithms to identify these units. We found significant 
agreement among naive subjects on a discourse seg- 
mentation task, which suggests that global discourse 
units have some objective reality. However, we also 
found poor correlation of three untuned algorithms 
(based on features of referential noun phrases, cue 
words, and pauses, respectively) with the subjects' 
segmentations. 

In this paper, we discuss two methods for develo- 
ping segmentation algorithms using multiple know- 

*Bellcore did not support the second author's work. 

ledge sources. In section 2, we give a brief overview 
of related work and summarize our previous results. 
In section 3, we discuss how linguistic features are 
coded and describe our evaluation. In section 4, we 
present our analysis of the errors made by the best 
performing untuned algorithm, and a new algorithm 
that relies on enriched input features and multiple 
knowledge sources. In section 5, we discuss our use 
of machine learning tools to automatically construct 
decision trees for segmentation from a large set of 
input features. Both the hand tuned and automa-  
tically derived algorithms improve over our previ- 
ous algorithms. The primary benefit of the hand 
tuning is to identify new input features for impro- 
ving performance. Machine learning tools make it 
convenient to perform numerous experiments, to use 
large feature sets, and to evaluate results using cross- 
validation. We discuss the significance of our results 
and briefly compare the two methods in section 6. 

2 D i s c o u r s e  S e g m e n t a t i o n  

2.1 R e l a t e d  W o r k  

Segmentation has played a significant role in much 
work on discourse. The linguistic structure of Grosz 
and Sidner's (1986) tri-partite discourse model con- 
sists of multi-utterance segments whose hierarchical 
relations are isomorphic with intentional structure. 
In other work (e.g., (Hobbs, 1979; Polanyi, 1988)), 
segmental structure is an artifact of coherence re- 
lations among utterances, and few if any specific 
claims are made regarding segmental structure per 
se. Rhetorical Structure Theory (RST) (Mann and 
Thompson, 1988) is another tradition of defining re- 
lations among utterances, and informs much work 
in generation. In addition, recent work (Moore and 
Paris, 1993; Moore and Pollack, 1992) has addressed 
the integration of intentions and rhetorical relations. 
Although all of these approaches have involved de- 
tailed analyses of individual discourses or represen- 
tative corpora, we believe there is a need for more 
rigorous empirical studies. 

Researchers have begun to investigate the ability 
of humans to agree with one another on segmen- 
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tation, and to propose methodologies for quantify- 
ing their findings. Several studies have used expert 
coders to locally and globally structure spoken dis- 
course according to the model of Grosz and Sid- 
net (1986), including (Grosz and Hirschberg, 1992; 
Hirschberg and Grosz, 1992; Nakatani et al., 1995; 
Stifleman, 1995). Hearst (1994) asked subjects 
to place boundaries between paragraphs of exposi- 
tory texts, to indicate topic changes. Moser and 
Moore (1995) had an expert coder assign segments 
and various segment features and relations based 
on RST. To quantify their findings, these studies 
use notions of agreement (Gale et al., 1992; Mo- 
set and Moore, 1995) and/or reliability (Passonneau 
and Litman, 1993; Passonneau and Litman, to ap- 
pear; Isard and Carletta, 1995). 

By asking subjects to segment discourse using a 
non-linguistic criterion, the correlation of linguistic 
devices with independently derived segments can 
then be investigated in a way that avoids circularity. 
Together, (Grosz and Hirschberg, 1992; Hirschberg 
and Grosz, 1992; Nakatani et al., 1995) comprise 
an ongoing study using three corpora: professio- 
nally read AP news stories, spontaneous narrative, 
and read and spontaneous versions of task-oriented 
monologues. Discourse structures are derived from 
subjects' segmentations, then statistical measures 
are used to characterize these structures in terms of 
acoustic-prosodic features. Grosz and Hirschberg's 
work also used the classification and regression tree 
system CART (Breiman et al., 1984) to automati- 
cally construct and evaluate decision trees for classi- 
fying aspects of discourse structure from intonatio- 
nal feature values. Morris and Hirst (1991) structu- 
red a set of magazine texts using the theory of (Grosz 
and Sidner, 1986), developed a thesaurus-based le- 
xical cohesion algorithm to segment text, then qua- 
litatively compared their segmentations with the re- 
sults. Hearst (1994) presented two implemented seg- 
mentation algorithms based on term repetition, and 
compared the boundaries produced to the bounda- 
ries marked by at least 3 of 7 subjects, using in- 
formation retrieval metrics. Kozima (1993) had 16 
subjects segment a simplified short story, developed 
an algorithm based on lexical cohesion, and qualita- 
tively compared the results. Reynar (1994) propo- 
sed an algorithm based on lexical cohesion in con- 
junction with a graphical technique, and used infor- 
mation retrieval metrics to evaluate the algorithm's 
performance in locating boundaries between conca- 
tenated news articles. 

