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a n d  

A b s t r a c t  

This paper provides a model theoretic semantics to fea- 
ture terms augmented with set descriptions. We pro- 
vide constraints to specify HPSG style set descriptions, 
fixed cardinality set descriptions, set-membership con- 
straints, restricted universal role quantifications, set 
union, intersection, subset and disjointness. A sound, 
complete and terminating consistency checking proce- 
dure is provided to determine the consistency of any 
given term in the logic. It is shown that determining 
consistency of terms is a NP-complete problem. 
S ub j e c t  Areas :  feature logic, constraint-based gram- 
mars, HPSG 

1 I n t r o d u c t i o n  

Grammatical formalisms such as HPSG 
[Pollard and Sag, 1987] [Pollard and Sag, 1992] and 
LFG [Kaplan and Bresnan, 1982] employ feature de- 
scriptions [Kasper and Rounds, 1986] [Smolka, 1992] 
as the primary means for stating linguistic theories. 
However the descriptive machinery employed by these 
formalisms easily exceed the descriptive machinery 
available in feature logic [Smolka, 1992]. Furthermore 
the descriptive machinery employed by both HPSG 
and LFG is difficult (if not impossible) to state in fea- 
ture based formalisms such as ALE [Carpenter, 1993], 
TFS [Zajac, 1992] and CUF [D6rre and Dorna, 1993] 
which augment feature logic with a type system. 
One such expressive device employed both within 
LFG [Kaplan and Bresnan, 1982] and HPSG but is 
unavailable in feature logic is that of set descriptions. 

Although various researchers have studied set de- 
scriptions (with different semantics) [Rounds, 1988] 
[Pollard and Moshier, 1990] two issues remain unad- 
dressed. Firstly there has not been any work on consi- 
stency checking techniques for feature terms augmen- 
ted with set descriptions. Secondly, for applications 
within grammatical theories such as the HPSG forma- 
lism, set descriptions alone are not enough since de- 
scriptions involving set union are also needed. Thus 
to adequately address the knowledge representation 
needs of current linguistic theories one needs to provide 
set descriptions as well as mechanisms to manipulate 
these. 
In the HPSG grammar forma- 
lism [Pollard and Sag, 1987], set descriptions are em- 
ployed for the modelling of so called semantic indices 

([Pollard and Sag, 1987] pp. 104). The attribute INDS 
in the example in (1) is a multi-valued attribute whose 
value models a set consisting of (at most) 2 objects. 
However multi-valued attributes cannot be descri- 
bed within feature logic [Kasper and Rounds, 1986] 
[Smolka, 1992]. 
(1) 

Io DREL --4 °~TIs~R[] / 
Ls'~E~ w J 

[NDS IRESTINAME ~andy ]['IRESTINAME kim I I  ¢ 

L L N*M" D JIL L JJJ 
A further complication arises since to be able to deal 
with anaphoric dependencies we think that set mem- 
berships will be needed to resolve pronoun dependen- 
cies. Equally, set unions may be called for to incremen- 
tally construct discourse referents. Thus set-valued 
extension to feature logic is insufficient on its own. 
Similarly, set valued subcategorisation frames (see (2)) 
has been considered as a possibility within the HPSG 
formalism. 
(2) 

b e l i e v e s =  IYNILOCISUBCAT~ 
[[SYN~LOOIHEADICAT v] 

But once set valued subeategorisation frames are em- 
ployed, a set valued analog of the HPSG subcategorisa- 
tion principle too is needed. In section 2 we show that 
the set valued analog of the subcategorisation principle 
can be adequately described by employing a disjoint 
union operation over set descriptions as available wit- 
hin the logic described in this paper. 

2 T h e  l o g i c  o f  S e t  d e s c r i p t i o n s  

In this section we provide the semantics of feature 
terms augmented with set descriptions and various 
constraints over set descriptions. We assume an al- 
phabet consisting of x, y, z , . . .  6 )2 the set of variables; 
f ,g , . . .  E Y: the set of relation symbols; el, c2, . . .  E C 
the set of constant symbols; A , B , C , . . .  6 7 ) the set 
of primitive concept symbols and a ,b , . . .  6 .At the 
set of atomic symbols. Furthermore, we require that 
/ , T  E T'. 
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The syntax of our term language defined by the follo- 
wing BNF definition: 
P > x I a t c I C [ -~x I -~a [ -~c [ -~C 

