
A C O M P L E T E A N D R E C U R S I V E F E A T U R E T H E O R Y *

R o l f B a c k o f e n a n d G e r t S m o l k a
G e r m a n R e s e a r c h C e n t e r for Ar t i f i c ia l I n t e l l i g e n c e (D F K I)

W-660 0 Saa rb r / i cken , G e r m a n y
{ b a c k o f e n , s m o l k a } @ d f k i . u n i - s b . d e

A b s t r a c t

Various feature descriptions are being employed in
constrained-based grammar formalisms. The com-
mon notational primitive of these descriptions are
functional attributes called features. The descrip-
tions considered in this paper are the possibly quan-
tified first-order formulae obtained from a signature
of features and sorts. We establish a complete first-
order theory FT by means of three axiom schemes
and construct three elementarily equivalent models.

One of the models consists of so-called feature
graphs, a data structure common in computational
linguistics. The other two models consist of so-called
feature trees, a record-like data structure generaliz-
ing the trees corresponding to first-order terms.

Our completeness proof exhibits a terminating
simplification system deciding validity and satisfia-
bility of possibly quantified feature descriptions.

1 I n t r o d u c t i o n

Feature descriptions provide for the typically partial
description of abstract objects by means of functional
attributes called features. They originated in the late
seventies with so-called unification grammars [14], a
by now popular family of declarative grammar for-
malisms for the description and processing of natu-
ral language. More recently, the use of feature de-
scriptions in logic programming has been advocated
and studied [2, 3, 4, 17, 16]. Essentially, feature de-
scriptions provide a logical version of records, a data
structure found in many programming languages.

Feature descriptions have been proposed in vari-
ous forms with various formalizations [1, 13, 9, 15,
5, 10]. We will follow the logical approach pioneered
by [15], which accommodates feature descriptions
as standard first-order formulae interpreted in first-
order structures. In this approach, a semantics for

*We appreciate discussions with Joachim Niehren and
Ralf Treinen who read a draft version of this paper. The
research reported in this paper has been supported by
the Bundesminister ffir Forschung und Technologie under
contracts ITW 90002 0 (DISCO) and ITW 9105 (Hydra).
For space limitations proofs are omitted; they can be
found in the complete paper [6].

feature descriptions can be given by means of a fea-
ture theory (i.e., a set of closed feature descriptions
having at least one model). There are two comple-
mentary ways of specifying a feature theory: either
by explicitly constructing a standard model and tak-
ing all sentences valid in it, or by stating axioms
and proving their consistency. Both possibilities are
exemplified in [15]: the feature graph algebra ~" is
given as a standard model, and the class of feature
algebras is obtained by means of an axiomatization.

Both approaches to fixing a feature theory have
their advantages. The construction of a standard
model provides for a clear intuition and yields a com-
plete feature theory (i.e., if ¢ is a closed feature de-
scription, then either ¢ or -~¢ is valid). The presenta-
tion of a recursively enumerable axiomatization has
the advantage that we inherit from predicate logic a
sound and complete deduction system for valid fea-
ture descriptions.

The ideal case then is to specify a feature theory
by both a standard model and a corresponding re-
cursively enumerable axiomatization. The existence
of such a double characterization, however, is by no
means obvious since it implies that the feature theory
is decidable. In fact, so far no decidable, consistent
and complete feature theory has been known.

In this paper we will establish a complete and de-
cidable feature theory FT by means of three axiom
schemes. We will also construct three models of FT,
two consisting of so-called feature trees, and one con-
sisting of so-called feature graphs. Since FT is com-
plete, all three models are elementarily equivalent
(i.e., satisfy exactly the same first-order formulae).
While the feature graph model captures intuitions
common in linguistically motivated investigations,
the feature tree model provides the connection to
the tree constraint systems [8, 11, 12] employed in
logic programming.

