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A b s t r a c t  

Most probabilistic classifiers used for word-sense disam- 
biguation have either been based on only one contextual 
feature or have used a model that is simply assumed 
to characterize the interdependencies among multiple 
contextual features. In this paper, a different approach 
to formulating a probabilistic model is presented along 
with a case study of the performance of models pro- 
duced in this manner for the disambiguation of the noun 
interest. We describe a method for formulating proba- 
bilistic models that use multiple contextual features for 
word-sense disambiguation, without requiring untested 
assumptions regarding the form of the model. Using 
this approach, the joint distribution of all variables is 
described by only the most systematic variable inter- 
actions, thereby limiting the number of parameters to 
be estimated, supporting computational efficiency, and 
providing an understanding of the data. 

I n t r o d u c t i o n  

This paper presents a method for constructing prob- 
abilistic classifiers for word-sense disambiguation that 
offers advantages over previous approaches. Most pre- 
vious efforts have not attempted to systematically iden- 
tify the interdependencies among contextual features 
(such as collocations) that can be used to classify the 
meaning of an ambiguous word. Many researchers have 
performed disambiguation on the basis of only a single 
feature, while others who do consider multiple contex- 
tual features assume that all contextual features are 
either conditionally independent given the sense of the 
word or fully independent. Of course, all contextual fea- 
tures could be treated as interdependent, but, if there 
are several features, such a model could have too many 
parameters to estimate in practice. 

We present a method for formulating probabilistic 
models that describe the relationships among all vari- 
ables in terms of only the most important interdepen- 
dencies, that is, models of a certain class that are good 
approximations to the joint distribution of contextual 
features and word meanings. This class is the set of de- 
composable models: models that can be expressed as a 
product of marginal distributions, where each marginal 

is composed of interdependent variables. The test used 
to evaluate a model gives preference to those that have 
the fewest number of interdependencies, thereby select- 
ing models expressing only the most systematic variable 
interactions. 

To summarize the method, one first identifies infor- 
mative contextual features (where "informative" is a 
well-defined notion, discussed in Section 2). Then, out 
of all possible decomposable models characterizing in- 
terdependency relationships among the selected vari- 
ables, those that are found to produce good approxima- 
tions to the data are identified (using the test mentioned 
above) and one of those models is used to perform dis- 
ambiguation. Thus, we are able to use multiple contex- 
tual features without the need for untested assumptions 
regarding the form of the model. Further, approximat- 
ing the joint distribution of all variables with a model 
identifying only the most important systematic interac- 
tions among variables limits the number of parameters 
to be estimated, supports computational efficiency, and 
provides an understanding of the data. The biggest lim- 
itation associated with this method is the need for large 
amounts of sense-tagged data. Because asymptotic dis- 
tributions of the test statistics are used, the validity of 
the results obtained using this approach are compro- 
mised when it is applied to sparse data (this point is 
discussed further in Section 2). 

To test the method of model selection presented in 
this paper, a case study of the disambiguation of the 
noun interest was performed. Interest was selected be- 
cause it has been shown in previous studies to be a dif- 
ficult word to disambiguate. We selected as the set of 
sense tags all non-idiomatic noun senses of interest de- 
fined in the electronic version of Longman's Dictionary 
of Contemporary English (LDOCE) ([23]). Using the 
models produced in this study, we are able to assign an 
LDOCE sense tag to every usage of interest in a held- 
out test set with 78% accuracy. Although it is difficult 
to compare our results to those reported for previous 
disambiguation experiments, as will be discussed later, 
we feel these results are encouraging. 

The remainder of the paper is organized as follows. 
Section 2 provides a more complete definition of the 
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methodology used for formulating decomposable mod- 
els and Section 3 describes the details of the case study 
performed to test the approach. The results of the dis- 
ambiguation case study are discussed and contrasted 
with similar efforts in Sections 4 and 5. Section 6 is the 
conclusion. 

