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Abstract 
In many  applications of natural  language processing it 
is necessary to determine the likelihood of a given word 
combination.  For example,  a speech recognizer may 
need to determine which of the two word combinations 
"eat a peach" and "eat a beach" is more likely. Statis- 
tical NLP methods determine the likelihood of a word 
combination according to its frequency in a training cor- 
pus. However, the nature of language is such that  many  
word combinations are infrequent and do not occur in a 
given corpus. In this work we propose a method for es- 
t imat ing the probabili ty of such previously unseen word 
combinations using available information on "most sim- 
ilar" words. 

We describe a probabilistic word association model 
based on distributional word similarity, and apply it 
to improving probabil i ty estimates for unseen word bi- 
grams in a variant of Katz 's  back-off model. The 
similarity-based method yields a 20% perplexity im- 
provement in the prediction of unseen bigrams and sta- 
tistically significant reductions in speech-recognition er- 
ror. 

Introduct ion 
Data  sparseness is an inherent problem in statistical 
methods for natural  language processing. Such meth-  
ods use statistics on the relative frequencies of config- 
urations of elements in a training corpus to evaluate 
alternative analyses or interpretations of new samples 
of text or speech. The most  likely analysis will be taken 
to be the one tha t  contains the most  frequent config- 
urations. The problem of data  sparseness arises when 
analyses contain configurations that  never occurred in 
the training corpus. Then it is not possible to est imate 
probabilities from observed frequencies, andsome  other 
est imation scheme has to be used. 

We focus here on a particular kind of configuration, 
word cooccurrence. Examples of such cooccurrences 
include relationships between head words in syntactic 
constructions (verb-object or adjective-noun, for exam- 
ple) and word sequences (n-grams).  In commonly used 
models, the probabil i ty est imate for a previously un- 
seen cooccurrence is a function of the probabili ty esti- 
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mates  for the words in the cooccurrence. For example, 
in the bigram models that  we s tudy here, the probabil- 
ity P(w21wl) of a conditioned word w2 that  has never 
occurred in training following the conditioning word wl 
is calculated from the probabil i ty of w~, as estimated 
by w2's frequency in the corpus (Jelinek, Mercer, and 
Roukos, 1992; Katz, 1987).  This method depends on 
an independence assumption on the cooccurrence of Wl 
and w2: the more frequent w2 is, the higher will be the 
est imate of P(w2[wl), regardless of Wl. 

Class-based and similarity-based models provide an 
alternative to the independence assumption.  In those 
models, the relationship between given words is mod- 
eled by analogy with other words that  are in some sense 
similar to the given ones. 

Brown et a]. (1992) suggest a class-based n-gram 
model in which words with similar cooccurrence distri- 
butions are clustered in word classes. The cooccurrence 
probabil i ty of a given pair of words then is est imated ac- 
cording to an averaged cooccurrence probabil i ty of the 
two corresponding classes. Pereira, Tishby, and Lee 
(1993) propose a "soft" clustering scheme for certain 
grammat ica l  cooccurrences in which membership of a 
word in a class is probabilistic. Cooccurrence probabil- 
ities of words are then modeled by averaged cooccur- 
rence probabilities of word clusters. 

Dagan, Markus, and Markovitch (1993) argue that  
reduction to a relatively small number  of predetermined 
word classes or clusters may cause a substantial  loss of 
information. Their similarity-based model avoids clus- 
tering altogether. Instead, each word is modeled by its 
own specific class, a set of words which are most simi- 
lar to it (as in k-nearest neighbor approaches in pattern 
recognition). Using this scheme, they predict which 
unobserved cooccurrences are more likely than others. 
Their model, however, is not probabilistic, that  is, it 
does not provide a probabil i ty est imate for unobserved 
cooccurrences. It  cannot therefore be used in a com- 
plete probabilistic framework, such as n-gram language 
models or probabilistic lexicalized g rammars  (Schabes, 
1992; Lafferty, Sleator, and Temperley, 1992). 

We now give a similarity-based method for estimating 
the probabilities of cooccurrences unseen in training. 
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Similarity-based estimation was first used for language 
modeling in the cooccurrence smoothing method of Es- 
sen and Steinbiss (1992), derived from work on acous- 
tic model smoothing by Sugawara et al. (1985). We 
present a different method that  takes as starting point 
the back-off scheme of Katz (1987). We first allocate an 
appropriate probability mass for unseen cooccurrences 
following the back-off method. Then we redistribute 
that mass to unseen cooccurrences according to an av- 
eraged cooccurrence distribution of a set of most similar 
conditioning words, using relative entropy as our sim- 
ilarity measure. This second step replaces the use of 
the independence assumption in the original back-off 
model. 