2.2  Our  P r e v i o u s  Resu l t s  

We have been investigating a corpus of monologues 
collected and transcribed by Chafe (1980), known 
as the Pear stories. As reported in (Passonneau 
and Litman, 1993), we first investigated whether 
units of global structure consisting of sequences of 
utterances could be reliably identified by naive sub- 

jects. We analyzed linear segmentations of 20 nar- 
ratives performed by naive subjects (7 new subjects 
per narrative), where speaker intention was the seg- 
ment criterion. Subjects were given transcripts, as- 
ked to place a new segment boundary between li- 
nes (prosodic phrases) 1 wherever the speaker had 
a new communicative goal, and to briefly describe 
the completed segment. Subjects were free to as- 
sign any number of boundaries. The qualitative 
results were that segments varied in size from 1 
to 49 phrases in length (Avg.-5.9), and the rate 
at which subjects assigned boundaries ranged from 
5.5% to 41.3%. Despite this variation, we found 
statistically significant agreement among subjects 
across all narratives on location of segment boun- 
daries (.114 z 10 -6 < p < .6 z 10-9). 

We then looked at the predictive power of lin- 
guistic cues for identifying the segment boundaries 
agreed upon by a significant number of subjects. We 
used three distinct algorithms based on the distri- 
bution of referential noun phrases, cue words, and 
pauses, respectively. Each algorithm (NP-A, CUE- 
A, PAUSE-A) was designed to replicate the subjects' 
segmentation task (break up a narrative into conti- 
guous segments, with segment breaks falling between 
prosodic phrases). NP-A used three features, while 
CUE-A and PAUSE-A each made use of a single fea- 
ture. The features are a subset of those described in 
section 3. 

To evaluate how well an algorithm predicted seg- 
mental structure, we used the information retrie- 
val (IR) metrics described in section 3. As repor- 
ted in (Passonneau and Litman, to appear), we also 
evaluated a simple additive method for combining 
algorithms in which a boundary is proposed if each 
separate algorithm proposes a boundary. We tested 
all pairwise combinations, and the combination of 
all three algorithms. No algorithm or combination 
of algorithms performed as well as humans. NP- 
A performed better than the other unimodal algo- 
rithms, and a combination of NP-A and PAUSE-A 
performed best. We felt that significant improve- 
ments could be gained by combining the input fea- 
tures in more complex ways rather than by simply 
combining the outputs of independent algorithms. 

3 M e t h o d o l o g y  

3.1 B o u n d a r y  C l a s s i f i c a t i o n  

We represent each narrative in our corpus as a se- 
quence of potential boundary sites, which occur bet- 
ween prosodic phrases. We classify a potential boun- 
dary site as boundary if it was identified as such 
by at least 3 of the 7 subjects in our earlier study. 
Otherwise it is classified as non-boundary. Agree- 
ment among subjects on boundaries was significant 
at below the .02% level for values of j  ___ 3, where j is 

1 We used Chafe's (1980) prosodic analysis. 
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. .Because he ' s  looking a t  the  girl. 

]1 SUBJECT (non-boundary)[ 
[.75] Falls over, 

[ 5 SUBJECTS (boundary) l 
[1.35] uh  the re ' s  no conversa t ion  in this  movie.  

[ 0  S U B J E C T S  (non-boundary)[ 
[.6] T h e r e ' s  sounds ,  

[ 0  S U B J E C T S  (.on-boundary)] 
yOU know, 

I O SUBJECTS (non-boundary) l 
like the  birds and  stuff ,  

10 S U B J E C T S  (non-boundary)] 
bu t  there. ,  t he  h u m a n s  beings  in it d o n ' t  say any th ing .  

1 7  SUBJECTS (boundary)[ 
ll.01 He falls over, 

Figure h Excerpt from narr. 6, with boundaries. 

the number of subjects (1 to 7), on all 20 narratives. 2 
Fig. 1 shows a typical segmentation of one of the 

narratives in our corpus. Each line corresponds to 
a prosodic phrase, and each space between the li- 
nes corresponds to a potential boundary site. The 
bracketed numbers will be explained below. The bo- 
xes in the figure show the subjects'  responses at each 
potential  boundary site, and the resulting boundary 
classification. Only 2 of the 7 possible boundary si- 
tes are classified as boundary. 

