
Capturing CFLs with Tree Adjoining 

J a m e s  Rogers* 
D e p t .  o f  C o m p u t e r  a n d  I n f o r m a t i o n  S c i e n c e s  

U n i v e r s i t y  of  D e l a w a r e  

N e w a r k ,  D E  19716, U S A  

j r o g e r s © c i s ,  u d e l .  e d u  

Grammars  

A b s t r a c t  

We define a decidable class of TAGs that  is strongly 
equivalent to CFGs and is cubic-time parsable. This 
class serves to lexicalize CFGs in the same manner  as 
the LC, FGs of Schabes and Waters but with consider- 
ably less restriction on the form of the grammars .  The 
class provides a nornlal form for TAGs that  generate 
local sets m rnuch the same way that  regular g rammars  
provide a normal form for CFGs that  generate regular 
sets. 

I n t r o d u c t i o n  

We introduce the notion of Regular Form for Tree Ad- 
joining ( ; r ammars  (TA(;s). The class of TAGs that  
are in regular from is equivalent in strong generative 
capacity 1 to the Context-Free Grammars ,  that  is, the 
sets of trees generated by TAGs in this class are the local 
sets--the sets of derivation trees generated by CFGs. 2 
Our investigations were initially motivated by the work 
of Schabes, Joshi, and Waters in lexicalization of CFGs 
via TAGs (Schabes and Joshi, 1991; Joshi and Schabes, 
1992; Schabes and Waters, 1993a; Schabes and Waters, 
1993b; Schabes, 1990). The class we describe not only 
serves to lexicalize CFGs in a way that  is more faith- 
tiff and more flexible in its encoding than earlier work, 
but provides a basis for using the more expressive TAG 
formalism to define Context-Free Languages (CFLs.) 

In Schabes et al. (1988) and Schabes (1990) a gen- 
eral notion of lexicalized grammars is introduced. A 
g rammar  is lexicalized in this sense if each of the ba- 
sic structures it manipulates is associated with a lexical 
item, its anchor. The set of structures relevant to a 
particular input string, then, is selected by the lexical 

*The work reported here owes a great deal to extensive 
discussions with K. Vijay-Shanker. 

1 We will refer to equivalence of the sets of trees generated 
by two grammars or classes of grammars as strong equiva- 
lence. Equivalence of their string languages will be referred 
to as weak equivalence. 

2Technically, the sets of trees generated by TAGs in the 
class are recognizable sets. The local and recognizable sets 
are equivalent modulo projection. We discuss the distinction 
in the next section. 

i tems that  occur in that  string. There are a number 
of reasons for exploring lexicalized grammars .  Chief 
among these are linguistic considerations--lexicalized 
g rammars  reflect the tendency in many  current syntac- 
tic theories to have the details of the syntactic structure 
be projected from the lexicon. There are also practical 
advantages. All lexicalized g rammars  are finitely am- 
biguous and, consequently, recognition for them is de- 
cidable. Further, lexicalization supports  strategies that  
can, in practice, improve the speed of recognition algo- 
r i thms (Schabes et M., 1988). 

One g r a m m a r  formalism is said to lezicalize an- 
other (Joshi and Schabes, 1992) if for every g rammar  
in the second formalism there is a lexicalized g rammar  
in the first that  generates exactly the same set of struc- 
tures. While CFGs are at tract ive for efficiency of recog- 
nition, Joshi and Schabes (1992) have shown that  an 
arbi trary CFG cannot, in general, be converted into a 
strongly equivalent lexiealized CFG. Instead, they show 
how CFGs can be lexicalized by LTAGS (Lexicalized 
TAGs). While the LTAG that  lexicalizes a given CFG 
must be strongly equivalent to that  CFG, both the lan- 
guages and sets of trees generated by LTAGs as a class 
are strict supersets of the CFLs and local sets. Thus, 
while this gives a means of constructing a lexicalized 
g rammar  from an existing CFG, it does not provide 
a direct method for constructing lexicalized g rammars  
that  are known to be equivalent to (unspecified) CFGs. 
Furthermore, the best known recognition algorithm for 
LTAGs runs in O(n 6) time. 

Schabes and Waters (1993a; 1993b) define Lexical- 
ized Context-Free G r a m m a r s  (LCFGs),  a class of lex- 
icalized TAGs (with restricted adjunction) that  not 
only lexicalizes CFGs, but is cubic-time parsable and is 
weakly equivalent to CFGs. These LCFGs have a cou- 
ple of shortcomings. First, they are not strongly equiv- 
alent to CFGs. Since they are cubic-time parsable this 
is primarily a theoretical rather than practical concern. 
More importantly,  they employ structures of a highly 
restricted form. Thus the restrictions of the formalism, 
in some cases, may override linguistic considerations in 
constructing the g rammar .  Clearly any class of TAGs 
that  are cubic-time parsable, or that  are equivalent in 
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any sense to CFGs, must be restricted in some way. 
The question is what restrictions are necessary. 

