
A N O P T I M A L T A B U L A R P A R S I N G A L G O R I T H M

M a r k - J a n N e d e r h o f *

University of Nijmegen, Department of Computer Science
Toernooiveld, 6525 ED Nijmegen, The Netherlands

markj an~cs, kun. nl

A b s t r a c t

In this paper we relate a number of parsing algorithms
which have been developed in very different areas of
parsing theory, and which include deterministic algo-
rithms, tabular algorithms, and a parallel algorithm.
We show that these algorithms are based on the same
underlying ideas.

By relating existing ideas, we hope to provide an op-
portunity to improve some algorithms based on features
of others. A second purpose of this paper is to answer a
question which has come up in the area of tabular pars-
ing, namely how to obtain a parsing algorithm with the
property that the table will contain as little entries as
possible, but without the possibility that two entries
represent the same subderivation.

I n t r o d u c t i o n

Left-corner (LC) parsing is a parsing s t rategy which
has been used in different guises in various areas of com-
puter science. Deterministic LC parsing with k symbols
of lookahead can handle the class of LC(k) grammars.
Since LC parsing is a very simple parsing technique and
at the same time is able to deal with left recursion, it is
often used as an alternative to top-down (TD) parsing,
which cannot handle left recursion and is generally less
efficient.

Nondeterministic LC parsing is the foundation of a
very efficient parsing algorithm [7], related to Tomita ' s
algorithm and Earley's algorithm. I t has one disad-
vantage however, which becomes noticeable when the
grammar contains many rules whose right-hand sides
begin with the same few grammars symbols, e.g.

A ~ c~f~l I ~f~2 I . . .

where ~ is not the empty string. After an LC parser
has recognized the first symbol X of such an c~, it will
as next step predict all aforementioned rules. This
amounts to much nondeterminism, which is detrimental
both to the t ime-complexity and the space-complexity.

*Supported by the Dutch Organisation for Scientific Re-
search (NWO), under grant 00-62-518

A first a t t empt to solve this problem is to use predic-
tive LR (PLR) parsing. PLR parsing allows simulta-
neous processing of a common prefix c~, provided that
the left-hand sides of the rules are the same. However,
in case we have e.g. the rules A --* c~t31 and B --~ ~/32,
where again ~ is not the empty string but now A ~ B,
then P L R parsing will not improve the efficiency. We
therefore go one step further and discuss extended LR
(ELR) and common-prefix (CP) parsing, which are al-
gorithms capable of simultaneous processing of all com-
mon prefixes. ELR and CP parsing are the foundation
of tabular parsing algorithms and a parallel parsing al-
gori thm from the existing literature, but they have not
been described in their own right.

To the best of the author 's knowledge, the various
parsing algorithms mentioned above have not been dis-
cussed together in the existing literature. The main
purpose of this paper is to make explicit the connec-
tions between these algorithms.

A second purpose of this paper is to show that CP
and ELR parsing are obvious solutions to a problem of
tabular parsing which can be described as follows. For
each parsing algorithm working on a stack there is a
realisation using a parse table, where the parse table
allows sharing of computat ion between different search
paths. For example, Tomita 's algorithm [18] can be seen
as a tabular realisation of nondeterministic LR parsing.

At this point we use the term state to indicate the
symbols occurring on the stack of the original algo-
rithm, which also occur as entries in the parse table
of its tabular realisation.

In general, powerful algorithms working on a stack
lead to efficient tabular parsing algorithms, provided
the g rammar can be handled almost deterministically.
In case the stack algorithm is very nondeterministic for
a certain g rammar however, sophistication which in-
creases the number of states may lead to an increasing
number of entries in the parse table of the tabular re-
alization. This can be informally explained by the fact
that each state represents the computat ion of a number
of subderivations. If the number of states is increased
then it is inevitable that at some point some states
represent an overlapping collection of subderivations,

117

which may lead to work being repeated during parsing.
Furthermore, the parse forest (a compact representa-
tion of all parse trees) which is output by a tabular
algorithm may in this case not be optimally dense.

We conclude tha t we have a tradeoff between the case
that the g rammar allows almost deterministic parsing
and the case that the stack algorithm is very nondeter-
ministic for a certain grammar. In the former case, so-
phistication leads to less entries in the table, and in the
lat ter case, sophistication leads to more entries, pro-
vided this sophistication is realised by an increase in
the number of states. This is corroborated by empirical
da ta from [1, 4], which deal with tabular LR parsing.

As we will explain, CP and ELR parsing are more
deterministic than most other parsing algorithms for
many grammars , but their tabular realizations can
never compute the same subderivation twice. This rep-
resents an op t imum in a range of possible parsing algo-
rithms.

This paper is organized as follows. First we discuss
nondeterministic left-corner parsing, and demonstra te
how common prefixes in a g rammar may be a source of
bad performance for this technique.