3.2 C o d i n g  o f  L i n g u i s t i c  F e a t u r e s  

Given a narrative of n prosodic phrases, the n-1 po- 
tential boundary sites are between each pair of pros- 
odic phrases Pi and P/+I, i from 1 to n-1. Each 
potential  boundary site in our corpus is coded using 
the set of linguistic features shown in Fig. 2. 

Values for the prosodic features are obtained by 
automatic  analysis of the transcripts, whose con- 
ventions are defined in (Chafe, 1980) and illustra- 
ted in Fig. h .... and "?" indicate sentence- 
final intonational contours; "," indicates phrase-final 
but  not sentence final intonation; "[X]" indicates 
a pause lasting X seconds; ".." indicates a break 
in timing too short to be measured. The featu- 
res before and after depend on the final punctua- 
tion of the phrases Pi and Pi+I, respectively. The 
value is '+sentence.final.contour'  if "." or "?", '- 
sentence.final.contour' if ",". Pause is assigned ' true'  
if Pi+l begins with [X], 'false' otherwise. Duration 
is assigned X if pause is ' true' ,  0 otherwise. 

The cue phrase features are also obtained by au- 
tomatic  analysis of the transcripts. Cue1 is assigned 
' t rue '  if the first lexical i tem in PI+I is a member of 
the set of cue words summarized in (Hirschberg and 
Litman,  1993). Word1 is assigned this lexical i tem if 

2 W e  p r e v i o u s l y  u s e d  a g r e e m e n t  b y  4 s u b j e c t s  a s  t h e  
threshold for boundaries; for j > 4, agreement was signi- 
ficant at the .01~0 level. (Passonneau and Litman, 1993) 

• P r o s o d i c  F e a t u r e s  
- be fore :+sen tence . f ina l . con tour , - sen tence . f lna l . con tour  
- after:  +sen tence . f ina l . con tour , - sen tence . f lna l . con tour .  
- pause:  t rue ,  false. 
- dura t ion :  cont inuous .  

• C u e  P h r a s e  F e a t u r e s  
- cue1:  t rue ,  false. 
- word1: also, and,  anyway,  basically,  because ,  bu t ,  fi- 

nally, f irst ,  like, meanwhi le ,  no, now, oh,  okay, only, 
or,  see, so, t hen ,  well, where ,  NA.  

-- cue2:  t rue ,  false. 
- word2: and,  anyway,  because ,  boy, bu t ,  now,  okay, or, 

r ight ,  so, still, t hen ,  NA.  
• N o u n  P h r a s e  F e a t u r e s  

- coref: +co re f , - co re r ,  NA.  
- infer: +infer ,  -infer, NA.  
- global .pro:  +g loba l .p ro ,  -g lobal .pro ,  NA.  

• C o m b i n e d  F e a t u r e  

-- cue-prosody:  complex ,  t rue ,  false. 

Figure 2: Features and their potential  values. 

cuel is true, 'NA' (not applicable) otherwise, a Cue2 
is assigned ' t rue '  if cue, is true and the second lexi- 
cal i tem is also a cue word. Word2 is assigned the 
second lexical i tem if cue2 is true, 'NA' otherwise. 

Two of the noun phrase (NP) features are hand- 
coded, along with functionally independent clauses 
(FICs), following (Passonneau, 1994). The  two aut- 
hors coded independently and merged their results. 
The  third feature, global.pro, is computed from the 
hand coding. FICs are tensed clauses tha t  are neit- 
her verb arguments nor restrictive relatives. If a new 
FIC (C/) begins in prosodic phrase Pi+I,  then NPs 
in Cj are compared with NPs in previous clauses and 
the feature values assigned as follows4: 

1. corer = '+coref '  if Cj contains an NP that  co- 
refers with an NP in Cj-1;  else corer= ' - cord '  

2. infer= '+infer '  i fCj  contains an NP whose refe- 
rent can be inferred from an NP in Cj -1  on the 
basis of a pre-defined set of inference relations; 
else i n f e r -  '-infer' 

3. global.pro = '+global .pro '  if Cj contains a defi- 
nite pronoun whose referent is mentioned in a 
previous clause up to the last boundary assigned 
by the algorithm; else global.pro = '-global.pro' 

If a new FIC is not initiated in Pi+I,  values for all 
three features are 'NA'. 