S , T -  > 
P 

f : T feature term 
S f  : T existential role quantification 
Vf : P universal role quantification 
f :  {T1 , . . . ,Tn}  set description 
f { T 1 , . . ,  Tn}= fixed cardinality set description 
f : g(x) U h(y) union 
f :  g(x) rq h(y) intersection 
f :~ g(x) subset 
f (x)  # g(y) disjointness 
S Iq T conjunction 

where S, T, T1 , . . . ,  Tn are terms; a is an atom; c is a 
constant; C is a primitive concept and f is a relation 
symbol. 
The interpretation of relation symbols and atoms is 
provided by an interpretat ion Z = < / 4 I  I > where/41 
is an arbi t rary  non-empty set and I is an interpretation 
function that  maps : 
1. every relation symbol f • ~" to a binary relation 

f l  C_/4I x /4I  
2. every atom a • .At to an element a I • bl x 
N o t a t i o n :  
• Let i f (e)  denote the set {e ' [  (e,e ' )  • i f }  
• Let fI(e) T mean f l (e)  = 0 
Z is required to satisfy the following properties : 
1. if al ~ a2 then all # hi2 (distinctness) 
2. for any atom a • At  and for any relation f • ~" there 

exists no e • U 1 such that  (a, e) • f l  (atomicity) 
For a given interpretat ion Z an Z - a s s i g n m e n t  a is a 
function that  maps : 
1. every variable x • ]2 to an element a(x)  • 141 

2. every constant c • C to an element a(c) • /41  such 
that  for distinct constants Cl, c2 : a(c l )  # a(c2) 

3. every primitive concept C • 7 ) to a subset a (C)  C 
/41 such that:  
• ~(_L) = 0 
• a(T) =/41 

The interpretat ion of terms is provided by a denotation 
function [[.]]z,a that  given an interpretation Z and an 
Z-assignment a maps terms to subsets of/41. 

The function [.]]z,a is defined as follows : 
~x~z," = {,~(x)} 
[[a]]Z, ~ = {a I} 

[cK'"  = {a(e)} 
Iv]  z,~ = ~ ( c )  
I f :  T] z'" = 

{e •/411 he' •/4i:  fZ(e ) = {e ' }  A e' • ~T] z ' e }  

[3f : T~ :r'a = 
{ e • / 4  l l q e ' • / 4 ( l : ( e , e ' )  • f !  A e' • IT] z'"} 

IV f :  T]] z'~ = 

{e • W' lye'  • / 41 :  (e, e') • f1 =~ e' • IfT] z ' " }  

U :  { T , , . . . , T ~ } K , "  = 
{e E U I [ 9 e l , . . . , g e ~  e U I : 

f1(e)  = {el , . . . ,e,}^ 
el e IT1] z'a A . . .  A e,~ • [T,~] z'~} 

I f :  {T1, . . . ,  Tn}=] z'a = 
{e • / 4 I  I 9e l , . . . , ge~  • / 4 I  : 

I f l ( e )  l = n A fI(e) = { e l , . . .  ,en}A 
el • [Tx]Z'a A . . .  A e~ • [T,] z '"} 

I f :  g(x) U h(y)]] z'a = 
{e • LI I I f l (e)  = gl(a(x)) U hI(a(y) )}  

I f :  g(x) N h(y)] z'a = 
{e •/41 [ f i  (e ) = gi (c~(x) ) rq hl (c~(y) ) } 

I f  :~_ g(x ) l z ,  ~' = 
{e • u ~ I f ( e )  ~ g1(~(x))} 

i f ( x  ) # g(y)]]z,c~ = 
• 0 if f l (a(x) )  n gl(a(y)) # O 

• U I if f1(a(x)) A g1(a(y)) = 0 
IS rl T]] z,a = [[S]] z,a N [T]] z,a 
[-~T~ ~," = U '  - [T~ z ,"  

The above definitions fix the syntax and semantics of 
every term. 

It follows from the above definitions that:  
I : T  - / : { T }  - I : { T } =  

Figure 1 
Although disjoint union is not a primitive in the logic 
it can easily be defined by employing set disjointness 
and set union operations: 

f :  g(x) eJ h(y) =de/ g(x) # h(y) ~q f :  g(x) U h(y) 
Thus disjoint set union is exactly like set union except 
that  it additionally requires the sets denoted by g(x) 
and h(y) to be disjoint. 

The set-valued description of the subcategorisation 
principle can now be stated as given in example (3). 
(3) S u b c a t e g o r i s a t i o n  P r i n c i p l e  

SYN,LOC Y ]] 
TRS X n [HL-DTR[SYN[LOC[SUBCAT c-dtrs(X) ~ subcat(Y) 

The description in (3) simply states that the subcat 
value of the H-DTR is the disjoint union of the subcat 
value of the mother and the values of C-DTRS. Note 
that the disjoint union operation is the right operation 
to be specified to split the set into two disjoint subsets. 
Employing just union operation would not work since 
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D e c o m p o s i t i o n  r u l e s  
x = F : T A C ~  

(DFea t )  x = F : y A y = T A C s  
if y is new and T is not a variable and F ranges over Sf, f 

x = Vf : ~ A C~ 
(DForal l )  x = V f : y A y = ~ A C s  

if y is new and ~ ranges over a, c. 