D e c o m p o s a b l e  M o d e l s  

In this Section, we address the problem of finding 
the models that  generate good approximations to a 
given discrete probability distribution, as selected from 
among the class of decomposable  models .  Decomposable 
models are a subclass of log-linear models and, as such, 
can be used to characterize and study the structure 
of data  ([2]), that  is, the interactions among variables 
as evidenced by the frequency with which the values 
of the variables co-occur. Given a data  sample of ob- 
jects, where each object is described by d discrete vari- 
ables, let x=(zz ,  z 2 , . . . ,  zq) be a q-dimensional vector 
of counts, where each zi is the frequency with which one 
of the possible combinations of the values of the d vari- 
ables occurs in the data  sample (and the frequencies of 
all such possible combinations are included in x). The 
log-linear model expresses the logarithm of E[x] (the 
mean of x) as a linear sum of the contributions of the 
"effects" of the variables and the interactions among 
the variables. 

Assume that  a random sample consisting of N inde- 
pendent and identical tridls (i.e., all trials are described 
by the same probability density function) is drawn from 
a discrete d-variate distribution. In such a situation, the 
outcome of each trial must be an event corresponding to 
a particular combination of the values of the d variables. 
Let Pi be the probability that  the ith event (i.e., the i th 

possible combination of the values of all variables) oc- 
curs on any trial and let zi be the number of times 
that  the i th event occurs in the random sample. Then 
(zt ,  x 2 , . . . ,  zq) has a multinomiM distribution with pa- 
rameters N and P l , . . . ,  Pq- For a given sample size, N, 
the likelihood of selecting any particular random sam- 
ple is defined once the populat ion parameters,  that  is, 
the Pi'S or, equivalently, the E[xi]'s (where E[zi] is the 
mean frequency of event i), are known. Log-linear mod- 
els express the value of the logarithm of each E[~:i] or p; 
as a linear sum of a smaller (i.e., less than q) number of 
new population parameters tha t  characterize the effects 
of individual variables and their interactions. 

The theory of log-linear models specifies the suffi- 
c ient  s la t i s l i cs  (functions of x) for estimating the ef- 
fects of each variable and of each interaction among 
variables on E[x]. The sufficient statistics are the sam- 
ple counts from the highest-order marginals composed 
of only interdependent variables. These statistics are 
the maximum likelihood estimates of the mean values 
of the corresponding marginals distributions. Consider, 
for example, a random sample taken from a popula- 
tion in which four contextual features are used to char- 
acterize each occurrence of an ambiguous word. The 

sufficient statistics for the model describing contextual 
features one and two as independent but  all other vari- 
ables as interdependent are, for all i, j ,  k, m, n (in this 
and all subsequent equations, f is an abbreviation for 
f e a t u r e ) :  

t~[count(f2 = j ,  f3 = k ,  f4 = m ,  tag = n)] = 

E Xfx=i,f2=j,f3=k,f4=m,tag=n 
i 

and 

l~[count(fl = i, f3  = k ,  f4  = m ,  tag  = n)] = 

E Xfa=i,f2=j,f3=k,f4=rn,tag=n 
J 

Within the class of decomposable models, the maxi- 
mum likelihood estimate for E[x] reduces to the product  
of the sufficient statistics divided by the sample counts 
defined in the marginals composed of the common el- 
ements in the sufficient statistics. As such, decompos- 
able models are models that  can be expressed as a prod- 
uct of marginals, 1 where each marginal consists of only 
interdependent variables. 