In this paper we directly address the issue of iden- 
tifying a class of TAGs that are strongly equivalent to 
CFGs. In doing so we define such a class--TAGs in 
regular form--that is decidable, cubic-time parsable, 
and lexicalizes CFGs. Further, regular form is essen- 
tially a closure condition on the elementary trees of the 
TAG. Rather than restricting the form of the trees that 
can be employed, or the mechanisms by which they are 
combined, it requires that whenever a tree with a par- 
ticular form can be derived then certain other related 
trees must be derivable as well. The algorithm for de- 
ciding whether a given grammar  is in regular form can 
produce a set of elementary trees that will extend a 
grammar that does not meet the condition to one that 
does. 3 Thus the grammar can be written largely on the 
basis of the linguistic structures that it is intended to 
capture. We show that, while the LCFGs that are built 
by Schabes and Waters's algorithm for lexicalization of 
CFGs are in regular form, the restrictions they employ 
are unnecessarily strong. 

Regular form provides a partial answer to the more 
general issue of characterizing the TAGs that generate 
local sets. It serves as a normal form for these TAGs in 
the same way that regular grammars serve as a normal 
form for CFGs that generate regular languages. While 
for every TAG that generates a local set there is a TAG 
in regular form that generates the same set, and every 
TAG in regular form generates a local set (modulo pro- 
jection), there are TAGs that are not in regular form 
that generate local sets, just as there are CFGs that 
generate regular languages that are not regular gram- 
mars. 

The next section of this paper briefly introduces no- 
tation for TAGs and the concept of recognizable sets. 
Our results on regular form are developed in the subse- 
quent section. We first define a restricted use of the ad- 
junction operation--derivation by regular adjunction-- 
which we show derives only recognizable sets. We then 
define the class of TAGs in regular form and show that 
the set of trees derivable in a TAG of this form is deriv- 
able by regular adjunction in that TAG and is therefore 
recognizable. We next show that every local set can be 
generated by a TAG in regular form and that Schabes 
and Waters's construction for LCFGs in fact produces 
TAGs in regular form. Finally, we provide an algorithm 
for deciding if a given TAG is in regular form. We close 
with a discussion of the implications of this work with 
respect to the lexicalization of CFGs and the use of 
TAGs to define languages that are strictly context-free, 
and raise the question of whether our results can be 
strengthened for some classes of TAGs. 

3Although the result of this process is not, in general, 
equivalent to the original grammar. 

P r e l i m i n a r i e s  

Tree  A d j o i n i n g  G r a m m a r s  

Formally, a TAG is a five-tuple (E, NT, I, A, S / where: 

E is a finite set of terminal symbols, 
NT is a finite set of non-terminal symbols, 

I is a finite set of elementary initial trees, 
A is a finite set of elementary auxiliary trees, 
S is a distinguished non-terminal, 

the start symbol. 

Every non-frontier node of a tree in I t3 A is labeled 
with a non-terminal. Frontier nodes may be labeled 
with either a terminal or a non-terminal. Every tree 
in A has exactly one frontier node that is designated 
as its foot. This must be labeled with the same non- 
terminal as the root. The auxiliary and initial trees are 
distinguished by the presence (or absence, respectively) 
of a foot node. Every other frontier node that is la- 
beled with a non-terminal is considered to be marked 
for substitution. In a lexicalized TAG (LTAG) every 
tree in I tO A must have some frontier node designated 
the anchor, which must be labeled with a terminal. 

Unless otherwise stated, we include both elementary 
and derived trees when referring to initial trees and 
auxiliary trees. A TAG derives trees by a sequence of 
substitutions and adjunctions in the elementary trees. 
In substitution an instance of an initial tree in which the 
root is labeled X E NT is substituted for a frontier node 
(other than the foot) in an instance of either an initial 
or auxiliary tree that is also labeled X. Both trees may 
be either an elementary tree or a derived tree. 

In adjunction an instance of an auxiliary tree in which 
the root and foot are labeled X is inserted at a node, 
also labeled X, in an instance of either an initial or 
auxiliary tree as follows: the subtree at that node is ex- 
cised, the auxiliary tree is substituted at that node, and 
the excised subtree is substituted at the foot of the aux- 
iliary tree. Again, the trees may be either elementary 
or derived. 

