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Abstract 
Motivation for including relational constraints other 

than equality within grammatical formalisms has come 
from discontinuous constituency and partially free word 
order for natural languages as well as from the need to 
define combinatory operations at the most basic level 
for languages with a two-dimensional syntax (e.g., 
mathematical notation, chemical equations, and various 
diagramming languages). This paper presents F-PATR, 
a generalization of the PATR-II unification-based for- 
malism, which incorporates relational constraints 
expressed as user-defined functions. An operational 
semantics is given for unification that is an adaptation 
and extension of the approach taken by Ait-Kaci and 
Nasr (1989). It is designed particularly for unification- 
based formalisms implemented in functional program- 
ming environments such as Lisp. The application of 
unification in a chart parser for relational set languages 
is discussed briefly. 

1. INTRODUCTION 

For the most part, unification-based grammar for- 
malisms (e.g., Kaplan and Bresnan 1982; Pereira and 
Warren 1980; Shieber 1984) have adopted string 
rewriting conventions from context-free grammar rules, 
assuming string concatenation as the basic combining 
operator external to the unification process itself. Kay's 
Functional Unification Grammar (Kay 1979), while not 
borrowing the conventions of CFG rewriting rules, still 
assumed concatenation of strings as the underlying 
combining operation. However, recent work in HPSG 
(e.g., Pollard and Sag 1987, Reape 1990, Carpenter et al. 
1991) and elsewhere has sought to incorporate con- 
straints for combining operations into the unification- 
based representation directly. Part of the motivation for 
doing so is to accommodate partially free word order 
and discontinuous constituency without the complica- 
tion of passing along intermediate "threading" informa- 
tion within derivations. Such exensions to unification 
grammars require the use of nonequational constraints, 

i.e., constraints on values other than simple conditions 
of equality and the logical connectives built with them. 
Reape (1990) has proposed, for example, the relations 
permutation and sequence union to constrain word 
sequences in his HPSG fragment for German. 

A different motivation for extending the constraint 
language for combination within unification grammars 
comes from languages with a two-dimensional syntax 
(e.g., mathematical notation, chemical equations, and 
various diagramming languages). Approaching such 
domains from a linguistic perspective requires that 
grammars be capable of dealing with a richer source of 
data types than just strings and also with specifying a 
richer set of combinatory operations than simple string 
concatenation. The approach taken by Helm and Marri- 
ott (1986, 1990) and Wittenburg, Weitzman, and Talley 
(1991) [hereafter WWT] is to augment declarative, uni- 
fication-based grammars with relational constraints. 
Combinatory operations can then be defined out of the 
sets of relational constraints present in rule bodies. The 
approach in WWT includes a set-valued attribute called 
cover in feature structures. Relations such as above, 
below, north-east-of, and connected-to are examples 
that may be incorporated into cover constraints used in 
grammars for two-dimensional languages. These con- 
straints apply to sets of the basic input vocabulary, 
whose members may themselves be complex objects. 
The use of sets in these grammars takes the place of 
strings, or sequences of words, as used in grammars for 
natural languages. 

This paper presents a generalization of the PATR-II 
unification-based grammar formalism to incorporate 
relational constraints. The extension has been primarily 
motivated by the demands of combinatory operations in 
the syntax for two-dimensional languages although such 
constraints can be used to  express more complex com- 
binatory relations on strings as well as for other pur- 
poses (see, for example, work in CLG (Damas and 
Varile 1989; Balari et al. 1990)). 

The approach described here arose as a result of  
extending a Lisp-based implementation of PATR-II 
used with a chart parser. A natural path was provided by 
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Ait-Kaci and Nasr (1989), who proposed integrating 
logic and functional programming by allowing con- 
straints to be specified with applicative expressions. 
This work has subsequently become one of the three 
cornerstones of the programming language Life (Ait- 
Kaci 1990). The key idea is to allow interpreted func- 
tional expressions to appear as bonafide arguments in 
logical statements. Unification operations then must 
allow for delaying the evaluation of functional expres- 
sions until such time as argument variables become 
grounded, a process that leads to what Ait-Kaci and 
Nasr call residuation. 

