
Capturing CFLs with Tree Adjoining

J a m e s Rogers*
D e p t . o f C o m p u t e r a n d I n f o r m a t i o n S c i e n c e s

U n i v e r s i t y of D e l a w a r e

N e w a r k , D E 19716, U S A

j r o g e r s © c i s , u d e l . e d u

Grammars

A b s t r a c t

We define a decidable class of TAGs that is strongly
equivalent to CFGs and is cubic-time parsable. This
class serves to lexicalize CFGs in the same manner as
the LC, FGs of Schabes and Waters but with consider-
ably less restriction on the form of the grammars . The
class provides a nornlal form for TAGs that generate
local sets m rnuch the same way that regular g rammars
provide a normal form for CFGs that generate regular
sets.

I n t r o d u c t i o n

We introduce the notion of Regular Form for Tree Ad-
joining (; r ammars (TA(;s). The class of TAGs that
are in regular from is equivalent in strong generative
capacity 1 to the Context-Free Grammars , that is, the
sets of trees generated by TAGs in this class are the local
sets--the sets of derivation trees generated by CFGs. 2
Our investigations were initially motivated by the work
of Schabes, Joshi, and Waters in lexicalization of CFGs
via TAGs (Schabes and Joshi, 1991; Joshi and Schabes,
1992; Schabes and Waters, 1993a; Schabes and Waters,
1993b; Schabes, 1990). The class we describe not only
serves to lexicalize CFGs in a way that is more faith-
tiff and more flexible in its encoding than earlier work,
but provides a basis for using the more expressive TAG
formalism to define Context-Free Languages (CFLs.)

In Schabes et al. (1988) and Schabes (1990) a gen-
eral notion of lexicalized grammars is introduced. A
g rammar is lexicalized in this sense if each of the ba-
sic structures it manipulates is associated with a lexical
item, its anchor. The set of structures relevant to a
particular input string, then, is selected by the lexical

*The work reported here owes a great deal to extensive
discussions with K. Vijay-Shanker.

1 We will refer to equivalence of the sets of trees generated
by two grammars or classes of grammars as strong equiva-
lence. Equivalence of their string languages will be referred
to as weak equivalence.

2Technically, the sets of trees generated by TAGs in the
class are recognizable sets. The local and recognizable sets
are equivalent modulo projection. We discuss the distinction
in the next section.

i tems that occur in that string. There are a number
of reasons for exploring lexicalized grammars . Chief
among these are linguistic considerations--lexicalized
g rammars reflect the tendency in many current syntac-
tic theories to have the details of the syntactic structure
be projected from the lexicon. There are also practical
advantages. All lexicalized g rammars are finitely am-
biguous and, consequently, recognition for them is de-
cidable. Further, lexicalization supports strategies that
can, in practice, improve the speed of recognition algo-
r i thms (Schabes et M., 1988).

One g r a m m a r formalism is said to lezicalize an-
other (Joshi and Schabes, 1992) if for every g rammar
in the second formalism there is a lexicalized g rammar
in the first that generates exactly the same set of struc-
tures. While CFGs are at tract ive for efficiency of recog-
nition, Joshi and Schabes (1992) have shown that an
arbi trary CFG cannot, in general, be converted into a
strongly equivalent lexiealized CFG. Instead, they show
how CFGs can be lexicalized by LTAGS (Lexicalized
TAGs). While the LTAG that lexicalizes a given CFG
must be strongly equivalent to that CFG, both the lan-
guages and sets of trees generated by LTAGs as a class
are strict supersets of the CFLs and local sets. Thus,
while this gives a means of constructing a lexicalized
g rammar from an existing CFG, it does not provide
a direct method for constructing lexicalized g rammars
that are known to be equivalent to (unspecified) CFGs.
Furthermore, the best known recognition algorithm for
LTAGs runs in O(n 6) time.

Schabes and Waters (1993a; 1993b) define Lexical-
ized Context-Free G r a m m a r s (LCFGs), a class of lex-
icalized TAGs (with restricted adjunction) that not
only lexicalizes CFGs, but is cubic-time parsable and is
weakly equivalent to CFGs. These LCFGs have a cou-
ple of shortcomings. First, they are not strongly equiv-
alent to CFGs. Since they are cubic-time parsable this
is primarily a theoretical rather than practical concern.
More importantly, they employ structures of a highly
restricted form. Thus the restrictions of the formalism,
in some cases, may override linguistic considerations in
constructing the g rammar . Clearly any class of TAGs
that are cubic-time parsable, or that are equivalent in

155

any sense to CFGs, must be restricted in some way.
The question is what restrictions are necessary.