We applied our method to estimate unseen bigram 
probabilities for Wall Street Journal text and compared 
it to the standard back-off model. Testing on a held-out 
sample, the similarity model achieved a 20% reduction 
in perplexity for unseen bigrams. These constituted 
just 10.6% of the test sample, leading to an overall re- 
duction in test-set perplexity of 2.4%. We also exper- 
imented with an application to language modeling for 
speech recognition, which yielded a statistically signifi- 
cant reduction in recognition error. 

The remainder of the discussion is presented in terms 
of bigrams, but it is valid for other types of word cooc- 
currence as well. 

D i s c o u n t i n g  a n d  R e d i s t r i b u t i o n  

Many low-probability bigrams will be missing from any 
finite sample. Yet, the aggregate probability of all these 
unseen bigrams is fairly high; any new sample is very 
likely to contain some. 

Because of data  sparseness, we cannot reliably use a 
maximum likelihood estimator (MLE) for bigram prob- 
abilities. The MLE for the probability of a bigram 
(wi, we) is simply: 

PML(Wi, we) -- c(w , we) 
N , (1) 

where c(wi, we) is the frequency of (wi, we) in the train- 
ing corpus and N is the total number of bigrams. How- 
ever, this estimates the probability of any unseen hi- 
gram to be zero, which is clearly undesirable. 

Previous proposals to circumvent the above problem 
(Good, 1953; Jelinek, Mercer, and Roukos, 1992; Katz, 
1987; Church and Gale, 1991) take the MLE as an ini- 
tial estimate and adjust it so that  the total probability 
of seen bigrams is less than one, leaving some probabil- 
ity mass for unseen bigrams. Typically, the adjustment 
involves either interpolation, in which the new estimator 
is a weighted combination of the MLE and an estimator 
that is guaranteed to be nonzero for unseen bigrams, or 
discounting, in which the MLE is decreased according to 
a model of the unreliability of small frequency counts, 
leaving some probability mass for unseen bigrams. 

The back-off model of Katz (1987) provides a clear 
separation between frequent events, for which observed 

frequencies are reliable probability estimators, and low- 
frequency events, whose prediction must involve addi- 
tional information sources. In addition, the back-off 
model does not require complex estimations for inter- 
polation parameters. 

A hack-off model requires methods for (a) discounting 
the estimates of previously observed events to leave out 
some positive probability mass for unseen events, and 
(b) redistributing among the unseen events the probabil- 
ity mass freed by discounting. For bigrams the resulting 
estimator has the general form 

fPd(w21wl) if c(wi,w2) > 0 
D(w21wt) = ~.a(Wl)Pr(w2]wt) otherwise , (2) 

where Pd represents the discounted estimate for seen 
bigrams, P~ the model for probability redistribution 
among the unseen bigrams, and a(w) is a normalization 
factor. Since the overall mass left for unseen bigrams 
starting with wi is given by 

~ ,  P,~(welwi) , 
w~:c(wi ,w~)>0 

~(wi) = 1 - 

the normalization 
Ew2 P(w2[ wl) : 1 is 

= 

factor required to ensure 

 (wl) 

1 - ~:c(~i,w2)>0 Pr(we[wi) 

The second formulation of the normalization is compu- 
tationally preferable because the total number of pos- 
sible bigram types far exceeds the number of observed 
types. Equation (2) modifies slightly Katz's presenta- 
tion to include the placeholder Pr for alternative models 
of the distribution of unseen bigrams. 