( D S e t )  x = f :  { T i , . . . , T ~ }  A C~ 
x = I :  { x l , . . . , x ~ } ^ x l  =T1  ^ . . . i x ~  =T~ACs 

if x i , . . . ,  xn are new and at least one of Ti : 1 < i < n is not a variable 
x =  f : { T i , . . . , T , } = A  Cs 

( D S e t F )  x = f : { X l , . . .  , x n }  A X = f :  { X l , . . .  , Xn} =  A X 1 = T 1 ^ . . .  i x n = T n i C s 

if x i , . . . ,  x~ are new and at least one of Ti : 1 < i < n is not a variable 
x = S N T A C , ~  

( D C o n j )  x = S i x = T A gs 

Figure 2: Decomposition rules 

it would permit repetition between members of the 
SUBCAT attribute and C-DTRS attribute. 

Alternatively, we can assume that N is the only multi- 
valued relation symbol while both SUBCAT and C-DTRS 
are single-valued and then employ the intuitively ap- 
pealing subcategorisation principle given in (4). 
(4) S u b c a t e g o r i s a t i o n  P r i n c i p l e  

TRS [H-DTRISYNILOCISUBCATIN N(X) ~ N(Y) 
C-DTRS X 

With the availability of set operations, multi-valued 
structures can be incrementally built. For instance, by 
employing union operations, semantic indices can be 
incrementally constructed and by employing members- 
hip constraints on the set of semantic indices pronoun 
resolution may be carried out. 

The set difference operation f : g(y) - h(z) is not avai- 
lable from the constructs described so far. However, 
assume that  we are given the term x R f : g(y) - h(z) 
and it is known that hZ(~(z)) C_ gZ(a(y)) for every in- 
terpretation 27, (~ such that  [x R f : g ( y ) -  h(z)~ z,~ ¢ 0. 
Then the term x N f : g(y) - h(z) (assuming the ob- 
vious interpretation for the set difference operation) is 
consistent iff the term y [] g : f ( x )  t~ h(z) is consistent. 
This is so since for se tsG,  F , H : G - F = H A F C G  
i]:f G = F W H. See figure 1 for verification. 

3 C o n s i s t e n c y  c h e c k i n g  

To employ a term language for knowledge representa- 
tion tasks or in constraint programming languages the 
minimal operation that  needs to be supported is that  
of consistency checking of terms. 

A term T is c o n s i s t e n t  if there exists an interpreta- 
tion 2: and an/ :-assignment  (~ such that  [T] z'a ~ 0. 

In order to develop constraint solving algorithms for 
consistency testing of terms we follow the approaches 
in [Smolka, 1992] [Hollunder and Nutt, 1990]. 

A c o n t a i n m e n t  c o n s t r a i n t  is a constraint of the 
form x = T where x is a variable and T is an term. 

C o n s t r a i n t  s i m p l i f i c a t i o n  r u l e s  - I 
x = y A C s  

(SEquals )  x = y A [x/y]Cs 
if x ~ y and x occurs in Cs 

(SCons t )  x = ~ A y = ~ A C s  
x = y A x = ~ A C s  

where ~ ranges over a, c. 

(SFeat)  x =  f : y A x =  F :zZACs 
x = / : y A y =  ACs 

where F ranges over f ,  3f ,  Vf 

(SExis ts)  x = g f : y A x = V f : z A C ~  
x =  f : y A y = z A C s  

( S F o r a l l E )  x = V__] : C A x = 9 f  : y A C~_ 
x = V / :  C A x  = 3 / :  y A y  = C A C ~  

if C ranges over C, -~C, -~a, --c, -~z and 
Cs V y  = C .  

Figure 3: Constraint simplification rules - I 

In addition, for the purposes of consistency checking 
we need to introduce d i s j u n c t i v e  c o n s t r a i n t s  which 
are of the form x -- Xl U . . .  U x,~. 

We say that  an interpretation Z and an / - a s s ignmen t  
a satisfies a constraint K written 27, a ~ K if. 
• Z , a ~ x = T v = ~ a ( x )  E[T~ z'a 
• Z , a ~ x = x l U . . . U x n . :  ~ . a ( x ) = a ( x i ) f o r s o m e  

x i : l  < i < n .  
A c o n s t r a i n t  s y s t e m  Cs is a conjunction of con- 
straints. 