In this paper we directly address the issue of iden-
tifying a class of TAGs that are strongly equivalent to
CFGs. In doing so we define such a class--TAGs in
regular form--that is decidable, cubic-time parsable,
and lexicalizes CFGs. Further, regular form is essen-
tially a closure condition on the elementary trees of the
TAG. Rather than restricting the form of the trees that
can be employed, or the mechanisms by which they are
combined, it requires that whenever a tree with a par-
ticular form can be derived then certain other related
trees must be derivable as well. The algorithm for de-
ciding whether a given grammar is in regular form can
produce a set of elementary trees that will extend a
grammar that does not meet the condition to one that
does. 3 Thus the grammar can be written largely on the
basis of the linguistic structures that it is intended to
capture. We show that, while the LCFGs that are built
by Schabes and Waters's algorithm for lexicalization of
CFGs are in regular form, the restrictions they employ
are unnecessarily strong.

Regular form provides a partial answer to the more
general issue of characterizing the TAGs that generate
local sets. It serves as a normal form for these TAGs in
the same way that regular grammars serve as a normal
form for CFGs that generate regular languages. While
for every TAG that generates a local set there is a TAG
in regular form that generates the same set, and every
TAG in regular form generates a local set (modulo pro-
jection), there are TAGs that are not in regular form
that generate local sets, just as there are CFGs that
generate regular languages that are not regular gram-
mars.

The next section of this paper briefly introduces no-
tation for TAGs and the concept of recognizable sets.
Our results on regular form are developed in the subse-
quent section. We first define a restricted use of the ad-
junction operation--derivation by regular adjunction--
which we show derives only recognizable sets. We then
define the class of TAGs in regular form and show that
the set of trees derivable in a TAG of this form is deriv-
able by regular adjunction in that TAG and is therefore
recognizable. We next show that every local set can be
generated by a TAG in regular form and that Schabes
and Waters's construction for LCFGs in fact produces
TAGs in regular form. Finally, we provide an algorithm
for deciding if a given TAG is in regular form. We close
with a discussion of the implications of this work with
respect to the lexicalization of CFGs and the use of
TAGs to define languages that are strictly context-free,
and raise the question of whether our results can be
strengthened for some classes of TAGs.

3Although the result of this process is not, in general,
equivalent to the original grammar.

P r e l i m i n a r i e s

Tree A d j o i n i n g G r a m m a r s

Formally, a TAG is a five-tuple (E, NT, I, A, S / where:

E is a finite set of terminal symbols,
NT is a finite set of non-terminal symbols,

I is a finite set of elementary initial trees,
A is a finite set of elementary auxiliary trees,
S is a distinguished non-terminal,

the start symbol.

Every non-frontier node of a tree in I t3 A is labeled
with a non-terminal. Frontier nodes may be labeled
with either a terminal or a non-terminal. Every tree
in A has exactly one frontier node that is designated
as its foot. This must be labeled with the same non-
terminal as the root. The auxiliary and initial trees are
distinguished by the presence (or absence, respectively)
of a foot node. Every other frontier node that is la-
beled with a non-terminal is considered to be marked
for substitution. In a lexicalized TAG (LTAG) every
tree in I tO A must have some frontier node designated
the anchor, which must be labeled with a terminal.

Unless otherwise stated, we include both elementary
and derived trees when referring to initial trees and
auxiliary trees. A TAG derives trees by a sequence of
substitutions and adjunctions in the elementary trees.
In substitution an instance of an initial tree in which the
root is labeled X E NT is substituted for a frontier node
(other than the foot) in an instance of either an initial
or auxiliary tree that is also labeled X. Both trees may
be either an elementary tree or a derived tree.

In adjunction an instance of an auxiliary tree in which
the root and foot are labeled X is inserted at a node,
also labeled X, in an instance of either an initial or
auxiliary tree as follows: the subtree at that node is ex-
cised, the auxiliary tree is substituted at that node, and
the excised subtree is substituted at the foot of the aux-
iliary tree. Again, the trees may be either elementary
or derived.

The set of objects ultimately derived by a TAG 6' is
T(G), the set of completed initial trees derivable in (;.
These are the initial trees derivable in G in which tile
root is labeled S and every frontier node is labeled with
a terminal (thus no nodes are marked for substitution.)
We refer to the set of all trees, both initial and auxiliary,
with or without nodes marked for substitution, that are
derivable in G as TI(G). The language derived by G is
L(G) the set of strings in E* that are the yields of trees
in T(G).

In this paper, all TAGs are pure TAGs, i.e., without
adjoining constraints. Most of our results go through
for TAGs with adjoining constraints as well, but there
is much more to say about these TAGs and the impli-
cations of this work in distinguishing the pure TACs
from TAGs in general. This is a part of our ongoing
research.