Katz uses the Good-Turing formula to replace the 
actual frequency c(wi, w2) of a bigram (or an event, in 
general) with a discounted frequency, c*(wi,w2), de- 
fined by 

c*(wi, w2) = (C(Wl, w2) + 1)nc(wl'~)+i , (3) 
nc(wl,w2) 

where nc is the number of different bigrams in the cor- 
pus that have frequency c. He then uses the discounted 
frequency in the conditional probability calculation for 
a bigram: 

c* (wi, w2) (4) 
Pa(w21wt) - C(Wl) 

In the original Good-Turing method (Good, 1953) 
the free probability mass is redistributed uniformly 
among all unseen events. Instead, Katz's back-off 
scheme redistributes the free probability mass non- 
uniformly in proportion to the frequency of w2, by set- 
ting 

Pr(weJwi) = P(w~) ( 5 )  
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Katz thus assumes that  for a given conditioning word 
wl the probabil i ty of an unseen following word w2 is 
proportional to its unconditional probability. However, 
the overall form of the model (2) does not depend on 
this assumption,  and we will next investigate an esti- 
mate  for P~(w21wl) derived by averaging estimates for 
the conditional probabilities that  w2 follows words that  
are distributionally similar to wl. 

T h e  S i m i l a r i t y  M o d e l  
Our scheme is based on the assumption that  words that  
are "similar" to wl can provide good predictions for 
the distribution of wl in unseen bigrams. Let S(Wl) 
denote a set of words which are most  similar to wl, 
as determined by some similarity metric. We define 
PsiM(W21Wl), the similarity-based model for the condi- 
tional distribution of wl, as a weighted average of the 
conditional distributions of the words in S(Wl): 

PsiM(W21wl) = 
- ,  • ' -  ' ~ w(~i,~') (6) ZWleS(Wl) 2[--~'(~]~l'['/fll)~"~ W / w ,  ~j ) ' 

where W(W~l, wl) is the (unnormalized) weight given to 
w~, determined by its degree of similarity to wl. Ac- 
cording to this scheme, w2 is more likely to follow wl if 
it tends to follow words that  are most similar to wl. To 
complete the scheme, it is necessary to define the simi- 
larity metric and, accordingly, S(wl) and W(w~, Wl). 

Following Pereira, Tishby, and Lee (1993), we 
measure word similarity by the relative entropy, or 
Kullback-Leibler (KL) distance, between the corre- 
sponding conditional distributions 

D(w~ II w~) = Z P(w2]wl) log P(w2Iwl) (7) 
~ P(w2lw~) " 

The KL distance is 0 when wl = w~, and it increases 
as the two distribution are less similar. 

To compute  (6) and (7) we must have nonzero esti- 
mates  of P(w21wl) whenever necessary for (7) to be de- 
fined. We use the est imates given by the standard back- 
off model, which satisfy that  requirement. Thus our 
application of the similarity model averages together 
s tandard back-off est imates for a set of similar condi- 
tioning words. 

We define S(wl) as the set of at most  k nearest 
words to wl (excluding wl itself), that  also satisfy 
D(Wl II w~) < t. k and t are parameters  that  control 
the contents of $ (wl )  and are tuned experimentally, as 
we will see below. 

W(w~, wl) is defined as 

W(w~, Wl) --- exp -/3D(Wl II ~ i )  

The weight is larger for words that  are more similar 
(closer) to wl. The parameter  fl controls the relative 
contribution of words in different distances from wl: as 
the value of fl increases, the nearest words to Wl get rel- 
atively more weight. As fl decreases, remote words get 
a larger effect. Like k and t , /3 is tuned experimentally. 

Having a definition for PSIM(W2[Wl), w e  could use it 
directly as Pr(w2[wl) in the back-off scheme (2). We 
found that  it is bet ter  to smooth PsiM(W~[Wl) by inter- 
polating it with the unigram probabili ty P(w2) (recall 
that  Katz used P(w2) as Pr(w2[wl)). Using linear in- 
terpolation we get 

P,(w2[wl) = 7P(w2) + (1 - 7)PsiM(W2lWl) , (8) 

where "f is an experimental ly-determined interpolation 
parameter .  This smoothing appears to compensate 
for inaccuracies in Pslu(w2]wl), mainly for infrequent 
conditioning words. However, as the evaluation be- 
low shows, good values for 7 are small, that  is, the 
similarity-based model plays a stronger role than the 
independence assumption.  

To summarize,  we construct a similarity-based model 
for P(w2[wl) and then interpolate it with P(w2). The 
interpolated model (8) is used in the back-off scheme 
as Pr(w2[wl), to obtain bet ter  estimates for unseen bi- 
grams. Four parameters ,  to be tuned experimentally, 
are relevant for this process: k and t, which determine 
the set of similar words to be considered,/3, which deter- 
mines the relative effect of these words, and 7, which de- 
termines the overall importance of the similarity-based 
model. 