We say that an interpretation 27 and an Z-assignment 
a sa t i s fy  a constraint system Cs iffZ, a satisfies every 
constraint in Cs. 

The following lemma demonstrates the usefulness of 
constraint systems for the purposes of consistency 
checking. 
L e m m a  1 An term T is consistent iff there exists a 
variable x, an interpretation Z and an Z-assignment a 
such that Z, a satisfies the constraint system x = T. 
Now we are ready to turn our attention to constraint 
solving rules that  will allow us to determine the con- 
sistency of a given constraint system. 
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C o n s t r a i n t  s i m p l i f i c a t i o n  r u l e s  - I I  
( S S e t F )  x = F : y A x = f : { X l , . . . , x n } A C 8  

x =  f : y A y = x l A . . . A y = x n A C s  
where F ranges over f ,  Vf 

(SSet )  x = f :  {y} A C8 
x =  f : y A C 8  

( S D u p )  x = f : { X l , . . . , x i , . . . , x j , . . . , x , ~ } A C 8  
x = f : { Z l , . . . , x , . . . , . . . , x , }  ^ C8 

if xi -- x i 

(SForaU) x = Vf : C A  x = f : { x l , . . . , x n }  A C8 
x = f :  =-C^C8 

if C ranges over C, -~C, -~a, -~c, -~z and 
there exists xi  : 1 < i < n such that  Cs ~1 xi  = C. 

x = B f  : y A x  = f : {Xl, . . . ,x ,~} A C8 
( S S e t E )  x = f : { X l , . . . , x , ~ } A y = x l U . . . U x n A C 8  

( S S e t S e t )  X = f : { X l , . . . , X n } A X = f : { y l , . . . , y m } A C 8  
x = I :  
Xl = Yl I I . . .  II Ym ^ • . .  ^ Xn = Yl I I . . .  II y m A  

Yl ---- xz [J .. • II xn A . . .  A Ym = Xl I I . . .  II xn A 68 
where n _< m 

x =  x I I I . . . U x n  A C s  
( S D i s )  x = Xl  M . . .  IJ x ~  A x = x i  A C8 

i f l  < i < n a n d  
there is no x j ,  1 < j < n such that  C8 F x = x: 

Figure 4: Constraint 

We say that  a constraint system C8 is bas ic  if none of 
the decomposition rules (see figure 2) are applicable to 
c8. 
The purpose of the decomposition rules is to break 
down a complex constraint into possibly a number of 
simpler constraints upon which the constraint simpli- 
fication rules (see figures 3, 4 and 5 ) can apply by 
possibly introducing new variables. 

The first phase of consistency checking of a term T 
consists of exhaustively applying the decomposition 
rules to an initial constraint of the form x = T (where 
x does not occur in T) until no rules are applicable. 
This transforms any given constraint system into basic 
form. 

The constraint simplification rules (see figures 3, 4 and 
5 ) either eliminate variable equalities of the form x = 
y or generate them from existing constraints. However, 
they do not introduce new variables. 

The constraint simplification rules given in figure 3 are 
the analog of the feature simplification rules provided 
in [Smolka, 1991]. The main difference being that  our 
simplification rules have been modified to deal with 
relation symbols as opposed to just feature symbols. 

The constraint simplification rules given in figure 4 
simplify constraints involving set descriptions when 
they interact with other constraints such as feature 
constraints - rule (SSe tF) ,  singleton sets - rule (SSet) ,  
duplicate elements in a set - rule (SDup) ,  universally 
quantified constraint - rule (SForal l ) ,  another set de- 
scription - rule (SSe tSe t ) .  Rule (SDis) on the other 
hand simplifies disjunctive constraints. Amongst all 

simplification rules - II 

the constraint simplification rules in figures 3 and 4 
only rule (SDis) is non-deterministic and creates a n- 
ary choice point. 

Rules (SSet)  and (SDup)  are redundant  as comple- 
teness (see section below) is not affected by these rules. 
However these rules result in a simpler normal form. 

The following syntactic notion of entailment is em- 
ployed to render a slightly compact presentation of the 
constraint solving rules for dealing with set operations 
given in figure 5. 

A constraint system Cs syntactically entails the (con- 
junction of) constraint(s) ¢ if Cs F ¢ is derivable from 
the following deduction rules: 
1. ¢ A C 8  F ¢  
2. C ~ F x = x  

3. C s F x = y  > C s F y = x  

4. C s F x = y A C s F y = z  > C s F x = z  

5. Cs F x = -~y > C~ F y = -~x 

6. C s F x = f : y  > C s F x = 3 f : y  

7. C s F x = f : y  > C s F x = V f : y  

8. C s F x = I : { . . . , x i , . . . }  > C ~ F z = 3 I : z i  
Note that  the above definitions are an incomplete list 
of deduction rules. However C~ I- ¢ implies C~ ~ ¢ 
where ~ is the semantic entailment relation defined as 
for predicate logic. 