The set of objects ultimately derived by a TAG 6' is 
T(G), the set of completed initial trees derivable in (;. 
These are the initial trees derivable in G in which tile 
root is labeled S and every frontier node is labeled with 
a terminal (thus no nodes are marked for substitution.) 
We refer to the set of all trees, both initial and auxiliary, 
with or without nodes marked for substitution, that are 
derivable in G as TI(G). The language derived by G is 
L(G) the set of strings in E* that are the yields of trees 
in T(G). 

In this paper, all TAGs are pure TAGs, i.e., without 
adjoining constraints. Most of our results go through 
for TAGs with adjoining constraints as well, but there 
is much more to say about these TAGs and the impli- 
cations of this work in distinguishing the pure TACs 
from TAGs in general. This is a part of our ongoing 
research. 

The path between the root and foot (inclusive) of an 
auxiliary tree is referred to as its spine. Auxiliary trees 
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in which no node on the spine other than the foot is 
labeled with the same non-terminal as the root we call 
a prvper auxiliary tree. 

L e m m a  1 For any TAG G there is a TAG G' that 
includes no improper elementary trees ,such that T(G)  
is a projection ofT((7') .  

P r o o f  (Sketch): The g r a m m a r  G can be relabeled with 
symbols in {(x,i} [ x E E U NT, i E {0, 1}} to form G'.  
Every auxiliary tree is duplicated, with the root and 
foot labeled (X,O) in one copy and (X, 1} in the other. 
Improper  elementary auxiliary trees can be avoided by 
appropriate choice of labels along the spine. [] 

The labels in the trees generated by G'  are a refine- 
ment of the labels of the trees generated by G. Thus 
(7 partitions the categories assigned by G into sub- 
categories on the basis of (a fixed amount  of) context. 
While the use here is technical rather than natural,  the 
al)proach is familiar, as in the use of slashed categories 
to handle movement.  

Recognizable Sets 
The local sets are formally very closely related to 
the recognizable sets, which are somewhat  more con- 
venient to work with. These are sets of trees that  
are accepted by finite-state tree automata (G~cseg and 
Steinby, 1984). If E is a finite alphabet,  a Z-valued tree 
is a finite, rooted, left-to-right ordered tree, the nodes 
of which are labeled with symbols in E. We will denote 
such a tree in which the root is labeled o" and in which 
the subtrees at the children of the root are t l , . . . ,  tn as 
c r ( t l , . . . , t , , ) .  The set of all E-valued trees is denoted 

A (non-deterministic) bottom-up finite state tree au- 
tomaton over E-valued trees is a tuple (E ,Q,  M, F) 
where: 

e is a finite alphabet, 
Q is a finite set of states, 
F is a subset of Q, the set of final states, and 

M is a partial flmction from I3 x Q* to p ( Q )  (the 
powerset of Q) with finite domain, the transi- 
tion function. 

The transition function M associates sets of states 
with alphabet  symbols. It induces a function that  as- 
sociates sets of states with trees, M : T~ ~ P(Q) ,  such 
that: 

q e M ( t )  4 ~  
t is a leaf labeled a and q E M(a ,  e), or 
t = a ( t o , . . . ,  t,~) and there is a sequence 

of states qo, • . . ,  q, such that  qi E M(t i ) ,  
for 0 < i < n, and q E M(a ,  qo . . . . .  q,~). 

An automaton A = (E ,Q,  M, F} accepts a tree t E 
TE iff, by definition, FIq-'M(t) is not empty. The set of 
trees accepted by an au tomaton  .,4 is denoted T(A) .  

A set of trees is recognizable iff, by definition, it is 
T(A)  for some automaton  .A. 

L e m m a  2 (Thatcher, 1967) Every local set is recog- 
nizable. Every recognizable set is the projection of some 
local set. 

The projection is necessary because the au tomaton  can 
distinguish between nodes labeled with the same sym- 
bol while the CFG cannot. The set of trees (with 
bounded branching) in which exactly one node is la- 
beled A, for instance, is recognizable but not local. It 
is, however, the projection of a local set in which the 
labels of the nodes that  dominate the node labeled A 
are distinguished from the labels of those that  don't .  

As a corollary of this lemma, the path set of a recog- 
nizable (or local) set, i.e., the set of strings that  label 
paths in the trees in that  set, is regular. 

T A G s  i n  R e g u l a r  F o r m  

R e g u l a r  Adjunction 
The fact that  the path sets of recognizable sets must be 
regular provides our basic approach to defining a class 
of TAGs that  generate only recognizable sets. We start  
with a restricted form of adjunction that  can generate 
only regular path  sets and then look for a class of TAGs 
that  do not generate any trees that  cannot be generated 
with this restricted form of adjunction. 