E v a l u a t i o n  
We evaluated our method by comparing its perplexity 1 
and effect on speech-recognition accuracy with the base- 
line bigram back-off model developed by MIT Lincoln 
Laboratories for the Wall Streel Journal (WSJ) text 
and dictation corpora provided by ARPA's  HLT pro- 
grain (Paul, 1991). 2 The baseline back-off model follows 
closely the Katz design, except that  for compactness all 
frequency one bigrams are ignored. The counts used ill 
this model and in ours were obtained from 40.5 million 
words of WSJ text from the years 1987-89. 

For perplexity evaluation, we tuned the similarity 
model parameters  by minimizing perplexity on an ad- 
ditional sample of 57.5 thousand words of WSJ text, 
drawn from the ARPA HLT development test set. The 
best parameter  values found were k = 60, t = 2.5,/3 = 4 
and 7 = 0.15. For these values, the improvement in 
perplexity for unseen bigrams in a held-out 18 thou- 
sand word sample, in which 10.6% of the bigrams are 
unseen, is just  over 20%. This improvement on unseen 

1The perplexity of a conditional bigram probability 
model /5 with respect to the true bigram distribution is 
an information-theoretic measure of model quality (Jelinek, 
Mercer, and Roukos, 1992) that can be empirically esti- 
mated by exp - -~ ~-~i log P(w, tu, i_l ) for a test set of length 
N. Intuitively, the lower the perplexity of a model the more 
likely the model is to assign high probability to bigrams that 
actually occur. In our task, lower perplexity will indicate 
better prediction of unseen bigrams. 

2The ARPA WSJ development corpora come in two ver- 
sions, one with verbalized punctuation and the other with- 
out. We used the latter in all our experiments. 
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k t ~ 7 training reduction (%) test reduction (%) 
60 2.5 4 0.15 18.4 20.51 
50 2.5 4 0.15 18.38 20.45 
40 2.5 4 0.2 18.34 20.03 
30 2.5 4 0.25 18.33 19.76 
70 2.5 4 0.1 18.3 20.53 
80 2.5 4.5 0.1 18.25 20.55 

100 2.5 4.5 0.1 18.23 20.54 
90 2.5 4.5 0.1 18.23 20.59 
20 1.5 4 0.3 18.04 18.7 
10 1.5 3.5 0.3 16.64 16.94 

Table 1: Perplexity Reduction on Unseen Bigrams for Different Model Parameters  

bigrams corresponds to an overall test set perplexity 
improvement of 2.4% (from 237.4 to 231.7). Table 1 
shows reductions in training and test perplexity, sorted 
by training reduction, for different choices in the num- 
ber k of closest neighbors used. The values of f~, 7 and 
t are the best ones found for each k. 3 

From equation (6), it is clear that  the computat ional  
cost of applying the similarity model to an unseen bi- 
gram is O(k). Therefore, lower values for k (and also 
for t) are computat ionally preferable. From the table, 
we can see that  reducing k to 30 incurs a penalty of less 
than 1% in the perplexity improvement,  so relatively 
low values of k appear to be sufficient to achieve most 
of the benefit of the similarity model. As the table also 
shows, the best value of 7 increases as k decreases, that  
is, for lower k a greater weight is given to the condi- 
tioned word's frequency. This suggests that  the predic- 
tive power of neighbors beyond the closest 30 or so can 
be modeled fairly well by the overall frequency of the 
conditioned word. 

The bigram similarity model was also tested as a lan- 
guage model in speech recognition. The test data  for 
this experiment were pruned word lattices for 403 WSJ 
closed-vocabulary test sentences. Arc scores in those 
lattices are sums of an acoustic score (negative log like- 
lihood) and a language-model score, in this case the 
negative log probabili ty provided by the baseline bi- 
gram model. 

From the given lattices, we constructed new lattices 
in which the arc scores were modified to use the similar- 
ity model instead of the baseline model. We compared 
the best sentence hypothesis in each original lattice and 
in the modified one, and counted the word disagree- 
ments in which one of the hypotheses is correct. There 
were a total  of 96 such disagreements. The similarity 
model was correct in 64 cases, and the back-off model in 
32. This advantage for the similarity model is statisti- 
cally significant at the 0.01 level. The overall reduction 
in error rate is small, from 21.4% to 20.9%, because 
the number of disagreements is small compared with 

3Values of fl and t refer to base 10 logarithms and expo- 
nentials in all calculations. 

the overall number of errors in our current recognition 
setup. 