Returning to our previous example, the maximum 
likelihood estimate for E[x] is, for all i , j ,  k ,  m ,  n: 

E[z11=i,l~=j,13=k,1,=m,t~g=n ] = 

]~[count(fl = i, f3  = k,  f4  = m ,  tag  -- n)] × 

]~[count(f2 = j ,  f3 = k ,  f4  = m ,  tag  = n)] -- 

]~[count(/a = k,  f4 = m ,  tag  = n)] 

Expressing the population parameters as probabil- 
ities instead of expected counts, the equation above 
can be rewritten as follows, where the sample marginal 
relative frequencies are the maximum likelihood esti- 
mates of the population marginal probabilities. For all 
i , j , k , m , n :  

P ( f t  = i, f2 = j ,  f3  = k,  f4 = m ,  tag  -- n)  = 

= i = A = m ,  t a g  = n )  × 

P ( f 2  = j I f3 = k,  f4 = m ,  t a g =  n)  × 

P ( f 3  : k, f4 = m ,  t ag  = n)  

The degree to which the data  is approximated by a 
model is called the fit of the model. In this work, the 
likelihood ratio statistic, G 2, is used as the measure of 
the goodness-of-fit of a model. It is distributed asymp- 
totically as X z with degrees of freedom corresponding to 
the number of interactions (and/or  variables) omit ted 
from (unconstrained in) the model. Accessing the fit 

1The marginal distributions can be represented in terms 
of counts or relative frequencies, depending on whether the 
parameters are expressed as expected frequencies or proba- 
bilities, respectively. 
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of a model in terms of the significance of its G 2 statis- 
tic gives preference to models with the fewest number 
of interdependencies, thereby assuring the selection of 
a model specifying only the most systematic variable 
interactions. 

Within the framework described above, the process 
of model selection becomes one of hypothesis testing, 
where each pattern of dependencies among variables 
expressible in terms of a decomposable model is pos- 
tulated as a hypothetical model and its fit to the data 
is evaluated. The "best fitting" models are identified, 
in the sense that  the significance of their reference X 2 
values are large, and, from among this set, a conceptu- 
ally appealing model is chosen. The exhaustive search 
of decomposable models can be conducted as described 
in [12]. 

What  we have just described is a method for approx- 
imating the joint distribution of all variables with a 
model containing only the most important  systematic 
interactions among variables. This approach to model 
formulation limits the number of parameters to be esti- 
mated, supports computational efficiency, and provides 
an understanding of the data. The single biggest limita- 
tion remaining in this day of large memory, high speed 
computers results from reliance on asymptotic theory 
to describe the distribution of the maximum likelihood 
estimates and the likelihood ratio statistic. The effect 
of this reliance is felt most acutely when working with 
large sparse multinomials, which is exactly when this 
approach to model construction is most needed. When 
the data is sparse, the usual asymptotic properties of 
the distribution of the likelihood ratio statistic and the 
maximum likelihood estimates may not hold. In such 
cases, the fit of the model will appear to be too good, 
indicating that  the model is in fact over constrained for 
the data available. In this work, we have limited our- 
selves to considering only those models with sufficient 
statistics that are not sparse, where the significance of 
the reference X 2 is not unreasonable; most such models 
have sufficient statistics tha t  are lower-order marginal 
distributions. In the future, we will investigate other 
goodness-of-fit tests ([18], [1], [22]) that are perhaps 
more appropriate for sparse data. 

The Experiment 
Unlike several previous approaches to word sense disam- 
biguation ([29], [5], [7], [10]), nothing in this approach 
limits the selection of sense tags to a particular num- 
ber or type of meaning distinctions. In this study, our 
goal was to address a non-trivial case of ambiguity, but 
one that  would allow some comparison of results with 
previous work. As a result of these considerations, the 
word interest was chosen as a test case, and the six 
non-idiomatic noun senses of interest defined in LDOCE 
were selected as the tag set. The only restriction lim- 
iting the choice of corpus is the need for large amounts 
of on-line data. Due to availability, the Penn Treebank 
Wall Street Journal corpus was selected. 

In total, 2,476 usages 2 of interest as a noun 3 were 
automatically extracted from the corpus and manually 
assigned sense tags corresponding to the LDOCE defi- 
nitions. 