Then, a multi tude of parsing techniques which ex-
hibit bet ter t rea tment of common prefixes is dis-
cussed. These techniques, including nondeterministic
PLR, ELR, and CP parsing, have their origins in theory
of deterministic, parallel, and tabular parsing. Subse-
quently, the application to parallel and tabular parsing
is investigated more closely.

Further, we briefly describe how rules with empty
right-hand sides complicate the parsing process.

The ideas described in this paper can be generalized
to head-driven parsing, as argued in [9].

We will take some liberty in describing algorithms
from the existing literature, since using the original de-
scriptions would blur the similarities of the algorithms
to one another. In particular, we will not t reat the use
of lookahead, and we will consider all algorithms work-
ing on a stack to be nondeterministic. We will only
describe recognition algorithms. Each of the algorithms
can however be easily extended to yield parse trees as
a side-effect of recognition.

The notation used in the sequel is for the most par t
s tandard and is summarised below.

A context-free g rammar G = (T, N, P, S) consists of
two finite disjoint sets N and T of nonterminals and
terminals, respectively, a s tar t symbol S E N, and a
finite set of rules P. Every rule has the form A --* c~,
where the left-hand side (lhs) A is an element from N
and the right-hand side (rhs) a is an element from V*,
where V denotes (N U T) . P can also be seen as a
relation on N × V*.

We use symbols A, B, C , . . . to range over N, symbols
a, b, c , . . . to range over T, symbols X,]I, Z to range over
V, symbols c~, [3, 7 , - . . to range over V*, and v, w, x , . . .
to range over T*. We let e denote the empty string. The

notation of rules A --* a l , A --* a 2 , . . , with the same
lhs is often simplified to A ~ c~1]a21...

A rule of the form A --~ e is called an epsilon rule.
We assume grammars do not have epsilon rules unless
s tated otherwise.

The relation P is extended to a relation ~ on V* × V*
as usual. The reflexive and transitive closure of ~ is
denoted by --**.

We define: B L A if and only if A --* B e for some a.
The reflexive and transitive closure of / is denoted by
/*, and is called the left-corner relation.

We say two rules A --* a l and B --* a2 have a com-
mon prefix [3 if c~1 = [3"/1 and a2 = [3'/2, for some '/1
and '/2, where [3 ¢ e.

A recognition algorithm can be specified by means
of a push-down automaton A = (T, Alph, Init, ~-, Fin),
which manipulates configurations of the form (F,v) ,
where F E Alph* is the stack, constructed from left
to right, and v • T* is the remaining input.

The initial configuration is (Init, w), where Init E
Alph is a distinguished stack symbol, and w is the input.
The steps of an automaton are specified by means of the
relation ~-. Thus, (F,v) ~- (F ' , v ') denotes tha t (F ' , v ')
is obtainable from (F, v) by one step of the automaton.
The reflexive and transitive closure of ~- is denoted by
F-*. The input w is accepted if (Init, w) F-* (Fin, e),
where Fin E Alph is a distinguished stack symbol.

L C p a r s i n g
For the definition of left-corner (LC) recognition [7] we
need stack symbols (i tems) of the form [A --~ a • [3],
where A --~ c~[3 is a rule, and a ¢ e. (Remember that
we do not allow epsilon rules.) The informal meaning
of an i tem is "The part before the dot has just been
recognized, the first symbol after the dot is to be rec-
ognized next". For technical reasons we also need the
items [S' ~ . .S] and [S' --~ S .], where S' is a fresh
symbol. Formally:

I LC = {[A --* a • f] l A --* a f • P t A(c~ ¢ e V A -- S')}

where p t represents the augmented set of rules, consist-
ing of the rules in P plus the extra rule S t --~ S.

A l g o r i t h m 1 (L e f t - c o r n e r)
A L e = (T , I Lc, Init,~-, Fin), Init = IS' ---* • S], Fin =
[S t --* S .]. Transitions are allowed according to the
following clauses.

1. (FIB --* f • C'/], av) ~-
(F[B --~/3 • CT][A ~ a • ~], v)

where there is A --* ac~ • P~ such that A [* C

2. (F[A --~ a • aft], av) ~- (F[A --* c~a •/3], v)

3. (FIB ~ [3 • C' /] [d ~ ~ .] , v)
(r i b ~ f • C'/][D ---, A • 6], v)

where there is D ~ A5 • p t such that D L* C

4. (FIB --* [3 • A'/][A ---* a .], v) ~- (FIB ~ f A • '/], v)

The conditions using the left-corner relation Z* in the
first and third clauses together form a feature which is

118

called top-down (TD) filtering. T D filtering makes sure
that subderivations that are being computed bot tom-
up may eventually grow into subderivations with the re-
quired root. TD filtering is not necessary for a correct
algorithm, but it reduces nondeterminism, and guar-
antees the correct-prefix property, which means that in
case of incorrect input the parser does not read past the
first incorrect character.