Cue-prosody, which encodes a combination of 
prosodic and cue word features, was motivated by 
an analysis of IR errors on our training data, as de- 
scribed in section 4. Cue-prosody is 'complex'  if: 

aThe cue phrases that occur in the corpus &re shown 
as potential values in Fig. 2. 

4The NP algorithm can assign multiple boundaries 
within one prosodic phrase if the phrase contains mul- 
tiple clauses; these very rare cases are normalized (Pas- 
sonneau and Litman, 1993). 
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. .Because hei's looking a t  the  girl. 
[.75] (ZIBRO-PRONOUNi) Falls over, 

before a f t e r  pause  d u r a t i o n  cue 1 word 1 cue~ word;~ coref  infer  E;lobal.pro cue-prosodic  
+s.f.c -s.f.c true .75 false NA fM~e NA + + true 

Figure 3: Example feature coding of a potential boundary site. 

1. before = '+sentence.final.contour' 

2. pause = 'true'  

3. And either: 

(a) cuet = 'true',  wordt ~ 'and'  
(b) cuet = 'true',  word1 = 'and', cue2 = ' true',  

word2 ¢ 'and'  

Else, cue-prosody has the same values as pause. 
Fig. 3 illustrates how the first boundary site in 

Fig. 1 would be coded using the features in Fig. 2. 
The prosodic and cue phrase features were moti- 

vated by previous results in the literature. For ex- 
ample, phrases beginning discourse segments were 
correlated with preceding pause duration in (Grosz 
and Hirschberg, 1992; ttirschberg and Grosz, 1992). 
These and other studies (e.g.~ (iiirschberg and Lit- 
man, 1993)) also found it useful to distinguish bet- 
ween sentence and non-sentence final intonational 
contours. Initial phrase position was correlated with 
discourse signaling uses of cue words in (Hirschberg 
and Litman, 1993); a potential correlation between 
discourse signaling uses of cue words and adjacency 
patterns between cue words was also suggested. Fi- 
nally, (Litman, 1994) found that  treating cue phra- 
ses individually rather than as a class enhanced the 
results of (iiirschberg and Litman, 1993). 

Passonneau (to appear) examined some of the few 
claims relating discourse anaphoric noun phrases to 
global discourse structure in the Pear corpus. Re- 
suits included an absence of correlation of segmental 
structure with centering (Grosz et al., 1983; Kamey- 
ama, 1986), and poor correlation with the contrast 
between full noun phrases and pronouns. As noted 
in (Passonneau and Litman, 1993), the NP features 
largely reflect Passonneau's hypotheses that  adja- 
cent utterances are more likely to contain expres- 
sions that  corefer, or that  are inferentially linked, 
if they occur within the same segment; and that  a 
definite pronoun is more likely than a full NP to re- 
fer to an entity that  was mentioned in the current 
segment, if not in the previous utterance. 

3.3 E v a l u a t i o n  

The segmentation algorithms presented in the next 
two sections were developed by examining only a 
training set of narratives. The algorithms are then 
evaluated by examining their performance in pre- 
dicting segmentation on a separate test set. We cur- 
rently use 10 narratives for training and 5 narratives 
for testing. (The remaining 5 narratives are reser- 
ved for future research.) The 10 training narratives 

Traininl~ Set  .63 .72 .06 .12 
Tes t  Set  .64 .68 .07 .11 

Table 1: Average human performance. 

range in length from 51 to 162 phrases (Avg.=101.4), 
or from 38 to 121 clauses (Avg.=76.8). The 5 test 
narratives range in length from 47 to 113 phrases 
(Avg.=S7.4), or from 37 to 101 clauses (Avg.=69.0). 
The ratios of test to training da ta  measured in narra- 
tives, prosodic phrases and clauses, respectively, are 
50.0%, 43.1% and 44.9%. For the machine learning 
algorithm we also estimate performance using cross- 
validation (Weiss and Kulikowski, 1991), as detailed 
in Section 5. 