During tagging, 107 usages were removed from the 
data set due to the authors '  inability to classify them 
in terms of the set of LDOCE senses. Of the rejected 
usages, 43 are metonymic, and the rest are hybrid 
meanings specific to the domain, such as public interest 
group. 

Because our sense distinctions are not merely be- 
tween two or three clearly defined core senses of a word, 
the task of hand-tagging the tokens of interest required 
subtle judgments,  a point that has also been observed 
by other researchers disambiguating with respect to the 
full set of LDOCE senses ([6], [28]). Although this un- 
doubtedly degraded the accuracy of the manually as- 
signed sense tags (and thus the accuracy of the study 
as well), this problem seems unavoidable when making 
semantic distinctions beyond clearly defined core senses 
of a word ([17], [11], [14], [15]). 

Of the 2,369 sentences containing the sense-tagged 
usages of interest, 600 were randomly selected and set 
aside to serve as the test set. The distribution of sense 
tags in the data set is presented in Table 1. 

We now turn to the selection of individually infor- 
mative contextual features. In our approach to disam- 
biguation, a contextual feature is judged to be informa- 
tive (i.e., correlated with the sense tag of the ambiguous 
word) if the model for independence between that  fea- 
ture and the sense tag is judged to have an extremely 
poor fit using the test described in Section 2. The worse 
the fit, the more informative the feature is judged to be 
(similar to the approach suggested in [9]). 

Only features whose values can be automatically de- 
termined were considered, and preference was given to 
features that  intuitively are not specific to interest (but 
see the discussion of collocational features below). An 
additional criterion was that  the features not have too 
many possible values, in order to curtail sparsity in the 
resulting data  matrix. 

We considered three different types of contextual fea- 
tures: morphological, collocation-specific, and class- 
based, with part-of-speech (POS) categories serving as 
the word classes. Within these classes, we choose a 
number of specific features, each of which was judged to 
be informative as described above. We used one mor- 
phological feature: a dichotomous variable indicating 
the presence or absence of the plural form. The values 
of the class-based variables are a set of twenty-five POS 
tags formed, with one exception, from the first letter of 
the tags used in the Penn Treebank corpus. Two dif- 
ferent sets of class-based variables were selected. The 

2For sentences with more than one usage, the tool used 
to automatically extract the test data ignored all but one of 
them. Thus, some usages were missed. 

3The Penn Treebank corpus comes complete with POS 
tags. 
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first set contained only the POS tags of the word imme- 
diately preceding and the word immediately succeeding 
the ambiguous word, while the second set was extended 
to include the POS tags of the two immediately preced- 
ing and two succeeding words. 

A limited number of collocation-specific variables 
were selected, where the term collocation is used loosely 
to refer to a specific spelling form occurring in the same 
sentence as the ambiguous word. All of our colloea- 
tional variables are dichotomous, indicating the pres- 
ence or absence of the associated spelling form. While 
collocation-specific variables are, by definition, specific 
to the word being disambiguated, the procedure used 
to select them is general. The  search for collocation- 
specific variables was limited to the 400 most frequent 
spelling forms in a data  sample composed of sentences 
containing interest. Out of these 400, the five spelling 
forms found to be the most informative using the test 
described above were selected as the collocational vari- 
ables. 

It is not enough to know that  each of the features 
described above is highly correlated with the meaning 
of the ambiguous word. In order to use the features in 
concert to perform disambiguation, a model describing 
the interactions among them is needed. Since we had 
no reason to prefer, a priori, one form of model over an- 
other, all models describing possible interactions among 
the features were generated, and a model with good fit 
was selected. Models were generated and tested as de- 
scribed in Section 2. 

R e s u l t s  
Both the form and the performance of the model se- 
lected for each set of variables is presented in Table 2. 
Performance is measured in terms of the total  percent- 
age of the test set tagged correctly by a classifier using 
the specified model. This measure combines both pre- 
cision and recall. Portions of the test set that  are not 
covered by the estimates of the parameters made from 
the training set are not tagged and, therefore, counted 
as wrong. 