D e f i n i t i o n  1 R e g u l a r  a d j u n c t i o n  is ordinary ad- 
junction restricted to the following cases: 

• any auxiliary tree may be adjoined into any initial 
tree or at any node that is not on the spine of an 
auxiliary tree, 

• any proper auxiliary tree may be adjoined into any 
auxiliary tree at the root or fool of that tree, 

• any auxiliary tree 7t may be adjoined at any node 
along the spine of any auxiliary tree 72 provided that 
no instance of 3'2 can be adjoined at any node along 
the spine of 71. 

In figure 1, for example, this rules out adjunction of 
/31 into the spine of/33, or vice versa, either directly or 
indirectly (by adjunction of/33, say, into f12 and then 
adjunction of the resulting auxiliary tree into fit-) Note 
that,  in the case of TAGs with no improper  elementary 
auxiliary trees, the requirement that  only proper aux- 
iliary trees may be adjoined at the root or foot is not 
actually a restriction. This is because the only way to 
derive an improper  auxiliary tree in such a TAG with- 
out violating the other restrictions on regular adjunc- 
tion is by adjunction at the root or foot. Any sequence 
of such adjunctions can always be re-ordered in a way 
which meets the requirement. 

We denote the set. of completed initial trees derivable 
by regular adjunetion in G as TR(G). Similarly, we 
denote the set of all trees that  are derivable by regular 
adjunction in G as T~(G). As intended, we can show 
that  TR(G) is always a recognizable set. We are looking, 
then, for a class of TAGs for which T(G) = TR(G) for 
every G in the class. Clearly, this will be the case if 
T'(G) = T h ( a  ) for every such G. 
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P r o p o s i t i o n  1 I f  G is a TAG and T ' (G)  = T'a(G ). 
Then T(G)  is a recognizable set. 

P r o o f  (Sketch): This follows from the fact that  in reg- 
ular adjunction, if one treats adjunction at the root or 
foot as substitution, there is a fixed bound, dependent 
only on G, on the depth to which auxiliary trees can 
be nested. Thus the nesting of the auxiliary trees can 
be tracked by a fixed depth stack. Such a stack can be 
encoded in a finite set of states. It's reasonably easy 
to see, then, how G can be compiled into a bot tom-up 
finite state tree automaton,  t3 

Since regular adjunction generates only recognizable 
sets, and thus (modulo projection) local sets, and since 
CFGs can be parsed in cubic time, one would hope 
that  TAGs that  employ only regular adjunction can be 
parsed in cubic time as well. In fact, such is the case. 

P r o p o s i t i o n  2 I f  G is a TAG for which T(G)  = 
TR(G) then there is a algorithm that recognizes strings 
in L(G) in time proportional to the cube of the length 
of the string. 4 

Proof (Ske tch ) :  This, again, follows from the fact 
that the depth of nesting of auxiliary trees is 
bounded in regular adjunction. A CKY-style 
style parsing algorithm for TAGs (the one given 
in Vijay-Shanker and Weir (1993), for example) can be 
modified to work with a two-dimensionM array, storing 
in each slot [i, j] a set of structures that  encode a node 
in an elementary tree that  can occur at the root of a 
subtree spanning the input from position i through j in 
some tree derivable in G, along with a stack recording 
the nesting of elementary auxiliary trees around that  
node in the derivation of that tree. Since the stacks 

4This result was suggested by K. Vijay-Shanker. 

are bounded the amount  of data stored in each node 
is independent of the input length and the algorithm 
executes in time proportional to the cube of the length 
of the input, o 

R e g u l a r  F o r m  
We are interested in classes of TAGs for which T' (G)  = 
T~(G). One such class is the TAGs in regular form. 

D e f i n i t i o n  2 A TAG is in r e g u l a r  f o r m  if[ whenever 
a completed auxiliary tree of the form 71 in Figure 2 
is derivable, where Xo ~£ xl ~ x2 and no node labeled 
X occurs properly between xo and xl ,  then trees of the 
form 72 and 73 are derivable as well. 

Effectively, this is a closure condition oll the elementary 
trees of the grammar.  Note that it immediately implies 
that every improper elementary auxiliary tree in a reg- 
ular form TAG is redundant.  It is also easy to see, by 
induction on the number of occurrences of X along the 
spine, that  any auxiliary tree 7 for X that  is derivable 
in G can be decomposed into the concatenation of a 
sequence of proper auxiliary trees for X each of which 
is derivable in G. We will refer to the proper auxiliary 
trees in this sequence as the proper segments of 7. 