Table 2 shows some examples of speech recognition 
disagreements between the two models. The hypotheses 
are labeled 'B '  for back-off and 'S'  for similarity, and the 
bold-face words are errors. The similarity model seems 
to be able to model better  regularities such as semantic 
parallelism in lists and avoiding a past tense form after 
"to." On the other hand, the similarity model makes 
several mistakes in which a function word is inserted in 
a place where punctuat ion would be found in written 
text. 

R e l a t e d  W o r k  
The cooccurrence smooihing technique (Essen and 
Steinbiss, 1992), based on earlier stochastic speech 
modeling work by Sugawara et al. (1985), is the main 
previous a t t empt  to use similarity to estimate the prob- 
ability of unseen events in language modeling. In addi- 
tion to its original use in language modeling for speech 
recognition, Gr ishman and Sterling (1993) applied the 
cooccurrence smoothing technique to estimate the like- 
lihood of selectional patterns.  We will outline here 
the main parallels and differences between our method 
and cooccurrence smoothing. A more detailed analy- 
sis would require an empirical comparison of the two 
methods on the same corpus and task. 

In cooccurrence smoothing, as in our method, a base- 
line model is combined with a similarity-based model 
that  refines some of its probabil i ty estimates. The sim- 
ilarity model in cooccurrence smoothing is based on 
the intuition that  the similarity between two words w 
and w' can be measured by the confusion probability 
Pc(w'lw ) that  w' can be substi tuted for w in an arbi- 
t rary  context in the training corpus. Given a baseline 
probabili ty model P,  which is taken to be the MLE, the 
confusion probabili ty Pc(w~lwl) between conditioning 
words w~ and wl is defined as 

l Pc(wllwl) - -  

1 (9 )  P( l) p(wllw2)p(wl  1 2)P( 2) ' 
the probabili ty that  wl is followed by the same context 
words as w~. Then the bigram est imate derived by 
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B commitments  . . .  from leaders fe l t  t h e  three point six billion dollars 
S ] commitments  . . .  from leaders fell to three point six billion dollars 
B I followed bv France the US a g r e e d  in l talv ,y France the US a g r e e d  in I taly 
S [ followed by France the US Greece . . . I t a l y  

B [ he whispers to m a d e  a 
S [ he whispers to an aide 

B the necessity for change ex i s t  
S [ the necessity for change exists 

B ] without . . . add i t iona l  reserves Centrust would have reported 
S [ without . . . add i t iona l  reserves o f  Centrust would have reported 

B ] in the darkness past the church 
S in the darkness p a s s e d  the church 

Table 2: Speech Recognition Disagreements between Models 

cooccurrence smoothing is given by 

Ps(w21wl) = ~ P(w~lw'l)Pc(w'llwO 

Notice that  this formula has the same form as our sim- 
ilarity model (6), except that  it uses confusion proba- 
bilities where we use normalized weights. 4 In addition, 
we restrict the summat ion  to sufficiently similar words, 
whereas the cooccurrence smoothing method sums over 
all words in the lexicon. 

The similarity measure (9) is symmetr ic  in the sense 
that  Pc(w'lw) and Pc(w[w') are identical up to fre- 

Pc(w'l w) _ P(w) quency normalization,  that  is Pc(wlw') - P(w,)" In 

contrast,  D(w H w') (7) is asymmetr ic  in that  it weighs 
each context in proportion to its probabili ty of occur- 
rence with w, but not with wq In this way, if w and 
w' have comparable  frequencies but  w' has a sharper 
context distribution than w, then D(w' I[ w) is greater 
than D(w [[ w').  Therefore, in our similarity model 
w' will play a stronger role in est imating w than vice 
versa. These properties motivated our choice of relative 
entropy for similarity measure, because of the intuition 
that  words with sharper distributions are more infor- 
mat ive  about  other words than words with flat distri- 
butions. 

4This presentation corresponds to model 2-B in Essen 
and Steinbiss (1992). Their presentation follows the equiv- 
alent model l-A, which averages over similar conditioned 
words, with the similarity defined with the preceding word 
as context. In fact, these equivalent models are symmetric 
in their treatment of conditioning and conditioned word, as 
they can both be rewritten as 

Ps(w2lwl) ,~, , , , , P(w2[Wl)P(Wl = I w ~ ) P ( w 2 1 w l )  

They also consider other definitions of confusion probabil- 
ity and smoothed probability estimate, but the one above 
yielded the best experimental results. 