E x a m p l e 1 Consider the g rammar with the following
rules:

E ---* E + T [T T E [T

T ~ T * F I T * * F I F

F ---* a

It is easy to see that E / E , T Z E , T L T, F / T.
The relation L* contains g but from the reflexive closure
it also contains F L* F and from the transitive closure
it also contains F L* E.

The recognition of a * a is realised by:

[E ' --* • E-I- a , a
1 [E'--~ • E] [F - - * a •] * a
2 [E ' - - * • E] [T ~ F •] * a
3 [E ' - - ~ Q E] [T - - * T . * F] *a
4 [E ' ~ • E] [T ~ T . • F] a
5 [E ' ~ . E I [T - - * T . • F] [F - - - * a e]
6 [E' ---* • E][T ---* T * F •]
7 [E ' ~ • E] [E ~ T •]
8 [E ' ~ E •]

Note that since the automaton does not use any looka-
head, Step 3 may also have replaced [T ---* F •] by
any other i tem besides [T --* T • • F] whose rhs starts
with T and whose lhs satisfies the condition of top-
down filtering with regard to E, i.e. by [T --~ T • **F] ,
[E ~ T . T El, or [E ~ T •]. []

LC parsing with k symbols of lookahead can handle
deterministically the so called LC(k) grammars. This
class of grammars is formalized in [13]. 1 How LC pars-
ing can be improved to handle common su~xes effi-
ciently is discussed in [6]; in this paper we restrict our
at tention to common prefixes.

PLR, ELR, and CP parsing
In this section we investigate a number of algorithms
which exhibit a bet ter t reatment of common prefixes.

P r e d i c t i v e L R pars ing
Predictive LR (PLR) parsing with k symbols of looka-
head was introduced in [17] as an algorithm which yields
efficient parsers for a subset of the LR(k) grammars [16]
and a superset of the LC(k) grammars. How determin-
istic PLR parsing succeeds in handling a larger class
of g rammars (the PLR(k) grammars) than the LC(k)
grammars can be explained by identifying PLR parsing

1In [17] a different definition of the LC(k) grammars may
be found, which is not completely equivalent.

for some g rammar G with LC parsing for some gram-
mar G t which results after applying a transformation
called left-factoring.

Left-factoring consists of replacing two or more rules
A ~ a/31 [a/32[... with a common prefix a by the rules
A ~ hA' and A' --* ~311f~2[..., where A' is a fresh non-
terminal. The effect on LC parsing is that a choice
between rules is postponed until after all symbols of a
are completely recognized. Investigation of the next k
symbols of the remaining input may then allow a choice
between the rules to be made deterministically.

The PLR algorithm is formalised in [17] by trans-
forming a PLR(k) g rammar into an LL(k) g rammar
and then assuming the s tandard realisation of LL(k)
parsing. When we consider nondeterministic top-down
parsing instead of LL(k) parsing, then we obtain the
new formulation of nondeterministic PLR(0) parsing
below.

We first need to define another kind of item, viz. of
the form [A --* ~] such that there is at least one rule of
the form A --* a/3 for some ft. Formally:

I PLR = {[A ---* ~] [A --* a/3 • p t A (a # e V A = S')}

Informally, an i tem [A --* ~ I PLa a • represents one or
more items [A --~ cr •/3] • I e.

Algori thm 2 (Predict ive LR)
A PLR = (T, I PLR, Init, F-, Fin), Init = [S' --~], Fin =
[S t --~ S], and F- defined by:

1. (F[B --~/3], av) F- (rib -~/3][A -~ ~] , ,)
where there are A --~ as , B ---* tiC7 • p t such that
A L * C

2. (F[A --* a], av) F- (r[A --, ~a], v)
where there is A ~ haft • P+

3. (FIB--*/3][A -* a], v) b (rOB--,/3][0--, A], v)
where A --* cr • P t a n d where there are D
A~f, B --~ f?C7 • p t such that D / * C

4. (F[B --*/3][A --, a] ,v) ~- (F[B --*/~A], v)
where A --~ a • pT and where there is B --~/3A7 •
p t

E x a m p l e 2 Consider the g r ammar from Example 1.
Using Predictive LR, recognition of a * a is realised by:

[E' ~] a * a
[E'][F a] • a
[E' --~][T ---* F] * a
[E' --*][T --* T] * a
[E' --*][T ~ T .] a

:

[E' E]
Comparing these configurations with those reached by
the LC recognizer, we see tha t here after Step 3 the
stack element IT --~ T] represents both [T ~ T • * F]
and [T --* T • **F], so that nondeterminism is reduced.
Still some nondeterminism remains, since Step 3 could
also have replaced [T --* F] by [Z --* T], which repre-
sents both [E --* T - T E] and [E --~ T •]. []

119

E x t e n d e d L i t p a r s i n g

An extended context-free g rammar has right-hand sides
consisting of arbi t rary regular expressions over V. This
requires an LR parser for an extended g rammar (an
ELR parser) to behave differently from normal LR
parsers.