The path between the root and foot (inclusive) of an
auxiliary tree is referred to as its spine. Auxiliary trees

156

in which no node on the spine other than the foot is
labeled with the same non-terminal as the root we call
a prvper auxiliary tree.

L e m m a 1 For any TAG G there is a TAG G' that
includes no improper elementary trees ,such that T(G)
is a projection ofT((7') .

P r o o f (Sketch): The g r a m m a r G can be relabeled with
symbols in {(x,i} [x E E U NT, i E {0, 1}} to form G'.
Every auxiliary tree is duplicated, with the root and
foot labeled (X,O) in one copy and (X, 1} in the other.
Improper elementary auxiliary trees can be avoided by
appropriate choice of labels along the spine. []

The labels in the trees generated by G' are a refine-
ment of the labels of the trees generated by G. Thus
(7 partitions the categories assigned by G into sub-
categories on the basis of (a fixed amount of) context.
While the use here is technical rather than natural, the
al)proach is familiar, as in the use of slashed categories
to handle movement.

Recognizable Sets
The local sets are formally very closely related to
the recognizable sets, which are somewhat more con-
venient to work with. These are sets of trees that
are accepted by finite-state tree automata (G~cseg and
Steinby, 1984). If E is a finite alphabet, a Z-valued tree
is a finite, rooted, left-to-right ordered tree, the nodes
of which are labeled with symbols in E. We will denote
such a tree in which the root is labeled o" and in which
the subtrees at the children of the root are t l , . . . , tn as
c r (t l , . . . , t , ,) . The set of all E-valued trees is denoted

A (non-deterministic) bottom-up finite state tree au-
tomaton over E-valued trees is a tuple (E ,Q, M, F)
where:

e is a finite alphabet,
Q is a finite set of states,
F is a subset of Q, the set of final states, and

M is a partial flmction from I3 x Q* to p (Q) (the
powerset of Q) with finite domain, the transi-
tion function.

The transition function M associates sets of states
with alphabet symbols. It induces a function that as-
sociates sets of states with trees, M : T~ ~ P(Q) , such
that:

q e M (t) 4 ~
t is a leaf labeled a and q E M(a , e), or
t = a (t o , . . . , t,~) and there is a sequence

of states qo, • . . , q, such that qi E M(t i) ,
for 0 < i < n, and q E M(a , qo q,~).

An automaton A = (E ,Q, M, F} accepts a tree t E
TE iff, by definition, FIq-'M(t) is not empty. The set of
trees accepted by an au tomaton .,4 is denoted T(A) .

A set of trees is recognizable iff, by definition, it is
T(A) for some automaton .A.

L e m m a 2 (Thatcher, 1967) Every local set is recog-
nizable. Every recognizable set is the projection of some
local set.

The projection is necessary because the au tomaton can
distinguish between nodes labeled with the same sym-
bol while the CFG cannot. The set of trees (with
bounded branching) in which exactly one node is la-
beled A, for instance, is recognizable but not local. It
is, however, the projection of a local set in which the
labels of the nodes that dominate the node labeled A
are distinguished from the labels of those that don't .

As a corollary of this lemma, the path set of a recog-
nizable (or local) set, i.e., the set of strings that label
paths in the trees in that set, is regular.

T A G s i n R e g u l a r F o r m

R e g u l a r Adjunction
The fact that the path sets of recognizable sets must be
regular provides our basic approach to defining a class
of TAGs that generate only recognizable sets. We start
with a restricted form of adjunction that can generate
only regular path sets and then look for a class of TAGs
that do not generate any trees that cannot be generated
with this restricted form of adjunction.

D e f i n i t i o n 1 R e g u l a r a d j u n c t i o n is ordinary ad-
junction restricted to the following cases:

• any auxiliary tree may be adjoined into any initial
tree or at any node that is not on the spine of an
auxiliary tree,

• any proper auxiliary tree may be adjoined into any
auxiliary tree at the root or fool of that tree,

• any auxiliary tree 7t may be adjoined at any node
along the spine of any auxiliary tree 72 provided that
no instance of 3'2 can be adjoined at any node along
the spine of 71.

In figure 1, for example, this rules out adjunction of
/31 into the spine of/33, or vice versa, either directly or
indirectly (by adjunction of/33, say, into f12 and then
adjunction of the resulting auxiliary tree into fit-) Note
that, in the case of TAGs with no improper elementary
auxiliary trees, the requirement that only proper aux-
iliary trees may be adjoined at the root or foot is not
actually a restriction. This is because the only way to
derive an improper auxiliary tree in such a TAG with-
out violating the other restrictions on regular adjunc-
tion is by adjunction at the root or foot. Any sequence
of such adjunctions can always be re-ordered in a way
which meets the requirement.