To quantify algorithm performance, we use the in- 
formation retrieval metrics shown in Fig. 4. Recall 
is the ratio of correctly hypothesized boundaries to 
target boundaries. Precision is the ratio of hypo- 
thesized boundaries that  are correct to the total hy- 
pothesized boundaries. (Cf. Fig. 4 for fallout and 
error.) Ideal behavior would be to identify all and 
only the target boundaries: the values for b and c 
in Fig. 4 would thus both equal O, representing no 
errors. The ideal values for recall, precision, fallout, 
and error are 1, 1, 0, and 0, while the worst values 
are 0, 0, 1, and 1. To get an intuitive summary of 
overall performance, we also sum the deviation of  
the observed value from the ideal value for each me- 
tric: (1-recall) + (1-precision) + fallout + error. The 
summed deviation for perfect performance is thus 0. 

Finally, to interpret our quantitative results, we 
use the performance of our human subjects as a tar- 
get goal for the performance of our algorithms (Gale 
et al., 1992). Table 1 shows the average human per- 
formance for both the training and test sets of nar- 
ratives. Note that  human performance is basically 
the same for both sets of narratives. However, two 

Subjects 
Algorithm Boundary INon-Doundary 
Boundary a b 

Non-Boundary c d 

Recal l  = 

Prec i s ion  = 

Fal lout  ---- b 

Error  ---- ~ 

Figure 4: Information retrieval metrics. 
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factors prevent this performance from being closer 
to ideal (e.g., recall and precision of 1). The first is 
the wide variation in the number of boundaries that 
subjects used, as discussed above. The second is the 
inherently fuzzy nature of boundary location. We 
discuss this second issue at length in (Passonnean 
and Litman, to appear), and present relaxed IR me- 
trics that penalize near misses less heavily in (Lit- 
man and Passonneau, 1995). 

4 H a n d  T u n i n g  

To improve performance, we analyzed the two types 
of IR errors made by the original NP algorithm (Pas- 
sonneau and Litman, 1993) on the training data. 
Type "b" errors (cf. Fig. 4), mis-classification of 
non-boundaries, were reduced by changing the co- 
ding features pertaining to clauses and NPs. Most 
"b" errors correlated with two conditions used in the 
NP algorithm, identification of clauses and of infe- 
rential links. The revision led to fewer clauses (more 
assignments of 'NA' for the three NP features) and 
more inference relations. One example of a change 
to clause coding is that formulaic utterances having 
the structure of clauses, but which function like in- 
terjections, are no longer recognized as independent 
clauses. These include the phrases let's see, let me 
see, I don't know, you know when they occur with no 
verb phrase argument. Other changes pertained to 
sentence fragments, unexpected clausal arguments, 
and embedded speech. 

Three types of inference relations linking succes- 
sive clauses (Ci-1, Ci) were added (originally there 
were 5 types (Passonneau, 1994)). Now, a pronoun 
(e.g., it, that, this) in Ci referring to an action, event 
or fact inferrable from Ci-1 links the two clauses. So 
does an implicit argument, as in Fig. 5, where the 
missing argument of notice is inferred to be the event 
of the pears falling. The third case is where an NP 
in Ci is described as part of an event that results 
directly from an event mentioned in Ci-1. 

"C" type errors (cf. Fig. 4), mis-classification 
of boundaries, often occurred where prosodic and 
cue features conflicted with NP features. The origi- 
nal NP algorithm assigned boundaries wherever the 
three values '-coref', '-infer', '-global.pro' (defined in 
section 3) co-occurred, represented as the first con- 
ditional statement of Fig. 6. Experiments led to the 
hypothesis that the most improvement came by as- 
signing a boundary if the cue-prosody feature had 
the value 'complex', even if the algorithm would not 
otherwise assign a boundary, as shown in Fig. 6. 

CI. P h r .  
6 3.01 

7 
8 3 .02  

[1.1 [.7] A-nd]  he ' s  no t  really. ,  d o e s n ' t  seem 
to  be  p a y i n g  all t h a t  m u c h  a t t e n t i o n  

[.557 b e c a u s e  [.45]] you  know the pears fa l l i ,  
and . .  he  d o e s n ' t  r ea l ly  no t i ce  ( O i ) ,  

Figure 5: Inferential link due to implicit argument. 

i f  ( c o r e f  = - c o r e f  a n d  infer  = - in fe r  a n d  g l o b a l . p r o  = - g l o b a l . p r o )  
t h e n  boundary 

e l s e | f  c u e - p r o s o d y  ---- c o m p l e x  t h e n  boundary 
e l s e  non-boundary 

Figure 6: Condition 2 algorithm. 