L e m i n a  3 Suppose G is a TAG in regular form. Then 
T'(G) = T£(G) 

P r o o f :  Suppose 7 is any non-elementary auxiliary tree 
derivable by unrestricted adjunction in G and that any 
smaller tree derivable in (7, is derivable by regular ad- 
junction in G. I f ' / i s  proper, then it is clearly derivable 
from two strictly smaller trees by regular adjunction, 
each of which, by the induction hypothesis, is in T~(G). 
If 7 is improper, then it has the form of 71 in Figure 2 
and it is derivable by regular adjunction of 72 at the 
root of'/3. Since both of these are derivable and strictly 
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smaller than 7 they are in T~(G).  It follows that  7 is 
in T~(G') as well. [] 

L e m m a  4 Suppose (; is a TAG with no improper ele- 
mentary trees and T ' (G)  = T'R(G ). Then G is in regu- 
lar form. 

P r o o f i  Suppose some 7 with the form of 7l in Fig- 
ure 2 is derivable in G and that  for all trees 7'  that  are 
smaller than 7 every proper segment of 7' is derivable 
in G'. By assumption 7 is not elementary since it is im- 
proper. Thus, by hypothesis, 7 is derivable by regular 
adjunction of some 7" into some 7' both of which are 
derivable in (/. 

Suppose 7" adjoins into the spine of 7' and that  a 
node labeled X occurs along the spine of 7". Then, 
by the definition of regular adjunction, 7" must be ad- 
joined at. either tile root or foot of 7' .  Thus both 7'  
and 7" consist of sequences of consecutive proper seg- 
ments of 7 with 7" including t and the initial (possibly 
empty) portion of u and 7' including the remainder of 
u or vice versa. In either case, by the induction hypoth-  
esis, every proper segment of both 7' and 7", and thus 
every proper segment of 7 is derivable in G. Then trees 
of the forrn 72 and 73 are derivable from these proper 
segments. 

Suppose, on the other hand, that  7" does not adjoin 
along the spine of 7 ~ or that  no node labeled X occurs 
along tile spine of 7"- Note that  7" must occur entirely 
within a proper segment of 7. Then 7' is a tree with 
the form of 71 that  is smaller than 7. From the induc- 
tion hypothesis every proper segment of 7 ~ is derivable 
in (;. It follows then that  every proper segment of 7 is 
derivable in G, either because it is a proper segment of 
7' or because it is derivable by a¢0unction of 7" into a 
proper segment of 7'- Again, trees of the form "r2 and 
7a are derivable from these 1)roper segments. [] 

Regular Form and Local Sets 
The class of TAGs in regular form is related to the lo- 
cal sets in much the same way that  the class of regular 
g rammars  is related to regular languages. Every TAG 
in regular form generates a recognizable set. This fol- 
lows from Lemma 3 and Proposition 1. Thus, modulo 
projection, every TAG in regular form generates a local 
set. C, onversely, the next proposition establishes that  
every local set can be generated by a TAG in regu- 
lar form. Thus regular form provides a normal form 
for TAGs that  generate local sets. It  is not the case, 
however, that  all TAGs that  generate local sets are in 
regular form. 

P r o p o s i t i o n  3 For every CFG G there is a TAG G' 
in regular form such that the set of derivation trees for 
G is exactly T(G') .  

P r o o f :  This is nearly immediate,  since every CFG is 
equivalent to a Tree Substitution G r a m m a r  (in which 

all trees are of depth one) and every Tree Substitution 
G r a m m a r  is, in the definition we use here, a TAG with 
no elementary auxiliary trees. It follows that  this TAG 
can derive no auxiliary trees at all, and is thus vacu- 
ously in regular form. [] 
This proof is hardly satisfying, depending as it does on 
the fact that  TAGs, as we define them, can employ sub- 
stitution. The next proposition yields, as a corollary, 
the more substantial  result that  every CFG is strongly 
equivalent to a TAG in regular form in which substitu- 
tion plays no role. 

P r o p o s i t i o n  4 The class of TAGs in regular form can 
lexicalize CFGs. 