The behaviour of a normal LR parser upon a reduc-
tion with some rule A --* a is very simple: it pops la[
states from the stack, revealing, say, s tate Q; it then
pushes s tate goto(Q, A). (We identify a s tate with its
corresponding set of items.)

For extended g rammars the behaviour upon a reduc-
tion cannot be realised in this way since the regular
expression of which the rhs is composed may describe
strings of various lengths, so that it is unknown how
many states need to be popped.

In [11] this problem is solved by forcing the parser to
decide at each call goto(Q, X) whether

a) X is one more symbol of an i tem in Q of which some
symbols have already been recognized, or whether

b) X is the first symbol of an i tem which has been
introduced in Q by means of the closure function.

In the second case, a s tate which is a variant of
goto(Q,X) is pushed on top of s tate Q as usual. In
the first case, however, s ta te Q on top of the stack is
replaced by a variant of goto(Q, X) . This is safe since
we will never need to return to Q if after some more
steps we succeed in recognizing some rule correspond-
ing with one of the i tems in Q. A consequence of the
action in the first case is that upon reduction we need
to pop only one state off the stack.

Further work in this area is reported in [5], which
treats nondeterministic ELR parsing and therefore does
not regard it as an obstacle if a choice between cases a)
and b) cannot be uniquely made.

We are not concerned with extended context-free
g rammars in this paper. However, a very interesting
algorithm results from ELR parsing if we restrict its ap-
plication to ordinary context-free grammars . (We will
maintain the name "extended LR" to stress the origin
of the algorithm.) This results in the new nondetermin-
istic ELR(0) algorithm that we describe below, derived
from the formulation of ELK parsing in [5].

First, we define a set of items as

I = {[A --* c~ •/3] I A --* 4/3 E p t }

Note tha t I LC C I. If we define for each Q G I:

closure(Q) -=

Q U { [A - - * . a] I [B - - * / 3 . C T] E Q A A Z * C }

then the goto function for LR(0) parsing is defined by

g o t o (q , x) =

closure({[A ---* a X •/3] I [A ~ a • X/3] E Q})

For ELR parsing however, we need two goto func-
tions, goto I and goto2, one for kernel i tems (i.e. those

in I LC) and one for nonkernel items (the others). These
are defined by

g o t o l (Q , X) =

closure({[A --* a X • fl] I [A ---* (~ • X/3] E Q A
(a # e VA = S ')})

goto2(Q,X) =
closure({[A ~ X •/3] I [A --* • X/3] 6 Q A A # S'})

At each shift (where X is some terminal) and each re-
duce with some rule A --* a (where X is A) we may non-
deterministically apply gotol, which corresponds with
case a) , or goto2, which corresponds with case b) . Of
course, one or both may not be defined on Q and X,
because gotoi(Q, X) may be @, for i E {1, 2}.

Now remark tha t when using goto I and goto2, each
reachable set of items contains only items of the form
A --* a •/3, for some fixed string a , plus some nonkernel
items. We will ignore the nonkernel items since they
can be derived from the kernel items by means of the
closure function.

This suggests representing each set of items by a new
kind of i tem of the form [{Az, A 2 , . . . , A,~} --* a], which
represents all i tems A --* a • /3 for some /3 and A E
{A1, A 2 , . . . , An}. Formally:

I ELR .~ {[A ---+ a]] 0 C A G {A I A --* af t E p t } A
(4 # E v a = { s ' }) }

where we use the symbol A to range over sets of non-
terminals.

A l g o r i t h m 3 (E x t e n d e d L R)
A ELR = (T, I ELR, Init, t-, Fin), Init = [{S'} --*], Fin =
[{S'} --* S], and t- defined by:

1. (r i d -./31, (r i d - . /3][a ' - . a],v)
where A' = {A I 3A ~ aa, S --~ flC'y 6 p t [B E
A A A Z* C]} is non-empty

2. (r i d a], (r i d '
where A' = { A E A [A ---* daft E p t } is non-empty

3. (F[A --* fl][A' --. a],v) t- (F[A --*/3][A" --. A],v)
where there is A --* a E p t with A E A' , and A" -~
{D 1 3 0 ---* A6, B --*/3C7 E Pt[B 6 A A D Z* C]} i s
non-empty

4. (F[A --. fl][A' ---, a] ,v) }- (F[A" --* flA],v)
where there is A --* a E p t with A E A', and A" =
{B E A I B --*/3A',/E p t } is non-empty

Note tha t Clauses 1 and 3 correspond with goto 2 and
that Clauses 2 and 4 correspond with goto 1.