We denote the set. of completed initial trees derivable
by regular adjunetion in G as TR(G). Similarly, we
denote the set of all trees that are derivable by regular
adjunction in G as T~(G). As intended, we can show
that TR(G) is always a recognizable set. We are looking,
then, for a class of TAGs for which T(G) = TR(G) for
every G in the class. Clearly, this will be the case if
T'(G) = T h (a) for every such G.

157

t~l:
S

A B

I I
a b

X

U

X~__ x2

A

A B B

a A* b b

]32:
B

b B*

Figure 1: Regular Adjunction

/ x

Figure 2: Regular Form

B

b A
[--...

B* a

/ ×

P r o p o s i t i o n 1 I f G is a TAG and T ' (G) = T'a(G).
Then T(G) is a recognizable set.

P r o o f (Sketch): This follows from the fact that in reg-
ular adjunction, if one treats adjunction at the root or
foot as substitution, there is a fixed bound, dependent
only on G, on the depth to which auxiliary trees can
be nested. Thus the nesting of the auxiliary trees can
be tracked by a fixed depth stack. Such a stack can be
encoded in a finite set of states. It's reasonably easy
to see, then, how G can be compiled into a bot tom-up
finite state tree automaton, t3

Since regular adjunction generates only recognizable
sets, and thus (modulo projection) local sets, and since
CFGs can be parsed in cubic time, one would hope
that TAGs that employ only regular adjunction can be
parsed in cubic time as well. In fact, such is the case.

P r o p o s i t i o n 2 I f G is a TAG for which T(G) =
TR(G) then there is a algorithm that recognizes strings
in L(G) in time proportional to the cube of the length
of the string. 4

Proof (Ske tch) : This, again, follows from the fact
that the depth of nesting of auxiliary trees is
bounded in regular adjunction. A CKY-style
style parsing algorithm for TAGs (the one given
in Vijay-Shanker and Weir (1993), for example) can be
modified to work with a two-dimensionM array, storing
in each slot [i, j] a set of structures that encode a node
in an elementary tree that can occur at the root of a
subtree spanning the input from position i through j in
some tree derivable in G, along with a stack recording
the nesting of elementary auxiliary trees around that
node in the derivation of that tree. Since the stacks

4This result was suggested by K. Vijay-Shanker.

are bounded the amount of data stored in each node
is independent of the input length and the algorithm
executes in time proportional to the cube of the length
of the input, o

R e g u l a r F o r m
We are interested in classes of TAGs for which T' (G) =
T~(G). One such class is the TAGs in regular form.

D e f i n i t i o n 2 A TAG is in r e g u l a r f o r m if[whenever
a completed auxiliary tree of the form 71 in Figure 2
is derivable, where Xo ~£ xl ~ x2 and no node labeled
X occurs properly between xo and xl , then trees of the
form 72 and 73 are derivable as well.

Effectively, this is a closure condition oll the elementary
trees of the grammar. Note that it immediately implies
that every improper elementary auxiliary tree in a reg-
ular form TAG is redundant. It is also easy to see, by
induction on the number of occurrences of X along the
spine, that any auxiliary tree 7 for X that is derivable
in G can be decomposed into the concatenation of a
sequence of proper auxiliary trees for X each of which
is derivable in G. We will refer to the proper auxiliary
trees in this sequence as the proper segments of 7.

L e m i n a 3 Suppose G is a TAG in regular form. Then
T'(G) = T£(G)

P r o o f : Suppose 7 is any non-elementary auxiliary tree
derivable by unrestricted adjunction in G and that any
smaller tree derivable in (7, is derivable by regular ad-
junction in G. I f ' / i s proper, then it is clearly derivable
from two strictly smaller trees by regular adjunction,
each of which, by the induction hypothesis, is in T~(G).
If 7 is improper, then it has the form of 71 in Figure 2
and it is derivable by regular adjunction of 72 at the
root of'/3. Since both of these are derivable and strictly

158

smaller than 7 they are in T~(G). It follows that 7 is
in T~(G') as well. []

L e m m a 4 Suppose (; is a TAG with no improper ele-
mentary trees and T ' (G) = T'R(G). Then G is in regu-
lar form.

P r o o f i Suppose some 7 with the form of 7l in Fig-
ure 2 is derivable in G and that for all trees 7' that are
smaller than 7 every proper segment of 7' is derivable
in G'. By assumption 7 is not elementary since it is im-
proper. Thus, by hypothesis, 7 is derivable by regular
adjunction of some 7" into some 7' both of which are
derivable in (/.