For the most part, the adaptation of Ait-Kaci and 
Nasr's methods to an extension of PATR-II proved to 
be straitforward. However, there are two points on 
which the operational semantics of F-PATR unifica- 
tion as defined here differs from theirs. The first, a 
variation on dereferencing applicative values, was 
motivated by the demands of caching intermediate 
results imposed by chart parsing. The second, atomic 
disjunction, allows for more expressiveness in the 
grammar and also, again, was motivated by the parsing 
algorithm we assumed. We will return to these points 
in Section 6. 

2. F U N C T I O N A L  C O N S T R A I N T S  

From the graph perspective, the basic vocabulary of 
PATR-II (Shieber 1984) consists of a set of arc labels 
and a set of terminal (leaf) node labels, the latter 
including a variable (or null) value. The graphs can 
have reentrancies at the leaf levels or higher up, which 
express identity (or unification) of structure. 

Following Ait-Kaci and Nasr (1989), we incorpo- 
rate applicative expressions (function specification 
followed by zero or more argument specifications), 
into our constraint language. Two uses of applicative 
expressions in the Ait-Kaci/Nasr language Le Fun 
concern us here. The first allows variables to equate to 
an (eventual) evaluation of some applicative expres- 
sion whose arguments may contain variables. For 
example, 

X = (union Y Z) 
(Our convention will be to write applicative expres- 
sions using Lisp s-expression syntax, i.e, function 
name followed by zero or more arguments all enclosed 
in parentheses.) The second allows Le Fun clauses to 
be formed from arbitrary ground,decidable predicates, 
i.e., applicative expressions whose arguments also 
may start out as variables. For example, given the 
user-defined boolean function sw-of (south-west of), 
the following would be an acceptable statement: (sw- 
of X Y). 

The analogous PATR-II extension to the first of  
these allows leaf nodes to be labeled with an applica- 
tive expression. Any "unbound" arguments in these 
applicative expressions will point to variable nodes 
elsewhere in the graph. Equations such as the follow- 
ing example will then be allowed in the language. 

<mother cover> = (union <daughtl cover> 
<daught2 cover>) 

In F-PATR, we restrict the types of nodes repre- 
sented by paths to those that may appear as leaf values, 
i.e., atomic, a disjunction of atoms, null (variable), or 
another applicative value. This restriction is signifi- 
cant: it does not allow for arguments in functional con- 
straints to be of the complex attribute-value type. 

The second use of applicative expressions, as pred- 
icates, allows the inclusion of functional expressions 
into feature specifications as independent conditions 
on successful unification. So here the evaluation of the 
expression is not associated with a leaf node's value. 
The statement below is an example of a such a con- 
straint on the value of a node that might be included in 
graph. This predicate sw-of will be taken to be a con- 
dition on successful unification. 

(sw-of <daughtl cover> <daught2 cover>) 
The two statements above taken together would 

then correspond to the graph shown in Figure 1, a first 
approximation for a rule for forming exponent expres- 
sions in a grammar of mathematical notation. The 
unlabeled arcs linking arguments in applicative 
expressions to the variable nodes are a notational con- 
venience, indicating a forwarding pointer. The argu- 
ments to these expressions are in fact the nodes 
themselves. 

mother J ~ 

I cover r c°ver I _ ) ~cover 

~(union J ~  
(sw-of ~. /') 

Figure 1 An F-PATR Graph 

Our proposal for F-PATR feature structures begins 
with a vocabulary of the following types suitable for 
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interpretive, functionally oriented programming lan- 
guages such as Lisp. 

Atom Symbol or number 
Fun-exp Function, i.e, symbol pointing to a function, 

or lambda expression interpretable as a 
function, of type 

Atom X Atom × ... Atom ---> Atom 

or else 

Atom × Atom X ... Atom ---> List-of-atoms 
(where List-of-atoms will be interpreted as 
a logical disjunction of atomic values) 

S-expression Any complete evaluatable expression with- 
out internal references to F-PATR nodes 

The following then is a BNF grammar for F-PATR 
equations representing feature structures: 

Feat-struct ::= Statement + 
Statement ::= Atom I Equation I Appl 
Equation :'= Path = Path I Path = Val I Path = 

Appl 
Path ::= < Atom + > 
Val ::= Atom I { Atom Atom + } 
Appl ::= ( Fun-exp Arg* ) 
Arg ::= Path I Appl I S-expression 

We will assume the existence of a familiar equiva- 
lent notation for these feature equations, in which 
graph reentrancies (or path equivalences) are 
expressed by a matrix with integers used for shared 
reference. Predicates will follow the core attribute- 
value matrix. For example, 

[a: 1[] 
b: 2(foo <1>)] 
(fie <1> <2>) 

is equivalent to 
<b> = (foo <a>) 
(fie <a> <b>). 