P r o o f :  This follows directly from the equivalent lemma 
in Schabes and Waters (1993a). The construction 
given there builds a left-corner derivation graph (LCG). 
Vertices in this graph are the terminals and non- 
terminals of G. Edges correspond to the productions 
of G in the following way: there is an edge from X 
to Y labeled X ---* Y a  iff X ---* Y a  is a production 
in G. Paths through this graph that  end on a termi- 
nal characterize the left-corner derivations in G. The 
construction proceeds by building a set of elementary 
initial trees corresponding to the simple (acyelic) paths 
through the LCG that  end on terminals. These capture 
the non-recursive left-corner derivations in G. The set 
of auxiliary trees is built in two steps. First, an aux- 
iliary tree is constructed for every simple cycle in the 
graph. This gives a set of auxiliary trees that  is suffi- 
cient, with the initial trees, to derive every tree gener- 
ated by the CFG. This set of auxiliary trees, however, 
may include some which are not lexicalized, that  is, in 
which every frontier node other than the foot is marked 
for substitution. These can be lexicalized by substitut-  
ing every corresponding elementary initial tree at one 
of those frontier nodes. Call the LCFG constructed for 
G by this method G'.  For our purposes, the impor tant  
point of the construction is that  every simple cycle in 
the LCG is represented by an elementary auxiliary tree. 
Since the spines of auxiliary trees derivable in G'  cor- 
respond to cycles in the LCG, every proper segment of 
an auxiliary tree derivable in G'  is a simple cycle in the 
LCG. Thus every such proper segment is derivable in 
G'  and G'  is in regular form. [] 

The use of a graph which captures left-corner deriva- 
tions as the foundation of this construction guarantees 
that  the auxiliary trees it builds will be left-recursive 
(will have the foot as the left-most leaf.) It is a require- 
ment  of LCFGs that  all auxiliary trees be either left- 
or right-recursive. Thus, while other derivation strate- 
gies may be employed in constructing the graph, these 
must  always expand either the left- or r ight-most  child 
at each step. All that  is required for the construction to 
produce a TAG in regular form, though, is that  every 
simple cycle in the graph be realized in an elementary 
tree. The resulting g r ammar  will be in regular form no 
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matter  what (complete) derivation strategy is captured 
ill the graph. In particular,  this admits  the possibility 
of generating an LTAG in which the anchor of each el- 
ementary tree is some linguistically mot ivated "head". 

C o r o l l a r y  1 For every CFG G there is a TAG G ~ in 
regular form in which no node is marked for substitu- 
tion, such that the set of derivation trees for G is exactly 
T(G'). 

This follows from the fact that  the step used to lex- 
icalize the elementary auxiliary trees in Schabes and 
Waters 's  construction can be applied to every node (in 
both initial and auxiliary trees) which is marked for 
substitution. Paradoxically, to establish the corollary 
it is not necessary for every elementary tree to be lex- 
icalized. In Schabes and Waters 's  l emma  G is required 
to be finitely ambiguous and to not generate the empty  
string. These restrictions are only necessary if G ~ is to 
be lexicalized. Here we can accept TAGs which include 
elementary trees in which the only leaf is the foot node 
or which yield only the empty  string. Thus the corollary 
applies to all CFGs without restriction. 

R e g u l a r  F o r m  i s  D e c i d a b l e  

We have established that  regular form gives a class of 
TAGs that  is strongly equivalent to CFGs (modulo pro- 
jection), and that  LTAGs in this class lexicalize CFGs. 
In this section we provide an effective procedure for de- 
ciding if a given TAG is in regular form. The procedure 
is based on a graph that  is not unlike the LCG of the 
construction of Schabes and Waters. 

If G is a TAG, the Spine Graph of G is a directed 
multi-graph on a set of vertices, one for each non- 
terminal in G. If Hi is an elementary auxiliary tree 
in G and the spine of fli is labeled with the sequence of 
non-terminals (Xo, X 1 , . . . ,  Xn) (where X0 = Xn and 
the remaining Xj are not necessarily distinct), then 
there is an edge in the graph from each Xj to Xj+I la- 
beled (Hi, J, ti,j), where ti,j is that  portion of Hi that  is 
dominated by Xj but not properly dominated by Xj+I. 
There are no other edges in the graph except those cor- 
responding to the elementary auxiliary trees of G in this 
way. 

The intent is for the spine graph of G to characterize 
the set of auxiliary trees derivable in G by adjunction 
along the spine. Clearly, any vertex that  is labeled with 
a non-terminal for which there is no corresponding aux- 
iliary tree plays no active role in these derivations and 
can be replaced, along with the pairs of edges incident 
on it, by single edges. Without  loss of generality, then, 
we assume spine graphs of this reduced form. Thus ev- 
ery vertex has at least one edge labeled with a 0 in its 
second component  incident from it. 

A well-formed-cycle (wfc) in this graph is a (non- 
empty)  path traced by the following non-deterministic 
automaton:  

• The au tomaton  consists of a single push-down stack. 
Stack contents are labels of edges in the graph. 

• The au tomaton  starts on any vertex of the graph with 
an empty  stack. 