We write C8 t / ¢  if it is not the case that  C~ I- ¢. 

The constraint simplification rules given in figure 5 
deal with constraints involving set operations. Rule 
(C_) propagates g-values of y into I-values of x in 
the presence of the constraint x = f :_D g(y).  Rule 
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E x t e n d e d  

(c_) x = 

if: 

(ULef t )  x =  

if Cs 

C o n s t r a i n t  s i m p l i f i c a t i o n  r u l e s  
x = f :D g(y) A C~ 

f :D g(y) A z = 3 f  : Yi A Cs 

F/x  = 3 f  : yi and  
F y = 3g : yi 

x = I :  g(y) u h(z)  A 
f :  g(y) W h(z) A x = f :D g(y) A Cs 
~/ x = f :D g(y) 

(URight) x = f :  g(y) U h(z) A Cs 
x = f :  g(y) U h(z) A x = f :D h(z) A Cs 

if Cs V z = f :__D h(z) 
(UDown) 

x = f :  g(y) U h(z) A Cs 
x = f : g(y) U h(z) A y = 3g : xi I z = 3h : xi A Cs 

if: 

• C ~ / y = 3 g : x i a n d  
• C s t / z = 3 h : x i a n d  
• C ~ l - x = 3 f : x i  

( n D o w n  ) 
= f :  g(y) n h(z)  A 

x = f : g(y) n h(z) A y = 3g : xi A z = 3h : xi A C 

if: 

• ( C s [ / y = 3 g : x i o r C s V z = 3 h : x i )  and  

• C ~ F x = 3 f : x ~  

x = f :  g(y) n h(z) A Cs 
( n U p )  x = f : g(y) n h(z) A x = 3 f  : xi A Cs 

if: 

• Cs ~ x = 3 f : x i  and  
• C s F y = 3 g : x i a n d  

• C ~ F z = 3 h : x i  

Figure  5: Cons t r a in t  solving wi th  set ope ra t i ons  

(ULef t )  ( co r re spond ing ly  Rule  (URight)) adds  the  
cons t r a in t  x = f :_D g(y) ( co r respond ing ly  x = f :D 
h(z)) in the  presence  of the  cons t r a in t  x = f : g(y) U 
h(z). Also in the  presence of  x = f : g(y) U h(z) rule  
(UDown)  non -de t e rmin i s t i c a l l y  p r o p a g a t e s  an  I - v a l u e  
of x to  e i ther  an  g-value  of y or an h-value of  z (if 
ne i ther  a l r e ady  holds) .  T h e  n o t a t i o n  y = 3g : xi  ] z = 
3h : xi  denotes  a non-de te rmin i s t i c  choice be tween  
y = 3g : x~ and  z = 3h : xi .  Rule  (nDown)  propaga -  
tes an f - v a l u e  of  x b o t h  as a g-value  of y and  h-value of 
z in the  presence of the  cons t r a in t  x = f : g(y) n h(z). 
Final ly ,  rule ( n U p )  p r o p a g a t e s  a common  g-value of y 
and  h-value of z as  an f - v a l u e  of x in the  presence of  
the  cons t r a in t  x = f : g(y) n h(z). 

4 I n v a r i a n c e ,  C o m p l e t e n e s s  a n d  

T e r m i n a t i o n  

In th is  sec t ion  we es tab l i sh  the  ma in  resul ts  of  th is  
p a p e r  - n a m e l y  t h a t  our  cons is tency  checking proce-  
dure  for set desc r ip t ions  and  set  ope ra t ions  is invari-  
ant ,  comple t e  and  t e rmina t ing .  In  o the r  words,  we 
have a decis ion p rocedu re  for de t e rmin ing  the  consi- 

s tency  of  t e rms  in our  e x t e n d e d  fea tu re  logic. 

For  the  pu rpose  of showing invariance of our  ru-  
les we d i s t inguish  be tween  deterministic a n d  non- 
deterministic rules.  A m o n g s t  all our  rules  only  rule 
( S D i s )  given in figure 4 and  rule (UDown) are  non- 
de te rmin i s t i c  while all  the  o the r  rules a re  de t e rmin i -  
stic.  
T h e o r e m  2 ( I n v a r i a n c e )  1. I f  a decomposition rule 

transforms Cs to C~s then Cs is consistent iff C~ is 
consistent. 