In addition to functional values and constraints, we 
augment the original PATR-II notation with atomic 
disjunction (interpreted as exclusive OR) as a possible 
value of leaf nodes. Such values are written with curly 
braces surrounding two or more atoms. Atomic dis- 
junction is one of the most basic extensions to the 
PATR-II unification language and is in common use. 
If  atomic values are considered to be singleton sets, 
unification of atomic disjunctions with other disjunc- 
tions or atoms can be operationally treated as set inter- 
section. In F-PATR, atomic disjunctions may appear 
not only independently but also as arguments and val- 
ues of applicative expressions. 

3. D A T A  T Y P E S  

In Ait-Kaci and Nasr (1989), functional expres- 
sions in feature structures are evaluated as soon as 
their arguments become bound. Otherwise, data struc- 
tures will become residuated, a state representing 
incompletion with respect to determining constraints 
on unification. Ait-Kaci and Nasfs algorithms thus 
delay the resolution of functionally-specified values or 
predicates until all variables are bound, but then 
resolve them as early as possible once bindings occur. 
Here we follow this same general approach for predi- 
cates only, but not for applicative values, which are 
checked for readiness to evaluate only when derefer- 
enced. Further, we expand the routines to deal with 
atomic disjunction. 

We assume the following data types for nodes in a 
feature structure graph: 

:Arc-list a set of attribute labels and associated val- 
ues, the latter of which may be of any type 

:null the uninstantiated "variable" type 
:atomic a singleton set of one symbol or number 
:disjunct a set of 2 or more atomic values 
:appl an applicative expression 
:res-var a residuated variable, i.e., a :null type that 

appears as an argument in at least one 
predicate 

:res-disjunct a residuated disjunction, i.e., a :disjunct 
type that appears as an argument in at least 
one predicate 

The node types that may acquire residuations 
include :null, :disjunct, and :appl (a type for which we 
do not distinguish residuated from nonresiduated sub- 
types). There are two kinds ofresiduations: predicates 
not ready for evaluation and delayed unifications asso- 
ciated with the :appl type. Predicate residuations arise 
when a predicate contains any arguments of type :null 
or :appl, or else when a predicate has more than one 
argument of type :disjunct. During unification, any 
such arguments mutate to a residuated type (if they are 
urtresidutated to start with), and the predicate is pushed 
onto their residuation list. 

The second kind of residuation arises when unifica- 
tion is called for between a node of type :appl that is 
not ready for evaluation and any other non-:null type. 
The unification call itself must be delayed until such 
time as the function is ready for evaluation, and so a 
form that will provoke the unification is pushed onto 
the residuation list of the :appl node. 
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4. D E R E F E R E N C I N G  

The notion of dereferencing a data structure repre- 
senting a feature value (or node) is common to most 
unification implementations. A field in the data struc- 
ture indicates whether the value is to be found locally 
or else by following pointers to other data structures 
that may have been introduced through prior unifica- 
tion. Introducing residuations into the data structures 
adds the wrinkle that, during dereferencing, applica- 
tive expressions will be evaluated if they are ready. In 
F-Patr, dereferencing an :appl type node is in fact the 
only point at which to evaluate an applicative expres- 
sion. This is a change from Le Fun--there arguments 
in applicative expressions may acquire applicative 
expressions as residuations that can be evaluated as 
argument terms become grounded during unification. 
This design change will be motivated in Section 6. 

For each node type, the dereference function fol- 
lows pointers in the usual way until no pointers 
remain. In addition, if the resulting node is of :appl 
type, we check to see if all its arguments are atomic or 
else lisp s-expressions, an indication that the function 
is ready to be evaluated. I f  the function evaluates to a 
non-nil atom or a disjunctive list of atoms, then any 
residuations (delayed unifications) on the node are 
also called. Note then that dereferencing can itself fail 
as a result of provoking unifications that fail, which the 
top-level unification routines need to take account of. 