The form of the model describes the interactions 
among the variables by expressing the joint  distribution 
of the values of all contextual features and sense tags as 
a product of conditionally independent marginals, with 
each marginal being composed of non-independent vari- 
ables. Models of this form describe a markov field ([8], 
[21]) that can be represented graphically as is shown 
in Figure 1 for Model 4 of Table 2. In both Figures 1 
and 2, each of the variables short, in, pursue, rate(s), 
percent (i.e., the sign '%') is the presence or absence of 
that spelling form. Each of the variables rlpos, r2pos, 
llpos, and 12pos is the POS tag of the word 1 or 2 po- 
sitions to the left (/) or right (r). The variable ending 
is whether interest is in the singular or plural, and the 
variable tag is the sense tag assigned to interest. 

The graphical representation of Model 4 is such that  
there is a one-to-one correspondence between the nodes 

of the graph and the sets of conditionally independent 
variables in the model. The semantics of the graph 
topology is that  all variables that  are not directly con- 
nected in the graph are conditionally independent given 
the values of the variables mapping to the connecting 
nodes. For example, if node a separates node b from 
node c in the graphical representation of a markov field, 
then the variables mapping to node b are conditionally 
independent of the variables mapping to node c given 
the values of the variables mapping to node a. In the 
case of Model 4, Figure 1 graphically depicts the fact 
that  the value of the morphological variable ending is 
conditionally independent of the values of all other con- 
textual features given the sense tag of the ambiguous 
word. 

~ E  L1POS' 

.I I 
Figure 1 

L2POS 

The Markov field depicted in Figure 1 is represented 
by an undirected graph because conditional indepen- 
dence is a symmetric relationship. But decomposable 
models can also be characterized by directed graphs and 
interpreted according to the semantics of a Bayesian 
network ([21]; also described as "recursive causal mod- 
els" in [27] and [16]). In a Bayesian network, the no- 
tions of causation and influence replace the notion of 
conditional independence in a Markov field. The par- 
ents of a variable (or set of variables) V are those vari- 
ables judged to be the direct causes or to have direct 
influence on the value of V; V is called a "response" 
to those causes or influences. The Bayesian network 
representation of a decomposable model embodies an 
explicit ordering of the n variables in the model such 
that  variable i may be considered a response to some 
or all of variables {i + 1 , . . . ,  n}, but  is not thought  of 
as a response to any one of the variables {1 . . . .  , i - 1}. 
In all models presented in this paper, the sense tag of 
the ambiguous word causes or influences the values of 
all other variables in the model. The Bayesian network 
representation of Model 4 is presented in Figure 2. In 
Model 4, the variables in and percent are treated as in- 
fluencing the values of rate, short, and pursue in order 
to achieve an ordering of variables as described above. 
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[ ~ ~  LIPOS, L2POS 

Figure  2 

C o m p a r i s o n  t o  P r e v i o u s  W o r k  

Many researchers have avoided characterizing the inter- 
actions among multiple contextual features by consider- 
ing only one feature in determining the sense of an am- 
biguous word. Techniques for identifying the optimum 
feature to use in disambiguating a word are presented 
in [7], [30] and [5]. Other works consider multiple con- 
textual features in performing disambiguation without 
formally characterizing the relationships among the fea- 
tures. The majority of these efforts ([13], [31]) weight 
each feature in predicting the sense of an ambiguous 
word in accordance with frequency information, with- 
out considering the extent to which the features co- 
occur with one another. Gale, Church and Yarowsky 
([10]) and Yarowsky ([29]) formally characterize the in- 
teractions that they consider in their model, but they 
simply assume that their model fits the data. 