Suppose 7" adjoins into the spine of 7' and that a
node labeled X occurs along the spine of 7". Then,
by the definition of regular adjunction, 7" must be ad-
joined at. either tile root or foot of 7' . Thus both 7'
and 7" consist of sequences of consecutive proper seg-
ments of 7 with 7" including t and the initial (possibly
empty) portion of u and 7' including the remainder of
u or vice versa. In either case, by the induction hypoth-
esis, every proper segment of both 7' and 7", and thus
every proper segment of 7 is derivable in G. Then trees
of the forrn 72 and 73 are derivable from these proper
segments.

Suppose, on the other hand, that 7" does not adjoin
along the spine of 7 ~ or that no node labeled X occurs
along tile spine of 7"- Note that 7" must occur entirely
within a proper segment of 7. Then 7' is a tree with
the form of 71 that is smaller than 7. From the induc-
tion hypothesis every proper segment of 7 ~ is derivable
in (;. It follows then that every proper segment of 7 is
derivable in G, either because it is a proper segment of
7' or because it is derivable by a¢0unction of 7" into a
proper segment of 7'- Again, trees of the form "r2 and
7a are derivable from these 1)roper segments. []

Regular Form and Local Sets
The class of TAGs in regular form is related to the lo-
cal sets in much the same way that the class of regular
g rammars is related to regular languages. Every TAG
in regular form generates a recognizable set. This fol-
lows from Lemma 3 and Proposition 1. Thus, modulo
projection, every TAG in regular form generates a local
set. C, onversely, the next proposition establishes that
every local set can be generated by a TAG in regu-
lar form. Thus regular form provides a normal form
for TAGs that generate local sets. It is not the case,
however, that all TAGs that generate local sets are in
regular form.

P r o p o s i t i o n 3 For every CFG G there is a TAG G'
in regular form such that the set of derivation trees for
G is exactly T(G') .

P r o o f : This is nearly immediate, since every CFG is
equivalent to a Tree Substitution G r a m m a r (in which

all trees are of depth one) and every Tree Substitution
G r a m m a r is, in the definition we use here, a TAG with
no elementary auxiliary trees. It follows that this TAG
can derive no auxiliary trees at all, and is thus vacu-
ously in regular form. []
This proof is hardly satisfying, depending as it does on
the fact that TAGs, as we define them, can employ sub-
stitution. The next proposition yields, as a corollary,
the more substantial result that every CFG is strongly
equivalent to a TAG in regular form in which substitu-
tion plays no role.

P r o p o s i t i o n 4 The class of TAGs in regular form can
lexicalize CFGs.

P r o o f : This follows directly from the equivalent lemma
in Schabes and Waters (1993a). The construction
given there builds a left-corner derivation graph (LCG).
Vertices in this graph are the terminals and non-
terminals of G. Edges correspond to the productions
of G in the following way: there is an edge from X
to Y labeled X ---* Y a iff X ---* Y a is a production
in G. Paths through this graph that end on a termi-
nal characterize the left-corner derivations in G. The
construction proceeds by building a set of elementary
initial trees corresponding to the simple (acyelic) paths
through the LCG that end on terminals. These capture
the non-recursive left-corner derivations in G. The set
of auxiliary trees is built in two steps. First, an aux-
iliary tree is constructed for every simple cycle in the
graph. This gives a set of auxiliary trees that is suffi-
cient, with the initial trees, to derive every tree gener-
ated by the CFG. This set of auxiliary trees, however,
may include some which are not lexicalized, that is, in
which every frontier node other than the foot is marked
for substitution. These can be lexicalized by substitut-
ing every corresponding elementary initial tree at one
of those frontier nodes. Call the LCFG constructed for
G by this method G'. For our purposes, the impor tant
point of the construction is that every simple cycle in
the LCG is represented by an elementary auxiliary tree.
Since the spines of auxiliary trees derivable in G' cor-
respond to cycles in the LCG, every proper segment of
an auxiliary tree derivable in G' is a simple cycle in the
LCG. Thus every such proper segment is derivable in
G' and G' is in regular form. []

The use of a graph which captures left-corner deriva-
tions as the foundation of this construction guarantees
that the auxiliary trees it builds will be left-recursive
(will have the foot as the left-most leaf.) It is a require-
ment of LCFGs that all auxiliary trees be either left-
or right-recursive. Thus, while other derivation strate-
gies may be employed in constructing the graph, these
must always expand either the left- or r ight-most child
at each step. All that is required for the construction to
produce a TAG in regular form, though, is that every
simple cycle in the graph be realized in an elementary
tree. The resulting g r ammar will be in regular form no

159

matter what (complete) derivation strategy is captured
ill the graph. In particular, this admits the possibility
of generating an LTAG in which the anchor of each el-
ementary tree is some linguistically mot ivated "head".