5. U N I F I C A T I O N  

The types associated with successful unifications of 
dereferenced leaf node types are shown in Table 1. 
Some cells contain more than one type since residua- 
tions and disjunctions may or may not be reduced in 
the result term. Note that an :appl type unified with 
any other type always yields another :appl type. This 
is a bit misleading, however, since the table does not 
take into account the effects of dereferencing, which, 
as we have just described, can provoke a chain of 
delayed unifications involving any types. 

During unification, the evaluation of functions 
used in predicates and :appl nodes each may produce 
disjunctive values, but in different ways. Predicates 
can be evaluated when there is at most one disjunctive 
argument node, in which case we map the predicate 
Over each of the disjunctions in the disjunctive argu- 
ment, and collect successful results. I f  there is more 
than one successful result, then the result is a disjunc- 
tion. Alternatively, for functions appearing in :appl 
nodes only, the function itself may produce a disjunc- 
tive value as directed by the internal definition of the 

function. But note that functions used in F-PATR 
graphs do not themselves take disjunctive arguments 
directly, as indicated in the discussion of data types 
above. 

Table 1: Unification for leaf types 

:r-dis 

:null :null :atom :disju :appl :r-var 

:a tom I :atom :atom :atom :appl :atom 

:r-dis 

:atom 
:disju 
:r-dis 

:disju :disju :atom :atom :appl :atom :atom 
:disju :disju :disju 

:r-dis :r-dis 

:appl :appl :appl :appl :appl :appl :appl 

: r-var  :r-var :atom :atom :appl :r-var :atom 
:disju :disju 
:r-dis :r-dis 

:r-dis :atom 
:disju 
:r-dis 

There are a number of pairings in Table 1 that are 
capable of producing either residuated disjunctions, 
disjunctions, or atoms. These all involve a residuated 
predicate appearing in at least one of the leaf node 
arguments. If  the initial intersection of the node's con- 
tents (independently from residuations) yields a value 
that still does not provoke evaluation of the predicate, 
then the result is a residuated disjunction. If  the pred- 
icate is evaluated, then the unification process may 
yield an atomic value or a disjunctive value, as 
explained in the previous paragraph. 

Space precludes us from further discussion of the 
unification algorithms here. With refej-ence to Ait- 
Kaci and Nasr (1989) and Table 1, however, the 
details should emerge. See also the examples in the 
Appendix, which are taken from program output. 

6. A P P L I C A T I O N  T O  P A R S I N G  

The two significant design changes that we have 
introduced were motivated by our application of F- 
PATR to parsing of relational set grammars for graph- 
ical languages, which is discussed in detail in WWT. 
Initial experiments adopted the Ait-Kaci/Nasr 
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approach of evaluating the functions of :appl nodes as 
soon as possible, which meant residuating the argu- 
ment nodes of these functions. However, this 
approach led to difficulties in our chart parsing algo- 
rithm, which needed to cache the feature structures of 
active edges before any of the destructive effects of 
unification involving what we call expander functions 
took place. The root of the issue is that with the Ait- 
Kaci/Nasr approach, the control of function evaluation 
is within unification rather than with some external 
algorithm. In our approach, it was most natural to use 
external co n~0| to implement chart parsing. This 
point may be c.larified by considering an example, for 
which we need to summarize F-PATR relational set 
grammars. (See also Wittenburg (1992a 1992b).) 

The feature structures for grammatical constituents 
include the primary attributes cover, syntax, and 
semantics. The attribute cover takes as value a refer- 
ence to a subset of input objects. This scheme is anal- 
ogous to HPSG feature structures, where the string- 
valued phonology attribute is replaced by the set-val- 
ued cover attribute. Rules have the form 

[mother: [cover: [] 
syntax: [] 
semantics: []] 

daughtl: [cover: [] 
syntax: [] 
semantics: []] 

daughtn: [cover: [] 
syntax: [] 
semantics: []]] 

with the condition that for the daughter elements of a 
rule D1...Dn, there must exist at least one expander 
relation between covers of each daughter Di, 2 < i < n, 
and a cover of daughter Dj where j < i. 

The expander relations are a subclass of relational 
constraints among sets of input objects used to define 
the combinatory possibilities of rules. For parsing, the 
constraints are expressed as functions from cover-sets 
to cover-sets and appear as a functional value of cover 
attributes. 