Other researchers have proposed approaches to sys- 
tematically combining information from multiple con- 
textual features in determining the sense of an ambigu- 
ous word. Schutze ([26]) derived contextual features 
from a singular value decomposition of a matrix of letter 
four-gram co-occurrence frequencies, thereby assuring 
the independence of all features. Unfortunately, inter- 
preting a contextual feature that  is a weighted combina- 
tion of letter four-grams is difficult. Further, the clus- 
tering procedure used to assign word meaning based on 
these features is such that  the resulting sense clusters 
do not have known statistical properties. This makes it 
impossible to generalize the results to other data  sets. 

Black ([3]) used decision trees ([4]) to define the re- 
lationships among a number of pre-specified contextual 
features, which he called "contextual categories", and 
the sense tags of an ambiguous word. The tree construc- 
tion process used by Black partitions the data according 
to the values of one contextual feature before consider- 
ing the values of the next, thereby treating all features 
incorporated in the tree as interdependent. The method 
presented here for using information from multiple con- 
textual features is more flexible and makes better use 
of a small data set by eliminating the need to treat all 
features as interdependent. 

The work that bears the closest resemblance to the 
work presented here is the maximum entropy approach 
to developing language models ([24], [25], [19] and [20]). 

Although this approach has not been applied to word- 
sense disambiguation, there is a strong similarity be- 
tween that method of model formulation and our own. 
A maximum entropy model for multivariate data  is the 
likelihood function with the highest entropy that  satis- 
fies a pre-defined set of linear constraints on the under- 
lying probability estimates. The constraints describe 
interactions among variables by specifying the expected 
frequency with which the values of the constrained vari- 
ables co-occur. When the expected frequencies speci- 
fied in the constraints are linear combinations of the 
observed frequencies in the training data, the resulting 
maximum entropy model is equivalent to a maximum 
likelihood model, which is the type of model used here. 

To date, in the area of natural language processing, 
the principles underlying the formulation of maximum 
entropy models have been used only to estimate the 
parameters of a model. Although the method described 
in this paper for finding a good approximation to the 
joint distribution of a set of discrete variables makes 
use of maximum likelihood models, the scope of the 
technique we are describing extends beyond parameter 
estimation to include selecting the form of the model 
that  approximates the joint distribution. 

Several of the studies mentioned in this Section have 
used interest  as a test case, and all of them (with the ex- 
ception of Schutze [26]) considered four possible mean- 
ings for that word. In order to facilitate comparison 
of our work with previous studies, we re-estimated the 
parameters of our best model and tested it using data 
containing only the four LDOCE senses corresponding 
to those used by others (usages not tagged as being one 
of these four senses were removed from both the test 
and training data sets). The results of the modified ex- 
periment along with a summary of the published results 
of previous studies are presented in Table 3. 

While it is true that  all of the studies reported in 
Table 3 used four senses of in terest ,  it is not clear that 
any of the other experimental parameters were held con- 
stant in all studies. Therefore, this comparison is only 
suggestive. In order to facilitate more meaningful com- 
parisons in the future, we are donating the data  used in 
this experiment to the Consortium for Lexical Research 
(ftp site: clr.nmsu.edu) where it will be available to all 
interested parties. 

C o n c l u s i o n s  a n d  F u t u r e  W o r k  

• In this paper, we presented a method for formulating 
probabilistic models that  use multiple contextual fea- 
tures for word-sense disambiguation without requiring 
untested assumptions regarding the form of the model. 
In this approach, the joint distribution of all variables 
is described by only the most systematic variable in- 
teractions, thereby limiting the number of parameters 
to be estimated, supporting computational efficiency, 
and providing an understanding of the data. Further, 
different types of variables, such as class-based and 
collocation-specific ones, can be used in combination 
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with one another. We also presented the results of a 
study testing this approach. The results suggest that 
the models produced in this study perform as well as 
or better than previous efforts on a difficult test case. 