E x a m p l e 3 Consider again the g rammar from Exam-
ple 1. Using the ELR algorithm, recognition of a * a is
realised by:

[{E'} -*] a a
[{E'}][{F} 6] a
[{E'} --*][{T} --* F] a
[{E'} --*][{T, E} --* T] a
[{E'} --*][{T} --* T *] a

[{E'} ---* E]

120

Comparing these configurations with those reached by
the PLR recognizer, we see that here after Step 3 the
stack element [{T, E} ~ T] represents both [T ---* T •
• F] and [T --, T • * * F], but also [E --* T .] and
[E -~ T • T E], so that nondeterminism is even further
reduced. []

A simplified ELR algorithm, which we call the pseudo
ELR algorithm, results from avoiding reference to A in
Clauses 1 and 3. In Clause 1 we then have a simplified
definition of A ~, viz. A ~ = {A [3A --* as, B ---* tiC'7 E
Pt[a l* C]}, and in the same way we have in Clause 3
the new definition A" = {D [3D ~ AS, B --~ ~C~(E
Pt[D [* C]}. Pseudo ELR parsing can be more easily
realised than full ELR parsing, but the correct-prefix
property can no longer be guaranteed. Pseudo ELR
parsing is the foundation of a tabular algorithm in [20].

C o m m o n - p r e f i x p a r s i n g

One of the more complicated aspects of the ELR algo-
ri thm is the treatment of the sets of nonterminals in
the left-hand sides of items. A drastically simplified
algorithm is the basis of a tabular algorithm in [21].
Since in [21] the algorithm itself is not described but
only its tabular realisation, 2 we take the liberty of giv-
ing this algorithm our own name: common-prefix (CP)
parsing, since it treats all rules with a common prefix
simultaneously, a

The simplification consists of omitting the sets of
nonterminals in the left-hand sides of items:

I Cp = {[--* s] [A ~ s/3 e p t }

A l g o r i t h m 4 (C o m m o n - p r e f i x)
A t;r = (T, I cP, Init, ~-, Fin), Init = [--*], Fin = [---+ S],
and I- defined by:

i. (F[---* /3], av) ~ (F[---* /3][4_. a], v)
where there are A --~ as , B --~/3C'7 E p t such that
A L * C

2. (r[-~ a], av) ~ (r[-~ sa], v)
where there is A --~ sa~3 E p t

3. (F[--~/3][4_. s], v) F- (F[--~ fl][--. A], v)
where there are A --* a, D -* A6, B --* /3C'7 E p t
such that D / * C

4. (V[-~/3][4_, s], v) F- (V[--*/3A], v)
where there are A --* s , B --~/3A'7 E p t

The simplification which leads to the CP algorithm
inevitably causes the correct-prefix property to be lost.

E x a m p l e 4 Consider again the grammar from Exam-
ple 1. It is clear that a ÷ a T a i s not aco r rec t string
according to this grammar. The CP algorithm may go
through the following sequence of configurations:

2An attempt has been made in [19] but this paper does
not describe the algorithm in its full generality.

3The original algorithm in [21] applies an optimization
concerning unit rules, irrelevant to our discussion.

1
2 F]
3 [--*][-* T]
4 [--*][-* E]
5 E
6 E
7 E

0 ¢

+]

÷][--, F]
T]
T T]

a ÷ a T a
÷ a T a
÷ a T a
÷ a T a
÷ a T a

a T a
Ta
Ta
~a

a

10 E r a]

We see that in Step 9 the first incorrect symbol T is read,
but recognition then continues. Eventually, the recog-
nition process is blocked in some unsuccessful configu-
ration, which is guaranteed to happen for any incorrect
input 4. In general however, after reading the first incor-
rect symbol, the algorithm may perform an unbounded
number of steps before it halts. (Imagine what happens
for input of the f o r m a + a T a ÷ a + a + . . . + a .) []

Tabular parsing
Nondeterministic push-down automata can be realised
efficiently using parse tables [1]. A parse table consists
of sets Ti,j of items, for 0 < i < j _~ n, where al . . . a n
represents the input. The idea is that an item is only
stored in a set Ti,j if the item represents recognition of
the part of the input ai+l • • • aj.

We will first discuss a tabular form of CP parsing,
since this is the most simple parsing technique discussed
above. We will then move on to the more difficult ELR
technique. Tabular PLR parsing is fairly straightfor-
ward and will not be discussed in this paper.

T a b u l a r C P p a r s i n g

CP parsing has the following tabular realization:

A l g o r i t h m 5 (T a b u l a r c o m m o n - p r e f i x) P
c Sets Ti j of the table are to be subsets of I . Start

with an empty table. Add [-*] to T0,0. Perform one of
the following steps until no more items can be added.

1. Add [--~ a] to T~-i,i for a = al and [--*/3] E Tj, i- i
where there are A --* an, B --* /3C'7 E P? such that
A / * C

2. Add [-~ sa] to Tj,i for a = ai and [--* a] E Tj,l-i
where there is A --* an/3 E p t

3. Add [--* A] to Tj# for [--* a] e Tj,i and [-*/3] E Th,j
where there are A --~ s , D --* AS, B --* /3C'7 E p t
such that D / * C

4. Add [--~/3A] to Th,i for [--* s] E Tj,i and [---~/3] E Th,j
where there are A --* s , B --*/3A 7 E p t

Report recognition of the input if [--~ S] E T0,n.