2. Let Z , a  be any interpretation, assignment pair and 
let Cs be any constraint system. 

• I f  a deterministic simplification rule transforms 
Cs to C'  s then: 

iff p c" 
• I f  a non-deterministic simplification rule applies 

to Cs then there is at least one non-deterministic 
choice which transforms Cs to C' s such that: 
z , a  p iffz, a p c ;  

A cons t r a in t  sy s t em Cs is in n o r m a l  f o r m  if no rules 
a re  app l i cab le  to  Cs. 

Let  succ(x, f )  deno te  t he  set:  
succ(x,  f )  = {y  I c8  x = 3 f  : y }  

A cons t r a in t  sy s t em Cs in n o r m a l  form conta ins  a 
c l a s h  if the re  exis ts  a va r iab le  x in C8 such t h a t  any 
of the  following condi t ions  a re  sa t is f ied : 

1. C ~ F x = a l  a n d C ~ F x = a 2 s u c h t h a t a l  ~ a 2  
2. Cs F x = cl and Cs F x = c2 such t h a t c l  ~ c 2  

3. Cs F x = S and Cs F x = - ,S  
where  S ranges  over  x, a, c, C.  

4. C s F x = 3 f : y a n d C s F x = a  
5. C~ F f ( x )  ¢ g(y) and  succ(x,  f )  n succ(y, g) 7~ 
6. C~ F x = f :  { x z , . . . , x n } =  and I succ (x , f )  I < n 
If  Cs does no t  con ta in  a c lash then  C~ is cal led c l a s h -  
f r ee .  

The  cons t r a in t  solving process  can t e r m i n a t e  as soon 
as a clash-free cons t r a in t  sys t em in n o r m a l  form is fo- 
und or  a l t e rna t i ve ly  all  the  choice po in t s  a re  exhau-  
s ted.  

T h e  pu rpose  of the  clash def ini t ion is h igh l igh ted  in 
the  completeness t h e o re m given below. 

For  a cons t r a in t  sys t em Cs in n o r m a l  form an  equiva- 
lence relation ~_ on var iables  occur r ing  in Cs is defined 
as follows: 

x - ~  y i fC~  F x = y 
For  a var iable  x we represen t  i ts  equiva lence  class by  

T h e o r e m  3 ( C o m p l e t e n e s s )  A constraint system 
Cs in normal form is consistent iff Cs is clash-free. 
Proof Sketch: For  the  first  pa r t ,  let  C~ be  a cons t r a in t  
sys tem con ta in ing  a c lash then  i t  is c lear  f rom the  de- 
f ini t ion of c lash t h a t  the re  is no i n t e r p r e t a t i o n  Z and  
Z-ass ignment  a which satisfies Cs. 

Let  C~ be  a clash-free cons t r a in t  sy s t em in n o r m a l  
form. 

We shall  cons t ruc t  an  i n t e r p r e t a t i o n  7~ = <  L/R, .R > 
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and a variable assignment a such that  T~, a ~ Cs. 

Let U R = V U ,4t UC. 

The assignment function a is defined as follows: 
1. For every variable x in )2 

(a) if C8 }- x = a then ~(x) = a 
(b) if the previous condition does not apply then 

~(x) = choose(Ix]) where choose([x]) denotes a 
unique representative (chosen arbitrarily) from 
the equivalence class [x]. 

2. For every constant c in C: 
(a) if Cs F x = c then a(c) = (~(x) 
(b) if c is a constant  such tha t  the previous condition 

does not apply then (~(c) -- c 
3. For every primitive concept C in P:  

= I C 8  x = 

The interpretat ion function .n is defined as follows: 
• fR(x) = succ( , f)  
• a R = a  

I t  can be shown by a case by case analysis tha t  for 
every constraint  K in C~: 
7 ~ , a ~  K. 
Hence we have the theorem. 
T h e o r e m  4 ( T e r m i n a t i o n )  
The consistency checking procedure terminates in a fi- 
nite number of steps. 
Proof Sketch: Terminat ion is obvious if we observe the 
following properties: 
1. Since decomposition rules breakdown terms into 

smaller ones these rules must  terminate.  
2. None of the simplification rules introduce new va- 

riables and hence there is an upper  bound on the 
number  of variables. 

3. Every simplification rule does either of the following: 
(a) reduces the 'effective' number  of variables. 

A variable x is considered to be ineffective if it 
occurs only once in Cs within the constraint x = 
y such tha t  rule (SEqua l s )  does not apply. A 
variable tha t  is not ineffective is considered to be 
effective. 