We are investigating several extensions to this work. 
In order to reasonably consider doing large-scale word- 
sense disambiguation, it is necessary to eliminate the 
need for large amounts of manually sense-tagged data. 
In the future, we hope to develop a parametric model 
or models applicable to a wide range of content words 
and to estimate the parameters of those models from 
untagged data. To those ends, we are currently investi- 
gating a means of obtaining maximum likelihood esti- 
mates of the parameters of decomposable models from 
untagged data. The procedure we are using is a vari- 
ant of the EM algorithm that is specific to models of 
the form produced in this study. Preliminary results 
are mixed, with performance being reasonably good on 
models with low-order marginals (e.g., 63% of the test 
set was tagged correctly with Model 1 using parame- 
ters estimated in this manner) but poorer on models 
with higher-order marginals, such as Model 4. Work is 
needed to identify and constrain the parameters that 
cannot be estimated from the available data and to de- 
termine the amount of data needed for this procedure. 

We also hope to integrate probabilistic disambigua- 
tion models, of the type described in this paper, with a 
constraint-based knowledge base such as WordNet. In 
the past, there have been two types of approaches to 
word sense disambiguation: 1) a probabilistic approach 
such as that described here which bases the choice of 
sense tag on the observed joint distribution of the tags 
and contextual features, and 2) a symbolic knowledge 
based approach that postulates some kind of relational 
or constraint structure among the words to be tagged. 
We hope to combine these methodologies and thereby 
derive the benefits of both. Our approach to combining 
these two paradigms hinges on the network representa- 
tions of our probabilistic models as described in Section 
4 and will make use of the methods presented in [21]. 
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LDOCE Sense Representation Representation Representation 
in Total Sample in Training Sample in Test Sample 

sense 1: 361 
"readiness to give attention" (15%) 
sense 2: 11 
"quality of causing attention to be given" (<1%) 
sense 3: 66 
"activity, subject, etc., which one (3%) 
gives time and attention to" 

271 90 
(15% / (15%) 

9 2 
(<1%) (<1%) 

50 16 
(3%) (3%) 

sense 4: 
"advantage, advancement, or favor" 
sense 5: 
'% share (in a company, business, etc.)" 
sense 6: 
"money paid for the use of money" 

178 130 48 
(8%) (7%). (8%) 
500 378 122 

(21%) (21%) (20%) 
1253 931 322 

(53%) (53%) (54%) 

Table 1: Distribution of sense tags. 

Model Percent 
Correct 

1 P(rlpos, ilpos, ending,tag) = 73% 
P(rlposltag ) × P(ilposltag )× P(endingltag ) × P(tag) 

2 P(rlpos, r2pos, llpos, 12pos, ending, tag) = 76% 
P(rlpos, r2posltag ) × P(llpos, 12posltag)× P(endingltag) × P(tag) 

3 P(percent,pursue, short, in, rate,tag) = 61%" 
P(shortlpercent, in, tag)x P(rate[percent, in, tag)x 
P(pursuelPercent , in, tag)× P(percent, inltag) × P( tag) 

4 P(percent, pursue, short, in, rate, rlpos, r2pos, llpos, 12pos, ending, tag) = 78% 
P( short[percent, in, tag) × P(ratelpercent, in, tag) × P(pursuelpercent, in, tag)× 
P(percent, inltag)× P(rlpos, r2posltag ) × P(ilpos, 12posltag)× P(endingltag) × P(tag) 

Table 2: The form and performance on the test data of the model found for each set of variables. Each of the 
variables short, in, pursue, rate(s), percent (i.e., the sign '%') is the presence or absence of that spelling form. Each 
of the variables rlpos, r2pos, ilpos, and 12pos is the POS tag of the word 1 or 2 positions to the left (/) or right (r). 
The variable ending is whether interest is in the singular or plural, and the variable fag is the sense tag assigned to 
interest. 

Model Percent 
Correct 

Black (1988) 72% 
Zernik (1990) 70% 
Yarowsky (1992) 72% 
Bruce & Wiebe 

model 4 using only four senses 79% 

Table 3: Comparison to previous results. 
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