We refer to the original NP algorithm applied to 
the initial coding as Condition 1, and the tuned al- 
gorithm applied to the enriched coding as Condition 
2. Table 2 presents the average IR scores across 
the narratives in the training set for both conditi- 
ons. Reduction of "b" type errors raises precision, 
and lowers fallout and error rate. Reduction of "c" 
type errors raises recall, and lowers fallout and error 
rate. All scores improve in Condition 2, with pre- 
cision and fallout showing the greatest relative im- 
provement. The major difference from human per- 
formance is relatively poorer precision. 

The standard deviations in Table 2 are often close 
to 1/4 or 1/3 of the reported averages. This indicates 
a large amount of variability in the data, reflecting 
wide differences across narratives (speakers) in the 
training set with respect to the distinctions recogni- 
zed by the algorithm. Although the high standard 
deviations show that the tuned algorithm is not well 
fitted to each narrative, it is likely that it is overspe- 
cialized to the training sample in the sense that test 
narratives are likely to exhibit further variation. 

Table 3 shows the results of the hand tuned al- 
gorithm on the 5 randomly selected test narratives 
on both Conditions 1 and 2. Condition 1 results, 
the untuned algorithm with the initial feature set, 
are very similar to the training set except for worse 
precision. Thus, despite the high standard devia- 
tions, 10 narratives seems to have been a sufficient 
sample size for evaluating the initial NP algorithm. 
Condition 2 results are better than condition 1 in 
Table 3, and condition 1 in Table 2. This is strong 
evidence that the tuned algorithm is a better pre- 
dictor of segment boundaries than the original NP 
algorithm. Nevertheless, the test results of condition 
2 are much worse than the corresponding training re- 
sults, particularly for precision (.44 versus .62). This 

Averalse  Reca l l  P r e c  Fal l  E r r o r  S u m D e v  
C o n d i t i o n  1 .42 .40 .14 .22 1.54 
S td .  Dev.  .17 .12 .06 .07 .34 
C o n d i t i o n  2 .58 .62 .08 .14 1.02 
S td .  Dev.  .14 .10 .04 .05 .18 

Table 2: Performance on training set. 

A v e r a g e  Reca l l  P r e c  Fall  E r r o r  S u m D e v  
C o n d i t i o n  1 .44 .29 .16 .21 1.64 
S td .  Dev.  .18 .17 .07 .05 .32 
C o n d i t i o n  2 .50 .44 .11 .17 1 .34 
S td .  Dev.  .21 .06 .03 .04 .29 

Table 3: Performance on test set. 
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confirms that  the tuned algorithm is over calibrated 
to the training set. 

5 M a c h i n e  L e a r n i n g  

We use the machine learning program C4.5 (Quin- 
lan, 1993) to automatically develop segmentation al- 
gorithms from our corpus of coded narratives, where 
each potential boundary site has been classified and 
represented as a set of linguistic features. The first 
input to C4.5 specifies the names of the classes to 
be learned (boundary and non-boundary), and the 
names and potential values of a fixed set of coding 
features (Fig. 2). The second input is the training 
data, i.e., a set of examples for which the class and 
feature values (as in Fig. 3) are specified. Our trai- 
ning set of 10 narratives provides 1004 examples of 
potential boundary sites. The output  of C4.5 is a 
classification algorithm expressed as a decision tree, 
which predicts the class of a potential boundary gi- 
ven its set of feature values. 

Because machine learning makes it convenient to 
induce decision trees under a wide variety of con- 
ditions, we have performed numerous experiments, 
varying the number of features used to code the trai- 
ning data, the definitions used for classifying a po- 
tential boundary site as boundary or non-boundary 5 
and the options available for running the C4.5 pro- 
gram. Fig. 7 shows one of the highest-performing 
learned decision trees from our experiments. This 
decision tree was learned under the following condi- 
tions: all of the features shown in Fig. 2 were used to 
code the training data, boundaries were classified as 
discussed in section 3, and C4.5 was run using only 
the default options. The decision tree predicts the 
class of a potential boundary site based on the featu- 
res before, after, duration, cuel, wordl, corer, infer, 
and global.pro. Note that  although not all available 
features are used in the tree, the included features 
represent 3 of the 4 general types of knowledge (pros- 
ody, cue phrases and noun phrases). Each level of 
the tree specifies a test on a single feature, with a 
branch for every possible outcome of the test. 6 A 
branch can either lead to the assignment of a class, 
or to another test. For example, the tree initially 
branches based on the value of the feature before. 
If the value is '-sentence.final.contour' then the first 
branch is taken and the potential boundary site is as- 
signed the class non-boundary. If the value of before 
is 'q-sentence.final.contour' then the second branch 
is taken and the feature corer is tested. 