(b) adds a constraint  of the form x = C where C 
ranges over y, a, c, C, -~y, -~a, -~c, -~C which means 
there is an upper  bound on the number  of con- 
straints of the form x = C tha t  the simplification 
rules can add. This is so since the number  of va- 
riables, a toms,  constants and primitive concepts 
are bounded for every constraint system in basic 
form. 

(c) increases the size of succ(x,f).  But the size of 
succ(x, f )  is bounded by the number  of variables 
in Cs which remains constant during the applica- 
tion of the simplification rules. Hence our con- 
straint  solving rules cannot  indefinitely increase 
the size of succ(x, f ) .  

5 N P - c o m p l e t e n e s s  

In this section, we show tha t  consistency checking 
of terms within the logic described in this paper  is 

NP-complete.  This result holds even if the terms 
involving set operations are excluded. We prove 
this result by providing a polynomial t ime transla- 
tion of the well-known NP-complete  problem of de- 
termining the satisfiability of propositional formulas 
[Garey and Johnson, 1979]. 
T h e o r e m  5 ( N P - C o m p l e t e n e s s )  Determining 
consistency of terms is NP-Complete. 
Proof: Let ¢ be any given propositional formula for 
which consistency is to be determined. We split our 
translation into two intuitive par ts  : truth assignment 
denoted by A(¢) and evaluation denoted by r (¢) .  

Let a, b , . . .  be the set of propositional variables occur- 
ring in ¢. We translate every propositional variable a 
by a variable xa in our logic. Let f be some relation 
symbol. Let true, false be two atoms. 

Furthermore,  let xl ,  x2 , . . ,  be a finite set of variables 
distinct from the ones introduced above. 

We define the translation function A(¢) by: 
A(¢) = f :  {true, false}n 

3 f  :xa nSf : x b n . . . n  
3 f  : xl n 3f  : x2 n ... 

The above description forces each of the variable 
Xa,Xb,... and each of the variables x l , x2 , . . ,  to be 
either equivalent to true or false. 
We define the evaluation function T(¢) by: 

= x o  

T(S&T) = T(S) n r(T) 

T ( S V T )  = xi n 3f : ( ] :  {~ (S) , r (T)}  n 3f:  xi) 
where xi 6 { x l , x 2 , . . . }  is a new variable 
r(~S) = xi n 3f : (r(S) n ~z~) 
where xi 6 {x l ,x2 , . . . }  is a new variable 

Intuitively speaking T can be understood as follows. 
Evaluation of a propositional variable is just  its value; 
evaluating a conjunction amounts  to evaluating each 
of the conjuncts; evaluating a disjunction amounts  to 
evaluating either of the disjuncts and finally evaluating 
a negation involves choosing something other than the 
value of the term. 

Determining satisfiability of ¢ then amounts  to deter- 
mining the consistency of the following term: 

3 f  : A(¢)  n 3 f :  (true n r (¢) )  
Note that  the te rm truenT(¢) forces the value of T(¢) 
to be true. This translation demonstrates  tha t  deter- 
mining consistency of terms is NP-hard.  

On the other hand, every deterministic completion of 
our constraint solving rules terminate  in polynomial 
t ime since they do not generate new variables and the 
number of new constraints are polynomially bounded. 
This means determining consistency of terms is NP- 
easy. Hence, we conclude tha t  determining consistency 
of terms is NP-complete.  

6 T r a n s l a t i o n  t o  S c h 6 n f i n k e l - B e r n a y s  
c l a s s  

The Schhnfinkel-Bernays class (see [Lewis, 1980]) con- 
sists of function-free first-order formulae which have 
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the form: 
3xt  . . .  xnVyl  • .. ym6 

In this section we show that  the attributive logic 
developed in this paper can be encoded within the 
SchSnfinkel-Bernays subclass of first-order formulae by 
extending the approach developed in [Johnson, 1991]. 
However formulae such as V f : (3 f : (Vf : T)) which 
involve an embedded existential quantification cannot 
be translated into the SchSnfinkel-Bernays class. This 
means that  an unrestricted variant of our logic which 
does not restrict the universal role quantification can- 
not be expressed within the SchSnfinkel-Bernays class. 

In order to put things more concretely, we provide 
a translation of every construct in our logic into the 
SchSnfinkel-Bernays class. 