For an example, see Figure 1.
Tabular CP parsing is related to a variant of CYK

parsing with TD filtering in [5]. A form of tabular

4unless the grammar is cyclic, in which case the parser
may not terminate, both on correct and on incorrect input

121

0 1 2

[--.] (0) [-*[-*[--*[--* T]E]F]a] (4)(3)(2)(1) [--. E +](5)

1 0

3

[--* E + T]
E]

[4 a] (6)
[--* F] (7)
[--* T] (s)

Figure 1: Tabular

0

[--* T T] (9)

CP parsing without top-down filtering (i.e. without the
checks concerning the left-corner relation /*) is the
main algorithm in [21].

Without the use of top-down filtering, the references
to [---~/9] in Clauses 1 and 3 are clearly not of much use
any more. When we also remove the use of these items,
then these clauses become:

[--* T T E]

Consider again the grammar from
Example 1 and the (incorrect) in-
put a + a T a. After execution
of the tabular common-prefix al-
gorithm, the table is as given here.
The sets Tj,i are given at the j - th
row and i-th column.
The items which correspond with
those from Example 4 are labelled
with (0), (1) , . . . These labels also
indicate the order in which these
items are added to the table.

1. Add [--+ a] to Tc-I,C for a = ai
where there is A --* ac~ • p t

3. Add [--* A] to Tj,i for [--+ o~] • Tj,i
where there are A ---* a, D --* A6 • pt

[--* a] (Io)

T]
[--, E]

CP parsing

However, for certain i there may be many [A ~ /9] •
Tj,c-1, for some j , and each may give rise to a different
A' which is non-empty. In this way, Clause 1 may add
several items [A' --~ a] to Tc-I,C, some possibly with
overlapping sets A'. Since items represent computation
of subderivations, the algorithm may therefore compute
the same subderivation several times.

In the resulting algorithm, no set Tc,j depends on any
set Tg,h with g < i. In [15] this fact is used to construct
a parallel parser with n processors P o , . . . , Pn-1, with
each Pi processing the sets Ti,j for all j > i. The flow
of data is strictly from right to left, i.e. items computed
by Pc are only passed on to P 0 , . . . , Pc-1.

T a b u l a r E L R p a r s i n g

The tabular form of ELR parsing allows an optimiza-
tion which constitutes an interesting example of how a
tabular algorithm can have a property not shared by its
nondeterministic origin. 5

First note that we can compute the columns of a
parse table strictly from left to right, that is, for fixed i
we can compute all sets Tj,c before we compute the sets
Tj,C-F1 •

If we formulate a tabular ELR algorithm in a naive
way analogously to Algorithm 5, as is done in [5], then
for example the first clause is given by:

1. Add [A' --. a] to Tc-1,c for a = ac and
[A ~ / 9] • Tj,c-1

where A ' -- {A] 3A --~ a(~,B --+ /9C~ • P t [B •
A A A Z* C]} is non-empty

5This is reminiscent of the admissibility tests [3], which
are applicable to tabular realisations of logical push-down
automata, but not to these automata themselves.

We propose an optimization which makes use of the
fact that all possible items [A --+/9] • Tj,i-1 are already
present when we compute items in Ti-l , i: we compute
one single item [A' -+ hi, where A' is a large set com-
puted using all [A --+ /9] • Tj,i-1, for any j . A similar

t o Tj, i •

[A ---* c~] • Tj, i -1
• A i A -~ c~a/9 • p t } is non-empty

optimization can be made for the third clause.

A l g o r i t h m 6 (T a b u l a r e x t e n d e d L R)
Sets T/ j of the table are to be subsets of I ELR. Start
with an empty table. Add [{S'} ~] to T0,0. For
i ---- 1 , . . . , n, in this order, perform one of the following
steps until no more items can be added.

1. Add [A' --. a] to Ti - l# for a = ai
where A' = {A I 3j3[A --*/9] • Tj , i -13A ----, ha, B ---*
/9C0' • p t [B • A A A Z* C]} is non-empty

2. Add [A' --* aa] for a = ai and

where A' = {A
3. Add [A" --. A] to Tj,i for [A' --* a] E Tj,i

where there is A --+ a E p t with A E A', and A" =
{D [3h3[A --* /9] E TtL,j3D ----, A6, B ----, /9C',/ E
p t [B E A A D Z* C]} is non-empty

4. Add [A" --./gA] to Th,i for [A' --* a] E Tj,/ and
[A --,/9] • Th,j

where there is A --* a • p t with A • A', and A" =
{B • A] B --~/9A7 • p t } is non-empty

Report recognition of the input if [{S'} --* S] • T0,,~.