• At each step, the au tomaton  can move as follows: 

- If there is an edge incident from the current vertex 
labeled (ill, O, ti,o) the au tomaton  can push that  
label onto the stack and move to the vertex at the 
far end of that  edge. 

- If  the top of stack contains (fli,j, tis) and there is 
an edge incident from the current vertex labeled 
( f l i , j+ 1,ti,j+l) the au tomaton  may pop the top 
of stack, push (Hi,j-t-l , t i , j+l) and move to the 
vertex at the end of that  edge. 

- If the top of stack contains (Hi,j, ti,j) but there is 
no edge incident from the current vertex labeled 
(Hi,J + 1,ti,j+l) then the au tomaton  may pop the 
top of stack and remain at the same vertex. 

• The au tomaton  may halt if its stack is empty. 

• A path through the graph is traced by the au tomaton  
if it s tarts  at the first vertex in the path  and halts at 
the last vertex in the path  visiting each of the vertices 
in the path  in order. 

Each wfc in a spine graph corresponds to the auxil- 
iary tree built by concatenating the third components of 
the labels on the edges in the cycle in order. Then every 
wfc in the spine graph of G corresponds to an auxiliary 
tree that  is derivable in G by adjunction along the spine 
only. Conversely, every such auxiliary tree corresponds 
to some wfc in the spine graph. 

A simple cycle in the spine graph, by definition, is 
any minimal cycle in the graph that  ignores the labels 
of the edges but not their direction. Simple cycles cor- 
respond to auxiliary trees in the same way that  wfcs do. 
Say that  two cycles in the graph are equivalent iff they 
correspond to the same auxiliary tree. The simple cy- 
cles in the spine graph for G correspond to the minimal 
set of elementary auxiliary trees in any presentation of 
G that  is closed under the regular form condition in tile 
following way. 

L e m m a  5 A TAG G is in regular form iff every simple 
cycle in its spine graph is equivalent to a wfc in that 
graph. 

P r o o f :  
(If every simple cycle is equivalent to a wfc then (; is 
in regular form.) 

Suppose every simple cycle in the spine graph of (; 
is equivalent to a wfc and some tree of the form 71 
in Figure 2 is derivable in G. Wlog, assume the tree 
is derivable by adjunction along the spine only. Then 
there is a wfc in the spine graph of G corresponding 
to that  tree that  is of the form ( X o , . . . , X k , . . . , X , , )  
where X0 = Xk = Xn, 0 :~ k # n, and Xi # Xo 
for a l l 0  < i < k. Thus (X0 . . . .  ,Xk) is a s i m p l e  cy- 
cle in the spine graph. Further, (Xk . . . . .  Xn) is a se- 
quence of one or more such simple cycles. It follows 
that  both ( X 0 , . . . , X k )  and ( X k , . . . , X n )  are wfc in tile 
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spine graph and thus both 72 and 73 are derivable in 
(;. 
(If (; is in regular form then every simple cycle corre- 
sponds to a wfc.) 

Assume, wlog, tile spine graph of G is connected. (If 
it is not we can treat G as a union of grammars.) Since 
the spine graph is a union of wfcs it has an Eulerian wfc 
(in tile usual sense of Eulerian). Further, since every 
w~rl, ex is the initial vertex of some wfc, every vertex is 
tile initial vertex of some Eulerian wfc. 

Suppose there is some simple cycle 

X0 (fl0,10, t0) Xl ( i l l , l l , t l )  ' ' '  
. . .  x ~  (f~,, t , ,  t~) x0  

where the Xj are the vertices and the tuples are the 
labels on the edges of the cycle. Then there is a wfc 
starting at Xo that includes the edge (flo, 10, to), al- 
though not necessarily initially. In particular the Eule- 
rian wfc starting at X0 is such a wfc. This corresponds 
to a derivable auxiliary tree that includes a proper seg- 
ment beginning with to. Since G is in regular form, 
that proper segment is a derivable auxiliary tree. Call 
this 7o (see Figure 3.) The spine of that tree is labeled 
X 0 , X 1 , . . . , X 0 ,  where anything (other than X0) can 
occur in the ellipses. 

The same cycle can be rotated to get a simple cycle 
starting at each of the Xj .  Thus for each Xj there is a 
derivable auxiliary tree starting with tj. Call it 73". By 
a sequence of adjunctions of each 7j at the second node 
on the spine of 7j-1 an auxiliary tree for X0 is derivable 
in which the first proper segment is the concatenation 
of 

tO, t l , . . . , t n .  