[mother: [syntax: Exp 
cover: (union-covers <2> <3> <4>) 
semantics: (divide <6> <7>)] 

daughtl: [syntax: horizontal-line 
cover: 2[]] 

daught2: [syntax: Exp 
cover: 3(what-is-above <2>) 
semantics: <6>] 

daught3: [syntax: Exp 
cover: 4(what-is-below <2>) 
semantics: <7>]] 

(contains-in-x <2> <4>) 
(contains-in-x <2> <3>) 

The example above is the rule for vertical infixation 
for fractions, used in a grammar of mathematical nota- 
tion. 

Let us consider now what the feature structure for 
an active chart-parsing edge for the fraction rule would 
look like after the first daughter had been unified in. 
The cover attribute would acquire a set-reference 
value (we will use a number in binary suggestive of the 
use of bit vectors to represent subsets). 

Active edge feature structure: 
[mother: [syntax: Exp 

cover: (union-covers 0001 <3> <4>) 
semantics: (divide <6> <7>)] 

daughtl: [syntax: horizontal-line 
cover: 0001] 

daught2: [syntax: Exp 
cover: 3(what-is-above 0001) 
semantics: <6>] 

daught3: [syntax: Exp 
cover: 4(what-is-below 0001) 
semantics: <7>]] 

(contains-in-x 0001 <4>) 
(contains-in-x 0001 <3>) 

At this point the Ait-Kaci/Nasr algorithm for unifi- 
cation would provoke the evaluation of the what-is- 
above and what-is-below functions, since their argu- 
ments are now "grounded". However, this is not what 
we want for a chart parser since the features of the 
active edge graph shown here must be kept indepen- 
dent from each of its future advancements. That is, we 
want to evaluate these two functions at separate cycles 
in the parsing algorithm at the points when we are 
ready to extend this edge with the daughters in ques- 
tion. The more conservative approach to derefencing 
and evaluation of :appl nodes and also the extension of 
disjunctions as possible values of expander functions 
provides an elegant solution. ! The functions what-is- 
above and what-is-below will be evaluated in indepen- 
dent expand steps of the WWT algorithm. In either 
case, the function is capable of returning a disjunction 
of values. But any such values must also meet the con- 
straints of the predicate contains-in-x, the application 
of which may have the effect of reducing the set of val- 

1. Hassan Ait-Kaci (personal communication) has pointed out 
that a solution to the control problem is available in the Le Fun/LIFE 
framework. An extra unbound argument could be added to 
expander functions such as what-is-above so that evaluation would 
not be provoked at undesired times. A binding for this extra variable 
could later be offered when evaluation was wanted. 
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ues and perhaps eliminating all of them, leading to a 
unification failure. All this happens as it should with 
the approach to unification outlined above. 

7. CONCLUDING REMARKS 

One of the goals of this paper is to bring the work 
of Ait-Kaci and Nasr to the attention of the computa- 
tional linguistics community. Their techniques for 
marrying declarative and functional programming par- 
adigms are an important avenue to explore in expand- 
ing the expressiveness of formalisms for linguisic 
applications. The design issues encountered in build- 
ing an implementation of F-PATR should be of inter- 
est to implementors of such a paradigm. Of  course we 
do not address here issues in the logic of such feature 
structures or their declarative semantics. The signifi- 
cant differences of F-Patr from Le Fun include an 
alternative approach to dereferencing certain data 
types, a change motivated by an environment in which 
parsing control is outside the unification process, and 
also an extension to a simple form of disjunction. In 
contrast to the research projects that implement unifi- 
cation-based grammar formalisms on top of Prolog, 
this implementation has built a unification environ- 
ment on top of Lisp. The job of integrating the declar- 
ative and functional paradigms is made considerably 
easier by relying on Lisp for lambda conversion and 
function evaluation. 

In the by now extensive literature on unification 
grammar frameworks, the current proposal figures as a 
somewhat conservative, and yet radically expressive, 
extension to PATR-II. It is conservative in that the 
logic of feature structures includes only minimal dis- 
junction and no negation or conditionalization. But 
the extension leads to unlimited expressive power by 
bringing in the full power of function evaluation. It 
appears to be an extension appropriate for the repre- 
sentational problems we encountered, but it also has 
led to unanticipated uses. For example, in writing the 
semantics for graphical grammars we have been able 
to use functions in feature structures as a way of build- 
ing forms that can simply be evaluated to invoke the 
appropriate operations for applications. Here again, 
having more control over when evaluation takes place 
external to the unification process has proved to be 
important. 