C o r o l l a r y 1 For every CFG G there is a TAG G ~ in
regular form in which no node is marked for substitu-
tion, such that the set of derivation trees for G is exactly
T(G').

This follows from the fact that the step used to lex-
icalize the elementary auxiliary trees in Schabes and
Waters 's construction can be applied to every node (in
both initial and auxiliary trees) which is marked for
substitution. Paradoxically, to establish the corollary
it is not necessary for every elementary tree to be lex-
icalized. In Schabes and Waters 's l emma G is required
to be finitely ambiguous and to not generate the empty
string. These restrictions are only necessary if G ~ is to
be lexicalized. Here we can accept TAGs which include
elementary trees in which the only leaf is the foot node
or which yield only the empty string. Thus the corollary
applies to all CFGs without restriction.

R e g u l a r F o r m i s D e c i d a b l e

We have established that regular form gives a class of
TAGs that is strongly equivalent to CFGs (modulo pro-
jection), and that LTAGs in this class lexicalize CFGs.
In this section we provide an effective procedure for de-
ciding if a given TAG is in regular form. The procedure
is based on a graph that is not unlike the LCG of the
construction of Schabes and Waters.

If G is a TAG, the Spine Graph of G is a directed
multi-graph on a set of vertices, one for each non-
terminal in G. If Hi is an elementary auxiliary tree
in G and the spine of fli is labeled with the sequence of
non-terminals (Xo, X 1 , . . . , Xn) (where X0 = Xn and
the remaining Xj are not necessarily distinct), then
there is an edge in the graph from each Xj to Xj+I la-
beled (Hi, J, ti,j), where ti,j is that portion of Hi that is
dominated by Xj but not properly dominated by Xj+I.
There are no other edges in the graph except those cor-
responding to the elementary auxiliary trees of G in this
way.

The intent is for the spine graph of G to characterize
the set of auxiliary trees derivable in G by adjunction
along the spine. Clearly, any vertex that is labeled with
a non-terminal for which there is no corresponding aux-
iliary tree plays no active role in these derivations and
can be replaced, along with the pairs of edges incident
on it, by single edges. Without loss of generality, then,
we assume spine graphs of this reduced form. Thus ev-
ery vertex has at least one edge labeled with a 0 in its
second component incident from it.

A well-formed-cycle (wfc) in this graph is a (non-
empty) path traced by the following non-deterministic
automaton:

• The au tomaton consists of a single push-down stack.
Stack contents are labels of edges in the graph.

• The au tomaton starts on any vertex of the graph with
an empty stack.

• At each step, the au tomaton can move as follows:

- If there is an edge incident from the current vertex
labeled (ill, O, ti,o) the au tomaton can push that
label onto the stack and move to the vertex at the
far end of that edge.

- If the top of stack contains (fli,j, tis) and there is
an edge incident from the current vertex labeled
(f l i , j+ 1,ti,j+l) the au tomaton may pop the top
of stack, push (Hi,j-t-l , t i , j+l) and move to the
vertex at the end of that edge.

- If the top of stack contains (Hi,j, ti,j) but there is
no edge incident from the current vertex labeled
(Hi,J + 1,ti,j+l) then the au tomaton may pop the
top of stack and remain at the same vertex.

• The au tomaton may halt if its stack is empty.

• A path through the graph is traced by the au tomaton
if it s tarts at the first vertex in the path and halts at
the last vertex in the path visiting each of the vertices
in the path in order.

Each wfc in a spine graph corresponds to the auxil-
iary tree built by concatenating the third components of
the labels on the edges in the cycle in order. Then every
wfc in the spine graph of G corresponds to an auxiliary
tree that is derivable in G by adjunction along the spine
only. Conversely, every such auxiliary tree corresponds
to some wfc in the spine graph.

A simple cycle in the spine graph, by definition, is
any minimal cycle in the graph that ignores the labels
of the edges but not their direction. Simple cycles cor-
respond to auxiliary trees in the same way that wfcs do.
Say that two cycles in the graph are equivalent iff they
correspond to the same auxiliary tree. The simple cy-
cles in the spine graph for G correspond to the minimal
set of elementary auxiliary trees in any presentation of
G that is closed under the regular form condition in tile
following way.

L e m m a 5 A TAG G is in regular form iff every simple
cycle in its spine graph is equivalent to a wfc in that
graph.

P r o o f :
(If every simple cycle is equivalent to a wfc then (; is
in regular form.)