Finally, while we have used our similarity model only 
for missing bigrams in a back-off scheme, Essen and 
Steinbiss (1992) used linear interpolation for all bi- 
grams to combine the cooccurrence smoothing model 
with MLE models of bigrams and unigrams. Notice, 
however, that  the choice of back-off or interpolation is 
independent from the similarity model used. 

F u r t h e r  R e s e a r c h  

Our model provides a basic scheme for probabilistic 
similarity-based est imation tha t  can be developed in 
several directions. First, variations of (6) may  be tried, 
such as different similarity metrics and different weight- 
ing schemes. Also, some simplification of the current 
model parameters  may be possible, especially with re- 
spect to the parameters  t and k used to select the near- 
est neighbors of a word. A more substantial  variation 
would be to base the model on similarity between con- 
ditioned words rather than on similarity between con- 
ditioning words. 

Other evidence may be combined with the similarity- 
based estimate.  For instance, it may be advantageous 
to weigh those est imates by some measure of the re- 
liability of the similarity metric and of the neighbor 
distributions. A second possibility is to take into ac- 
count negative evidence: if Wl is frequent, but w2 never 
followed it, there may be enough statistical evidence 
to put an upper bound on the est imate of P(w21wl). 
This may require an adjustment  of the similarity based 
estimate,  possibly along the lines of (Rosenfeld and 
Huang, 1992). Third, the similarity-based est imate can 
be used to smooth the naaximum likelihood est imate 
for small nonzero frequencies. If  the similarity-based 
est imate is relatively high, a bigram would receive a 
higher est imate than predicted by the uniform discount- 
ing method.  

Finally, the similarity-based model may be applied 
to configurations other than bigrams. For tr igrams, 
it is necessary to measure similarity between differ- 
ent conditioning bigrams. This can be done directly, 

276 



by measuring the distance between distributions of the 
form P(w31wl, w2), corresponding to different bigrams 
(wl, w~). Alternatively, and more practically, it would 
be possible to define a similarity measure between bi- 
grams as a function of similarities between correspond- 
ing words in them. Other types of conditional cooccur- 
rence probabilities have been used in probabilistic pars- 
ing (Black et al., 1993). If the configuration in question 
includes only two words, such as P(objectlverb), then it 
is possible to use the model we have used for bigrams. 
If the configuration includes more elements, it is nec- 
essary to adjust the method, along the lines discussed 
above for trigrams. 

C o n c l u s i o n s  

Similarity-based models suggest an appealing approach 
for dealing with data sparseness. Based on corpus 
statistics, they provide analogies between words that of- 
ten agree with our linguistic and domain intuitions. In 
this paper we presented a new model that implements 
the similarity-based approach to provide estimates for 
the conditional probabilities of unseen word cooccur- 
fences. 

Our method combines similarity-based estimates 
with Katz's back-off scheme, which is widely used for 
language modeling in speech recognition. Although the 
scheme was originally proposed as a preferred way of 
implementing the independence assumption, we suggest 
that it is also appropriate for implementing similarity- 
based models, as well as class-based models. It enables 
us to rely on direct maximum likelihood estimates when 
reliable statistics are available, and only otherwise re- 
sort to the estimates of an "indirect" model. 

The improvement we achieved for a bigram model is 
statistically significant, though modest in its overall ef- 
fect because of the small proportion of unseen events. 
While we have used bigrams as an easily-accessible plat- 
form to develop and test the model, more substantial 
improvements might be obtainable for more informa- 
tive configurations. An obvious case is that of tri- 
grams, for which the sparse data problem is much more 
severe. ~ Our longer-term goal, however, is to apply 
similarity techniques to linguistically motivated word 
cooccurrence configurations, as suggested by lexical- 
ized approaches to parsing (Schabes, 1992; Lafferty, 
Sleator, and Temperley, 1992). In configurations like 
verb-object and adjective-noun, there is some evidence 
(Pereira, Tishby, and Lee, 1993) that sharper word 
cooccurrence distributions are obtainable, leading to 
improved predictions by similarity techniques. 
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