The performance of this learned decision tree ave- 
raged over the 10 training narratives is shown in 
Table 4, on the line labeled "Learning 1". The line 
labeled "Learning 2" shows the results from another 

5(Litman and Passonneau, 1995) varies the number 
of subjects used to determine boundaries. 

eThe actual tree branches on every value of worda; 
the figure merges these branches for clarity. 

i f  before = - sen tence . f ina l . con tour  t h e n  non.boundary 
e l a e i f  before  = +sen tence . f ina l . con tou r  t h e n  

i f c o r e f  = N A  t h e n  non-boundary 
e l s e i f  coref  = + c o r e r  t h e n  

i f  a f t e r  ----. +sen tence . f ina l . con tou r  t h e n  
i f  du ra t i on  <__ 1.3 t h e n  non-boundary 
e l s e l f  d u r a t i o n  > 1.3 t h e n  boundary 

e l s e i f  a f t e r  = - sen tence . f ina l .contour  t h e n  
i f  word  1 E {also,basically,  because,f inal ly,  first,like, 

meanwhi le ,no,oh,okay,  only, aee ,so ,wel l ,where ,NA} 
t h e n  non-boundary 

e l s e | f  word  1 E {anyway,  bu t , now,o r , t hen}  t h e n  boundary 
e l s e | f  word  I = and  t h e n  

i f  du ra t i on  < 0.6 t h e n  non-boundary 
e l s e i f d u r a t ~ o n  > 0.6 t h e n  boundary 

e l s e i f  coref  = -corer  t h e n  
i f  infer = + in fe r  t h e n  non-boundary 
e l s e l f  infer = N A  t h e n  boundary 
e l s e i f i n f e r  = -infer t h e n  

i f  a f te r  = - sen tence . f ina l .contour  t h e n  boundary 
e l s e l f  a f t e r  = +sen tence . f ina l . con tou r  t h e n  

i f  cue 1 = t rue  t h e n  
i f  g loba l .pro  = N A  t h e n  boundary 
e l s e i f  global .pro  = -g loba l .pro  t h e n  boundary 
e l s e l f  g loba l .pro  = +g lo b a l . p ro  t h e n  

i f  du ra t i on  < 0.65 t h e n  non-boundary 
e l se i fdu ra t~ ' on  > 0.65 t h e n  boundary 

e l s e i f c u e  I = false t h e n  
i f  du ra t i on  > 0.5 t h e n  non.boundary 
e l s e l f d u r a t i o n  <: 0.5 t h e n  

i f  du ra t i on  < 0.35 t h e n  non-boundary 
e i s e i f d u r a t ~ o n  > 0.35 t h e n  boundary 

Figure 7: Learned decision tree for segmentation. 

machine learning experiment, in which one of the 
default C4.5 options used in "Learning 1" is over- 
ridden. The "Learning 2" tree (not shown due to 
space restrictions) is more complex than the tree of 
Fig. 7, but has slightly better performance. Note 
that  "Learning 1" performance is comparable to hu- 
man performance (Table 1), while "Learning 2" is 
slightly better than humans. The results obtained 
via machine learning are also somewhat better than 
the results obtained using hand tuning--particularly 
with respect to precision ("Condition 2" in Table 2), 
and are a great improvement over the original NP 
results ("Condition 1" in Table 2). 

The performance of the learned decision trees ave- 
raged over the 5 test narratives is shown in Table 5. 
Comparison of Tables 4 and 5 shows that ,  as with the 
hand tuning results (and as expected), average per- 
formance is worse when applied to the testing rather 
than the training data particularly with respect to 
precision. However, performance is an improvement 
over our previous best results ("Condition 1" in Ta- 
ble 3), and is comparable to ("Learning 1") or very 
slightly better than ("Learning 2") the hand tuning 
results ("Condition 2" in Table 3). 