Suppose every simple cycle in the spine graph of (;
is equivalent to a wfc and some tree of the form 71
in Figure 2 is derivable in G. Wlog, assume the tree
is derivable by adjunction along the spine only. Then
there is a wfc in the spine graph of G corresponding
to that tree that is of the form (X o , . . . , X k , . . . , X , ,)
where X0 = Xk = Xn, 0 :~ k # n, and Xi # Xo
for a l l 0 < i < k. Thus (X0 ,Xk) is a s i m p l e cy-
cle in the spine graph. Further, (Xk Xn) is a se-
quence of one or more such simple cycles. It follows
that both (X 0 , . . . , X k) and (X k , . . . , X n) are wfc in tile

160

/3~1o - 1, so ~ /3o, to, t o
. > Xo

Spine Graph

/30, lo + 1 !~o

~ , , l~, t~ . . .>
X1

7o:

tk

so

Xo

Figure 3: Regular Form is Decidable

X

spine graph and thus both 72 and 73 are derivable in
(;.
(If (; is in regular form then every simple cycle corre-
sponds to a wfc.)

Assume, wlog, tile spine graph of G is connected. (If
it is not we can treat G as a union of grammars.) Since
the spine graph is a union of wfcs it has an Eulerian wfc
(in tile usual sense of Eulerian). Further, since every
w~rl, ex is the initial vertex of some wfc, every vertex is
tile initial vertex of some Eulerian wfc.

Suppose there is some simple cycle

X0 (fl0,10, t0) Xl (i l l , l l , t l) ' ' '
. . . x ~ (f~,, t , , t~) x0

where the Xj are the vertices and the tuples are the
labels on the edges of the cycle. Then there is a wfc
starting at Xo that includes the edge (flo, 10, to), al-
though not necessarily initially. In particular the Eule-
rian wfc starting at X0 is such a wfc. This corresponds
to a derivable auxiliary tree that includes a proper seg-
ment beginning with to. Since G is in regular form,
that proper segment is a derivable auxiliary tree. Call
this 7o (see Figure 3.) The spine of that tree is labeled
X 0 , X 1 , . . . , X 0 , where anything (other than X0) can
occur in the ellipses.

The same cycle can be rotated to get a simple cycle
starting at each of the Xj . Thus for each Xj there is a
derivable auxiliary tree starting with tj. Call it 73". By
a sequence of adjunctions of each 7j at the second node
on the spine of 7j-1 an auxiliary tree for X0 is derivable
in which the first proper segment is the concatenation
of

tO, t l , . . . , t n .

Again, by the fact that G is in regular form, this proper
segment is derivable in G. Hence there is a wfc in the
spine graph corresponding to this tree. []

P r o p o s i t i o n 5 For any TAG G the question of
whetherG is in regular form is decidable. Further, there
is an effective procedure that, given any TAG, will ex-
tend it to a TAG that is in regular form.

Proof." Given a TAG G we construct its spine graph.
Since the TAG is finite, the graph is as well. The TAG
is in regular form iff every simple cycle is equivalent
to a wfc. This is clearly decidable. Further, the set
of elementary trees corresponding to simple cycles that
are not equivalent to wfcs is effectively constructible.
Adding that set to the original TAG extends it to reg-
ular form. []
Of course the set of trees generated by the extended
TAG may well be a proper superset of the set gener-
ated by the original TAG.

Discuss ion
The LCFGs of Schabes and Waters employ a restricted
form of adjunction and a highly restricted form of ele-
mentary auxiliary tree. The auxiliary trees of LCFGs
can only occur in left- or right-recursive form, that is,
with the foot as either the left- or right-most node on
the frontier of the tree. Thus the structures that can be
captured in these trees are restricted by the mechanism
itself, and Schabes and Waters (in (1993a)) cite two
situations where an existing LTAG grammar for En-
glish (Abeill@ et at., 1990) fails to meet this restriction.
But while it is sufficient to assure that the language
generated is context-free and cubic-time parsable, this
restriction is stronger than necessary.

TAGs in regular form, in contrast, are ordinary TAGs
utilizing ordinary adjunction. While it is developed
from the notion of regular adjunction, regular form
is just a closure condition on the elementary trees of
the grammar. Although that closure condition assures
that all improper elementary auxiliary trees are redun-
dant, the form of the elementary trees themselves is
unrestricted. Thus the structures they capture can be
driven primarily by linguistic considerations. As we
noted earlier, the restrictions on the form of the trees
in an LCFG significantly constrain the way in which
CFGs can be lexicalized using Schabes and Waters's
construction. These constraints are eliminated if we re-
quire only that the result be in regular form and the
lexicalization can then be structured largely on linguis-
tic principles.