Let T be any extended feature term. Let x be a va- 
riable free in T. Then T is consistent iff the formula 
(x = T) 6 is consistent where 6 is a translation function 
from our extended feature logic into the SchSnfinkel- 
Bernays class. Here we provide only the essential de- 
finitions of 6: 
• 

• = x # a  

• (x = f : T)  ~ = 
f ( x ,  y) & (y = T)  ~ ~ V y ' ( f ( x ,  y') -+ y = y') 

where y is a new variable 
• ( x = q f : T )  ~ = f ( x , y )  & ( y = T )  '~ 

where y is a new variable 
• (x = V f :  a) ~ = V y ( f ( x , y )  --+ y = a) 
• (x = V f :  ~a) ~ = V y ( f ( x , y )  .-+ y # a) 
• (x = f :  { T 1 , . . . , T n } )  ~ -- 

f (X ,  Xl) & . . .  ~ f (X ,  Xn),~ 
V y ( f ( x , y )  --~ y = Xl V . . .  V y = xn)& 
( x l  = T1)  & . . .  & ( z l  = 

where Xl , . . . ,  Xn are new variables 
• (x = f :  g(y)  U h(z) )  ~ = 

Vxi(f(x, xi)  -'+ g(y, xi)  V h(z,  xi))  ~: 
Vy,(g(y,  Yi) -4 f ( x ,  Yi)) & 
Vzi(h(z ,  zi) -+ f ( x ,  zi)) 

• (x = f :  (y) # g (z ) )  ~ = 
V y i z j ( f ( y ,  yi) & g(z,  zi) --+ Yi # zi) 

• ( x = S l q T )  ' ~ = ( x = S )  ~ & ( x = T )  ~ 
These translation rules essentially mimic the decom- 
position rules given in figure 2. 

Furthermore for every atom a and every feature f in 
T we need the following axiom: 
• Vax(-~f(a,  x)) 
For every distinct atoms a, b in T we need the axiom: 
• a # b  
Taking into account the NP-completeness result 
established earlier this translation identifies a NP- 
complete subclass of formulae within the SchSnfinkel- 
Bernays class which is suited for NL applications. 

7 R e l a t e d  W o r k  

Feature logics and concept languages s u c h a s  
KL-ONE are closely related family of languages 

[Nebel and Smolka, 1991]. The principal difference 
being that  feature logics interpret at tr ibutive labels 
as functional binary relations while concept langua- 
ges interpret them as just binary relations. However 
the integration of concept languages with feature lo- 
gics has been problematic due to the fact the while 
path equations do not lead to increased computatio- 
nal complexity in feature logic the addition of role- 
value-maps (which are the relational analog of path 
equations) in concept languages causes undecidabi- 
lity [Schmidt-Schant3, 1989]. This blocks a straight- 
forward integration of a variable-free concept language 
such as ALC [Schmidt-SchanB and Smolka, 1991] with 
a variable-free feature logic [Smolka, 1991]. 

In [Manandhax, 1993] the addition of variables, fea- 
ture symbols and set descriptions to ALC is investi- 
gated providing an alternative method for integrating 
concept languages and feature logics. It is shown that  
set descriptions can be translated into the so called 
"number restrictions" available within concept langu- 
ages such as BACK [yon Luck et al., 1987]. However, 
the propositionally complete languages ALV and ALS 
investigated in [Manandhar, 1993] are PSPACE-hard 
languages which do not support  set operations. 

The work described in this paper describes yet another 
unexplored dimension for concept languages - that  of 
a restricted concept language with variables, feature 
symbols, set descriptions and set operations for which 
the consistency checking problem is within the com- 
plexity class NP. 

8 S u m m a r y  a n d  C o n c l u s i o n s  

In this paper we have provided an extended feature lo- 
gic (excluding disjunctions and negations) with a range 
of constraints involving set descriptions. These con- 
straints are set descriptions, fixed cardinality "set de- 
scriptions, set-membership constraints, restricted uni- 
versal role quantifications, set union, set intersection, 
subset and disjointness. We have given a model theo- 
retic semantics to our extended logic which shows that  
a simple and elegant formalisation of set descriptions 
is possible if we add relational attributes to our logic 
as opposed to just functional attr ibutes available in 
feature logic. 

For realistic implementation of the logic described in 
this paper, further investigation is needed to develop 
concrete algorithms that  are reasonably efficient in the 
average case. The consistency checking procedure de- 
scribed in this paper abstracts away from algorithmic 
considerations and clearly modest improvements to the 
basic algorithm suggested in this paper are feasible. 
However, a report  on such improvements is beyond 
the scope of this paper. 

For applications within constraint based grammar 
formalisms such as HPSG, minimally a type sy- 
stem [Carpenter, 1992] and /or  a Horn-like extension 
[HShfeld and Smolka, 1988] will be necessary. 

We believe that  the logic described in this paper pro- 
vides both a bet ter  picture of the formal aspects of 
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current constraint  based g rammar  formalisms which 
employ set descriptions and at the same t ime gives 
a basis for building knowledge representation tools in 
order to support  g r a m m a r  development within these 
formalisms. 
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