Informally, the top-down filtering in the first and
third clauses is realised by investigating all left corners
D of nonterminals C (i.e. D Z* C) which are expected

122

from a certain input position. For input position i these
nonterminals D are given by

Si = {D] 3j3[A ~ fl] E Td,i
3B --, t iC"/e Pt[B E A A D Z* C]}

Provided each set Si is computed just after comple-
tion of the i-th column of the table, the first and third
clauses can be simplified to:

1. Add [A' ~ a] t o T i - l , i for a = a i

where A' = {A [A --~ a a E p t } M Si-1 is non-empty

3. Add [A" ---, A] to Tj,i for [A' --, ~] E Tj,i
where there is A --, a E p t with A E A', and A" =
{D [D ~ A5 E p t } N Sj is non-empty

which may lead to more practical implementations.
Note that we may have that the tabular ELR algo-

r i thm manipulates items of the form [A --~ a] which
would not occur in any search pa th of the nondeter-
ministic ELR algorithm, because in general such a A
is the union of many sets A' of items [A ~ --~ a] which
would be manipulated at the same input position by the
nondeterministic algorithm in different search paths.

With minor differences, the above tabular ELR algo-
r i thm is described in [21]. A tabular version of pseudo
ELR parsing is presented in [20]. Some useful data
structures for practical implementat ion of tabular and
non-tabular PLR, ELR and CP parsing are described
in [S],

F i n d i n g a n o p t i m a l t a b u l a r a l g o r i t h m

In [14] Schabes derives the LC algorithm from LR pars-
ing similar to the way that ELR parsing can be derived
from LR parsing. The LC algorithm is obtained by not
only splitting up the goto function into goto 1 and goto 2
but also splitting up goto~ even further, so that it non-
deterministically yields the closure of one single kernel
item. (This idea was described earlier in [5], and more
recently in [10].)

Schabes then argues that the LC algorithm can be
determinized (i.e. made more deterministic) by manip-
ulating the goto functions. One application of this idea
is to take a fixed g rammar and choose different goto
functions for different parts of the grammar, in order
to tune the parser to the grammar.

In this section we discuss a different application of
this idea: we consider various goto functions which are
global, i.e. which are the same for all parts of a grammar.
One example is ELR parsing, as its goto~ function can
be seen as a determinized version of the goto 2 function
of LC parsing. In a similar way we obtain P L R parsing.
Traditional LR parsing is obtained by taking the full
determinization, i.e. by taking the normal goto function
which is not split up. 6

6Schabes more or less also argues that LC itself can be
obtained by determinizing TD parsing. (In lieu of TD pars-
ing he mentions Earley's algorithm, which is its tabular
realisation.)

We conclude that we have a family consisting of LC,
PLR, ELR, and LR parsing, which are increasingly de-
terministic. In general, the more deterministic an algo-
r i thm is, the more parser states it requires. For exam-
ple, the LC algorithm requires a number of states (the
items in I Lc) which is linear in the size of the gram-
mar. By contrast, the LR algorithm requires a number
of states (the sets of items) which is exponential in the
size of the g rammar [2].

The differences in the number of states complicates
the choice of a tabular algorithm as the one giving op-
timal behaviour for all grammars . If a g rammar is very
simple, then a sophisticated algorithm such as LR may
allow completely deterministic parsing, which requires a
linear number of entries to be added to the parse table,
measured in the size of the grammar.

If, on the other hand, the g rammar is very ambigu-
ous such that even LR parsing is very nondeterministic,
then the tabular realisation may at worst add each state
to each set T i j , so that the more states there are, the
more work the parser needs to do. This favours sim-
ple algorithms such as LC over more sophisticated ones
such as LR. Furthermore, if more than one state repre-
sents the same subderivation, then computat ion of that
subderivation may be done more than once, which leads
to parse forests (compact representations of collections
of parse trees) which are not optimally dense [1, 12, 7].

Schabes proposes to tune a parser to a grammar, or
in other words, to use a combination of parsing tech-
niques in order to find an optimal parser for a certain
grammar. 7 This idea has until now not been realised.
However, when we t ry to find a single parsing algorithm
which performs well for all grammars, then the tabu-
lar ELR algorithm we have presented may be a serious
candidate, for the following reasons:

• For M1 i, j , and a at most one i tem of the form
[A --, ct] is added to Tij . Therefore, identical sub-
derivations are not computed more than once. (This
is a consequence of our optimization in Algorithm 6.)
Note that this also holds for the tabular CP algo-
rithm.

• ELR parsing guarantees the correct-prefix property,
contrary to the CP algorithm. This prevents com-
putat ion of all subderivations which are useless with
regard to the already processed input.

• ELR parsing is more deterministic than LC and PLR
parsing, because it allows shared processing of all
common prefixes. It is hard to imagine a practical
parsing technique more deterministic than ELR pars-
ing which also satisfies the previous two properties.
In particular, we argue in [8] that refinement of the
LR technique in such a way that the first property
above holds whould require an impractically large
number of LR states.

7This is reminiscent of the idea of "optimal cover" [5].