We also use the resampling method of cross- 
validation (Weiss and Kulikowski, 1991) to estimate 
performance, which averages results over multiple 
partitions of a sample into test versus training data. 
We performed 10 runs of the learning program, each 
using 9 of the 10 training narratives for that  run's 
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A v e r a g e  Reca l l  P r e c  Fall E r r o r  S u m D e v  
L e a r n i n g  1 .54 .76 .04 .11 .85 
S td .  Dev.  .18 .12 .02 .04 .28 
L e a r n i n g  2 .59 .78 .03 .10 .76" 
S td .  Dev.  .22 .12 .02 .04 .29 

Table 4: Performance on training set. 
A v e r a g e  Reca l l  P r e c  Fall E r r o r  S u m D e v  

L e a r n i n g  1 .43 .48 .08 .16 1.34 
S td .  Dev.  .21 .13 .03 .05 .36 
L e a r n i n g  2 .47 .50 .09 .16 1.27 
S td .  Dev.  .18 .16 .04 .07 .42 

Table 5: Performance on test set. 
A v e r a g e  Reca l l  P r e c  Fall E r r o r  S u m D e v  

L e a r n i n g  1 .43 .63 .05 .15 1 .14 '  
S td .  Dev,  .19 .16 .03 .03 .24 
L e a r n i n g  2 .46 .61 .07 .15 1.15 
S td .  Dev.  .20 .14 .04 .03 .21 

Table 6: Using 10-fold cross-validation. 

training set (for learning the tree) and the remaining 
narrative for testing. Note that for each iteration 
of the cross-validation, the learning process begins 
from scratch and thus each training and testing set 
are still disjoint. While this method does not make 
sense for humans, computers can truly ignore pre- 
vious iterations. For sample sizes in the hundreds 
(our 10 narratives provide 1004 examples) 1O-fold 
cross-validation often provides a better performance 
estimate than the hold-out method (Weiss and Ku- 
likowski, 1991). Results using cross-validation are 
shown in Table 6, and are better than the estimates 
obtained using the hold-out method (Table 5), with 
the major improvement coming from precision. Bec- 
ause a different tree is learned on each iteration, the 
cross-validation evaluates the learning method, not 
a particular decision tree. 

6 C o n c l u s i o n  

We have presented two methods for developing seg- 
mentation hypotheses using multiple linguistic fea- 
tures. The first method hand tunes features and 
algorithms based on analysis of training errors. The 
second method, machine learning, automatically in- 
duces decision trees from coded corpora. Both me- 
thods rely on an enriched set of input features com- 
pared to our previous work. With each method, we 
have achieved marked improvements in performance 
compared to our previous work and are approaching 
human performance. Note that quantitatively, the 
machine learning results are slightly better than the 
hand tuning results. The main difference on average 
performance is the higher precision of the automated 
algorithm. Furthermore, note that the machine lear- 
ning algorithm used the changes to the coding fea- 
tures that resulted from the tuning methods. This 
suggests that hand tuning is a useful method for 
understanding how to best code the data, while ms- 

chine learning provides an effective (and automatic) 
way to produce an algorithm given a good feature 
representation. 

Our results lend further support to the hypothesis 
that linguistic devices correlate with discourse struc- 
ture (cf. section 2.1), which itself has practical im- 
port. Understanding systems could infer segments 
as a step towards producing summaries, while ge- 
neration systems could signal segments to increase 
comprehensibili ty/Our results also suggest that to 
best identify or convey segment boundaries, systems 
will need to exploit multiple signals simultaneously. 

We plan to continue our experiments by further 
merging the automated and analytic techniques, and 
evaluating new algorithms on our final test corpus. 
Because we have already used cross-validation, we 
do not anticipate significant degradation on new test 
narratives. An important area for future research 
is to develop principled methods for identifying di- 
stinct speaker strategies pertaining to how they si- 
gnal segments. Performance of individual speakers 
varies widely as shown by the high standard deviati- 
ons in our tables. The original NP, hand tuned, and 
machine learning algorithms all do relatively poorly 
on narrative 16 and relatively well on 11 (both in 
the test set) under all conditions. This lends sup- 
port to the hypothesis that there may be consistent 
differences among speakers regarding strategies for 
signaling shifts in global discourse structure. 
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