There are limitations, however, to the expressive 
power of F-PATR as it stands. It cannot directly sup- 
port some of the constraints envisioned in current 
HPSG literature, for example, because of F-PATR's 
restrictions on arguments to functional constraints. In 
HPSG, relations constrain not just atomic values but 

also general feature structures incuding lists and sets. 
Such an extension to F-PATR is not planned by the 
author but it may be of interest. From the logic gram- 
mar point of view, the work reported on here may be 
relevant as a source of ideas for efficiency. Con- 
straints expressed as relations in frameworks such as 
Zajac (1992) could instead be expressed in F-PATR as 
compiled functions, leading perhaps to improved 
runtime speeds. 

The MCC/Bellcore implementation of F-PATR 
includes both destructive and nondestructive versions 
of unification. The destructive version is, as expected, 
more straightforward to implement but more expen- 
sive computationally given that over copying and early 
copying are profligate (see Wroblewski 1987). The 
algorithms for nondestructive unification have been 
influenced by Tomabechi (1991), but applicative 
expressions and residuations change the landscape sig- 
nificantly. There tends to be extensive circularity in 
the data structures: residuated argument nodes point to 
predicates that in turn point back to their arguments; 
residuations in applicative-valued nodes point to unifi- 
cation forms that in turn point back to the applicative 
nodes. There is a need for future work to address issues 
of space and time efficiency for extensions represented 
by F-PATR just as there has been such a need for other 
PATR-II extensions. 

A line of research that the author is pursuing cur- 
rently (Wittenburg 1992b) is to design a more spe- 
cialized grammar formalism that finesses some of the 
complexity of residuation and unification through a 
version of "pseudo-unification" (Tomita 1990). In 
contrast to residuation, which manages function eval- 
uation at runtime, the idea is to manage the order of 
evaluation for functional constraints at compile time. 
In grammar formalisms and parsers under investiga- 
tion, it is possible for a compiler to order constraints 
within rule data structures such that evaluation readi- 
ness is a deterministic matter, circumventing the need 
for runtime checks and extra data structures required 
for delaying evaluation dynamically. 
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APPENDIX: Unification Examples 
Example I :appl with :atom 

[ obj: [ length: 25]] 
{.J [ obj: [ length: (+ 1[] 2[])] 

obj2: [length: <2>] 
objl: [length: <1>]] 

= [ obj: [ length: 1(+ 2[] 3[])] 
obj2: [ length: <3>] 
objl: [ length: <2>]] 

(Unify <1> 25) 
U [ objl: [ length: 20]] 
= [ obj: [ length: 1(+ 20 2[])] 

obj2: [ length: <2>] 
objl: [ length: 20]] 

(Unify <1> 25) 
U [ obj2: [ length: 5]] 
= [ obj: [ length: 1(+ 20 5)] 

obj2: [ length: 5] 
objl: [ length: 20]] 

(Unify <1> 25) 

Example 2 :res-var with :atom 
[ obj: [ length: 1[]] 
objl: [length: 2[]]] 

(EQ <1> <2>) 
[.J [ obj: [ length: 55]] 
= [ obj: [ length: 55] 

objl: [length: 1[]]] 
(EQ 55 <1>) 

U [ objl: [ length: 55]] 
= [ obj: [ length: 55] 

objl: [ length: 55]] 

Example 3 :res-var with :disjunct 
[ obj: [ length: 1[]] 
objl: [length: 2[]]] 

(EQ <1> <2>) 
U [ obj: [ length: {55 36]]] 
= [obj: [length: I{5536]] 

objl: [length: 2[]]] 
(EQ <1> <2>) 

U [ objl: [ length: 55]] 
= [ obj: [ length: 55] 

objl: [ length: 55]] 

Example 4 :appl with :res-var 
[ obj 1: [ length: (+ 5 1[])] 

obj2: [ length: <1>]] 
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U [ obj 1: [ length: 1 []] 
obj2: [ length: []]] 
(>= <1> 54) 