123

Epsilon rules
Epsilon rules cause two problems for bottom-up pars-
ing. The first is non-termination for simple realisations
of nondeterminism (such as backtrack parsing) caused
by hidden left recursion [7]. The second problem occurs
when we optimize TD filtering e.g. using the sets Si: it
is no longer possible to completely construct a set Si be-
fore it is used, because the computation of a derivation
deriving the empty string requires Si for TD filtering
but at the same time its result causes new elements to
be added to S~. Both problems can be overcome [8].

Conclusions
We have discussed a range of different parsing algo-
rithms, which have their roots in compiler construction,
expression parsing, and natural language processing.
We have shown that these algorithms can be described
in a common framework.

We further discussed tabular realisations of these al-
gorithms, and concluded that we have found an opti-
mal algorithm, which in most cases leads to parse tables
containing fewer entries than for other algorithms, but
which avoids computing identical subderivations more
than once.

Acknowledgements
The author acknowledges valuable correspondence with
Klaas Sikkel, Ran6 Leermakers, Franqois Barth61emy,
Giorgio Satta, Yves Schabes, and Fr6d@ric Voisin.

References
[1] S. Billot and B. Lang. The structure of shared

forests in ambiguous parsing. In 27th Annual Meet-
ing of the ACL, 143-151, 1989.

[2] M. Johnson. The computational complexity of
GLR parsing. In M. Tomita, editor, Generalized
LR Parsing, chapter 3, 35-42. Kluwer Academic
Publishers, 1991.

[3] B. Lang. Complete evaluation of Horn clauses:
An automata theoretic approach. Rapport de
Recherche 913, Institut National de Recherche en
Informatique et en Automatique, Rocquencourt,
France, November 1988.

[4] M. Lankhorst. An empirical comparison of gener-
alized LR tables. In R. Heemels, A. Nijholt, and
K. Sikkel, editors, Tomita's Algorithm: Extensions
and Applications, Proc. of the first Twente Work-
shop on Language Technology, 87-93. University of
Twente, September 1991. Memoranda Informatica
91-68.

[5] R. Leermakers. How to cover a grammar. In 27th
Annual Meeting of the ACL, 135-142, 1989.

[6] R. Leermakers. A recursive ascent Earley
parser. Information Processing Letters, 41(2):87-
91, February 1992.

[7] M.J. Nederhof. Generalized left-corner parsing. In
Sixth Conference of the European Chapter of the
ACL, 305-314, 1993.

[8] M.J. Nederhof. A multidisciplinary approach to
a parsing algorithm. In K. Sikkel and A. Ni-
jholt, editors, Natural Language Parsing: Methods
and Formalisms, Proc. of the sixth Twente Work-
shop on Language Technology, 85-98. University
of Twente, 1993.

[9] M.J. Nederhof and G. Satta. An extended theory
of head-driven parsing. In this proceedings.

[10] P. Oude Luttighuis and K. Sikkel. Generalized LR
parsing and attribute evaluation. In Third Inter-
national Workshop on Parsing Technologies, 219-
233, Tilburg (The Netherlands) and Durbuy (Bel-
gium), August 1993.

[11] P.W. Purdom, Jr. and C.A. Brown. Parsing
extended LR(k) grammars. Acta Informatica,
15:115-127, 1981.

[12] J. Rekers. Parser Generation for Interactive Envi-
ronments. PhD thesis, University of Amsterdam,
1992.

[13] D.J. Rosenkrantz and P.M. Lewis II. Deterministic
left corner parsing. In IEEE Conference Record
of the 11th Annual Symposium on Switching and
Automata Theory, 139-152, 1970.

[14] Y. Schabes. Polynomial time and space shift-
reduce parsing of arbitrary context-free grammars.
In 29th Annual Meeting of the ACL, 106-113, 1991.

[15] K. Sikkel and M. Lankhorst. A parallel bottom-
up Tomita parser. In 1. Konferenz "Verarbeitung
Natiirlicher Sprache", 238-247, Nfirnberg, October
1992. Springer-Verlag.

[16] S. Sippu and E. Soisalon-Soininen. Parsing The-
ory, Vol. H: LR(k) and LL(k) Parsing, EATCS
Monographs on Theoretical Computer Science,
volume 20. Springer-Verlag, 1990.

[17] E. Soisalon-Soininen and E. Ukkonen. A method
for transforming grammars into LL(k) form. Acta
Informatica, 12:339-369, 1979.

[18] M. Tomita. Efficient Parsing for Natural Lan-
guage. Kluwer Academic Publishers, 1986.

[19] F. Voisin. CIGALE: A tool for interactive grammar
construction and expression parsing. Science of
Computer Programming, 7:61-86, 1986.

[20] F. Voisin. A bottom-up adaptation of Earley's
parsing algorithm. In Programming Languages
Implementation and Logic Programming, Interna-
tional Workshop, LNCS 348, 146-160, Orl@ans,
France, May 1988. Springer-Verlag.

[21] F. Voisin and J.-C. Raoult. A new, bottom-up,
general parsing algorithm. BIGRE, 70:221-235,
September 1990.

124