161

On the other hand, regular form is a property of the
grammar as a whole, while the restrictions of LCFG
are restrictions on individual trees (and the manner in
which they are combined.) Consequently, it is imme-
diately obvious if a grammar meets the requirements
of LCFG, while it is less apparent if it is in regular
form. In the case of the LTAG grammar for English,
neither of the situations noted by Schabes and Waters
violate regular form themselves. As regular form is
decidable, it is reasonable to ask whether the gram-
mar as a whole is in regular form. A positive result
would identify the large fragment of English covered by
this grammar as strongly context-free and cubic-time
parsable. A negative result is likely to give insight into
those structures covered by the grammar that require
context-sensitivity.

One might approach defining a context-free language
within the TAG formalism by developing a grammar
with the intent that all trees derivable in the grammar
be derivable by regular adjunction. This condition can
then be verified by the algorithm of previous section. In
the case that the grammar is not in regular form, the al-
gorithm proposes a set of additional auxiliary trees that
will establish that form. In essence, this is a prediction
about the strings that would occur in a context-free
language extending the language encoded by the origi-
nal grammar. It is then a linguistic issue whether these
additional strings are consistent with the intent of the
grammar.

If a grammar is not in regular form, it is not necessar-
ily the case that it does not generate a recognizable set.
The main unresolved issue in this work is whether it
is possible to characterize the class of TAGs that gen-
erate local sets more completely. It is easy to show,
for TAGs that employ adjoining constraints, that this
is not possible. This is a consequence of the fact that
one can construct, for any CFG, a TAG in which the
path language is the image, under a bijeetive homomor-
phisrn, of the string language generated by that CFG.
Since it is undecidable if an arbitrary CFG generates
a regular string language, and since the path language
of every recognizable set is regular, it is undecidable
if an arbitrary TAG (employing adjoining constraints)
generates a recognizable set. This ability to capture
CFLs in the string language, however, seems to depend
crucially on the nature of the adjoining constraints. It
does not appear to extend to pure TAGs, or even TAGs
in which the adjoining constraints are implemented as
monotonically growing sets of simple features. In the
case of TAGs with these limited adjoining constraints,
then, the questions of whether there is a class of TAGs
which includes all and only those which generate rec-
ognizable sets, or if there is an effective procedure for
reducing any such TAG which generates a recognizable
set to one in regular form, are open.

R e f e r e n c e s

Anne Abeill~, Kathleen M. Bishop, Sharon Cote, and
Yves Schabes. 1990. A lexicalized tree adjoining
grammar for English. Technical Report MS-CIS-90-
24, Department of Computer and Information Sci-
ence, University of Pennsylvania.

Ferenc G~eseg and Magnus Steinby. 1984. Tree Au-
tomata. Akad~miai Kiad6, Budapest.

Aravind K. Joshi and Yves Schabes. 1992. Tree-
adjoining grammars and lexicalized grammars. In
M. Nivat and A. Podelski, editors, Tree Automata
and Languages, pages 409-431. Elsevier Science Pub-
lishers B.V.

Yves Schabes and Aravind K. Joshi. 1991. Parsing
with lexicalized tree adjoining grammar. In Masaru
Tomita, editor, Current Issues in Parsing Technol-
ogy, chapter 3, pages 25-47. Kluwer Academic Pub-
lishers.

Yves Schabes and Richard C. Waters. 1993a. Lexical-
ized context-free grammars. In 31st Annual Meet-
ing of the Association for Computational Linguistics
(ACL'93), pages 121-129, Columbus, OH. Associa-
tion for Computat ional Linguistics.

Yves Schabes and Richard C. Waters. 1993b. Lexical-
ized context-free grammar: A cubic-time parsable,
lexicalized normal form for context-free grammar
that preserves tree structure. Technical Report 93-
04, Mitsubishi Electric Research Laboratories Cam-
bridge Research Center, Cambridge, MA, June.

Yves Sehabes, Anne Abeill~, and Aravind K. .]oshi .
1988. Parsing strategies with 'lexicalized' grammars:
Application to tree adjoining grammars. In Proceed-
ings of the 12th International Conference on Compu-
tational Linguistics (COLING'88), Budapest, Hun-
gary. Association for Computat ional Linguistics.

Yves Sehabes. 1990. Mathematical and Computational
Aspects of Lexicalized Grammars. Ph.D. thesis, De-
partment of Computer and information Science, Uni-
versity of Pennsylvania.

J. W. Thatcher. 1967. Characterizing derivation trees
of context-free grammars through a generalization of
finite au tomata theory. Journal of Computer and
System Sciences, 1:317-322.

K. Vijay-Shanker and David Weir. 1993. Parsing
some constrained grammar formalisms. Computa-
tional Linguistics, 19(4):591-636.

162