= [ objl: [ length: 1(+ 5 2[])] 
obj2: [ length: <2>]] 

(>= <1> 54) 
13 [ obj2: [ length: 50]] 
= [ objl: [ length: 1(+ 5 50)] 

obj2: [ length: 50]] 
(>= <1> 54) 

U [ objl: [ length: []]] 
= [ objl: [ length: 55] 

obj2: [ length: 50]] 

Example 5 :res-var with :res-var 
[ obj: [ length: 1[]]] 

(<= <1> 60) 
13 [obj: [length: 1[]]] 

(>= <1> 54) 
= [ obj: [ length: 1[]]] 

(>= <1> 54) 
(<= <1> 60) 

O [ obj: [ length: 55]] 
= [ obj: [ length: 55]] 

Example 6 :res-disjunct with :atom and :disjunct 
[ obj: [ length: 1 {55 43 44}] 
objl: [length: 2[]]] 

(EQ <1> <2>) 
U [obj: [length: {43 55}]] 
= [obj: [length: 1{5543}] 

objl: [length: 2[]]] 
(EQ <1> <2>) 

U [ obj: [ length: 55]] 
= [ obj: [ length: 55] 

objl: [length: 1[]]] 
(EQ 55 <1>) 

U [ obj 1: [ length: 55]] 
= [ obj: [ length: 55] 

objl: [ length: 55]] 

Example 7 :appl with :res-disjunct 
[ objl: [ length: (+ 5 1[])] 

obj2: [length: <1>]] 
U [objl :  [length: 1{554342}] 

obj2: [ length: 2[]]] 
(> <1> <2>) 

= [ objl: [ length: 1(+ 5 2[])] 
obj2: [ length: <2>]] 

(Unify <1> {55 43 42}) 
(> <1> <2>) 

13 [ obj2: [ length: 50]] 
= [ objl: [ length: 1(+ 5 50)] 

obj2: [ length: 50]] 

(> <1> 50) 
(Unify <1> {55 43 42}) 

U [ objl: [ length: []]] 
--- [ obj 1: [ length: 55] 

obj2: [ length: 50]] 

Example 8 :res-var with :res-disjunct 
[obj: [length: 1{554342}] 

objl: [length: 2[]]] 
(EQ <1> <2>) 

U [obj: [length: 1[]] 
objl: [length: 2[]]] 

((LAMBDA (X Y) (EQ (+ X Y) 110)) <1> <2>) 
= [obj: [length: 1{554342}] 

objl: [length: 2[]]] 
((LAMBDA (X Y) (EQ (+ X Y) 110)) <1> <2>) 
(EQ <1> <2>) 

U [ objl: [ length: 55]] 
= [ obj: [ length: 55] 

objl: [ length: 55]] 

Example 9 :appl with :appl 
[ obj: [ length: (+ 5 1[])] 

obj2: [ length: <1>]] 
U [ obj: [ length: 

((LAMBDA (X) (- (+ X 10) 5)) 1[])] 
obj2: [ length: <1>]] 

= [ obj: [ length: 1(+ 5 2[])] 
obj2: [ length: <2>]] 

(Unify <1> 
((LAMBDA (X) (- (+ X 10) 5)) <2>)) 

U [ obj2: [ length: 55]] 
= [ obj: [ length: 1(+ 5 55)] 

obj2: [ length: 55]] 
(Unify <1> ((LAMBDA (X) (- (+ X 10) 5)) 55)) 

U [ obj: [ length: []]] 
= [ obj: [ length: 60] 

obj2: [ length: 55]] 

Example 10 :res-disjunct with res-disjunct 
[objl :  [length: 1{554342}] 
obj2: [length: 2[]]] 

(EQ <1> <2>) 
U [objl:  [length: 1{45 5543}] 

obj2: [length: 2[]]] 
((LAMBDA (X Y) (EQ (+ X Y) 110)) <1> <2>) 

= [objl:  [length: 1{5543}] 
obj2: [ length: 2[]]] 
(EQ <1> <2>) 

((LAMBDA (X Y) (EQ (+ X Y) 110)) <1> <2>) 
U [ obj2: [ length: 55]] 
= [ objl: [ length: 55] 

obj2: [ length: 55]] 
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