Again, by the fact that G is in regular form, this proper 
segment is derivable in G. Hence there is a wfc in the 
spine graph corresponding to this tree. [] 

P r o p o s i t i o n 5  For any TAG G the question of 
whetherG is in regular form is decidable. Further, there 
is an effective procedure that, given any TAG, will ex- 
tend it to a TAG that is in regular form. 

Proof." Given a TAG G we construct its spine graph. 
Since the TAG is finite, the graph is as well. The TAG 
is in regular form iff every simple cycle is equivalent 
to a wfc. This is clearly decidable. Further, the set 
of elementary trees corresponding to simple cycles that 
are not equivalent to wfcs is effectively constructible. 
Adding that set to the original TAG extends it to reg- 
ular form. [] 
Of course the set of trees generated by the extended 
TAG may well be a proper superset of the set gener- 
ated by the original TAG. 

Discuss ion 
The LCFGs of Schabes and Waters employ a restricted 
form of adjunction and a highly restricted form of ele- 
mentary auxiliary tree. The auxiliary trees of LCFGs 
can only occur in left- or right-recursive form, that is, 
with the foot as either the left- or right-most node on 
the frontier of the tree. Thus the structures that can be 
captured in these trees are restricted by the mechanism 
itself, and Schabes and Waters (in (1993a)) cite two 
situations where an existing LTAG grammar for En- 
glish (Abeill@ et at., 1990) fails to meet this restriction. 
But while it is sufficient to assure that  the language 
generated is context-free and cubic-time parsable, this 
restriction is stronger than necessary. 

TAGs in regular form, in contrast, are ordinary TAGs 
utilizing ordinary adjunction. While it is developed 
from the notion of regular adjunction, regular form 
is just a closure condition on the elementary trees of 
the grammar.  Although that closure condition assures 
that all improper elementary auxiliary trees are redun- 
dant, the form of the elementary trees themselves is 
unrestricted. Thus the structures they capture can be 
driven primarily by linguistic considerations. As we 
noted earlier, the restrictions on the form of the trees 
in an LCFG significantly constrain the way in which 
CFGs can be lexicalized using Schabes and Waters's 
construction. These constraints are eliminated if we re- 
quire only that the result be in regular form and the 
lexicalization can then be structured largely on linguis- 
tic principles. 
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On the other hand, regular form is a property of the 
grammar as a whole, while the restrictions of LCFG 
are restrictions on individual trees (and the manner in 
which they are combined.) Consequently, it is imme- 
diately obvious if a grammar meets the requirements 
of LCFG, while it is less apparent if it is in regular 
form. In the case of the LTAG grammar for English, 
neither of the situations noted by Schabes and Waters 
violate regular form themselves. As regular form is 
decidable, it is reasonable to ask whether the gram- 
mar as a whole is in regular form. A positive result 
would identify the large fragment of English covered by 
this grammar as strongly context-free and cubic-time 
parsable. A negative result is likely to give insight into 
those structures covered by the grammar that require 
context-sensitivity. 

One might approach defining a context-free language 
within the TAG formalism by developing a grammar 
with the intent that  all trees derivable in the grammar 
be derivable by regular adjunction. This condition can 
then be verified by the algorithm of previous section. In 
the case that  the grammar  is not in regular form, the al- 
gorithm proposes a set of additional auxiliary trees that 
will establish that  form. In essence, this is a prediction 
about the strings that  would occur in a context-free 
language extending the language encoded by the origi- 
nal grammar. It is then a linguistic issue whether these 
additional strings are consistent with the intent of the 
grammar. 

If a grammar is not in regular form, it is not necessar- 
ily the case that it does not generate a recognizable set. 
The main unresolved issue in this work is whether it 
is possible to characterize the class of TAGs that  gen- 
erate local sets more completely. It is easy to show, 
for TAGs that employ adjoining constraints, that this 
is not possible. This is a consequence of the fact that 
one can construct, for any CFG, a TAG in which the 
path language is the image, under a bijeetive homomor- 
phisrn, of the string language generated by that  CFG. 
Since it is undecidable if an arbitrary CFG generates 
a regular string language, and since the path language 
of every recognizable set is regular, it is undecidable 
if an arbitrary TAG (employing adjoining constraints) 
generates a recognizable set. This ability to capture 
CFLs in the string language, however, seems to depend 
crucially on the nature of the adjoining constraints. It 
does not appear to extend to pure TAGs, or even TAGs 
in which the adjoining constraints are implemented as 
monotonically growing sets of simple features. In the 
case of TAGs with these limited adjoining constraints, 
then, the questions of whether there is a class of TAGs 
which includes all and only those which generate rec- 
ognizable sets, or if there is an effective procedure for 
reducing any such TAG which generates a recognizable 
set to one in regular form, are open. 
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