Our proof of FT's completeness will exhibit a sim-
plification algorithm that computes for every feature
description an equivalent solved form from which the
solutions of the description can be read of easily. For
a closed feature description the solved form is either
T (which means that the description is valid) or _L
(which means that the description is invalid). For

193

a feature description with free variables the solved
form is .L if and only if the description is unsatisfi-
able.

1.1 F e a t u r e D e s c r i p t i o n s

Feature descriptions are first-order formulae built
over an alphabet of binary predicate symbols, called
features, and an alphabet of unary predicate sym-
bols, called sorts. There are no function symbols.
In admissible interpretations features must be func-
tional relations, and distinct sorts must be disjoint
sets. This is stated by the first and second axiom
scheme of FT'.

(Axl) VxVyVz(f(x, y) A I(x, z) --~ y - z) (for
every feature jr)

(Ax2) W(A(=) ^ B(.) -~ ±) (for every two dis-
tinct sorts A and B).

A typical feature description written in matrix no-
tation is

X :

woman

father
3y

husband

engineer]
: age : y

: [painter
a g e : y]

It may be read as saying that x is a woman whose
father is an engineer, whose husband is a painter,
and whose father and husband are both of the same
age. Written in plain first-order syntax we obtain
the less suggestive formula

3y, F, H (woman(X) A
father(x, F) A engineer(V) A age(V, y) A
husband(x, H) A painter(H) A age(H, y)).

The axiom schemes (Axl) and (Ax2) still ad-
mit trivial models where all features and sorts are
empty. The third and final axiom scheme of FT
states that certain "consistent" descriptions have so-
lutions. Three Examples of instances of FT's third
axiom scheme are

3x, y, z (f(x, y) A A(y) A g(x, z) A B(z))
Vu, z 3x, y (f (x , y) A g(y, u) A h(y, z) A YfT)
Vz 3x, y (f(x, y) A g(y, x) A h(y, z) A yfT),

where yfT abbreviates -~3z(f(y, z)). Note that the
third description

f(=, y) ^ g(y, =) ^ h(y, z) A f~T

is "cyclic" with respect to the variables x and y.

1.2 F e a t u r e T ree s

A feature tree (examples are shown in Figure 1) is
a tree whose edges are labeled with features, and
whose nodes are labeled with sorts. As one would
expect, the labeling with features must be determin-
istic, that is, the direct subtrees of a feature tree
must be uniquely identified by the features of the

194

point

x v a l ~ : v a l

point

x v a l ~ l o r

2 3 red

circle

x v a l ~ y v a l
n"s)

Figure 1: Examples of Feature Trees.

edges leading to them. Feature trees can be seen as a
mathematical model of records in programming lan-
guages. Feature trees without subtrees model atomic
values (e.g., numbers). Feature trees may be finite or
infinite, where infinite feature trees provide for the
convenient representation of cyclic data structures.
The last example in Figure 1 gives a finite graph
representation of an infinite feature tree, which may
arise as the representation of the recursive type equa-
tion nat = 0 + s(nat).

Feature descriptions are interpreted over feature
trees as one would expect:

• Every sort symbol A is taken as a unary predi-
cate, where a sort constraint A(x) holds if and
only if the root of the tree x is labeled with A.

• Every feature symbol f is taken as a binary
predicate, where a feature constraint f (x , y)
holds if and only if the tree x has the direct
subtree y at feature f .

The theory of the corresponding first-order structure
(i.e., the set of all closed formulae valid in this struc-
ture) is called FT. We will show that FT is in fact ex-
actly the theory specified by the three axiom schemes
outlined above, provided the alphabets of sorts and
features are both taken to be infinite. Hence FT is
complete (since it is the theory of the feature tree
structure) and decidable (since it is complete and
specified by a recursive set of axioms).

Another, elementarily equivalent, model of FT is
the substructure of the feature tree structure ob-
tained by admitting only rational feature trees (i.e.,
finitely branching trees having only finitely many
subtrees). Yet another model of FT can be obtained
from so-called feature graphs, which are finite, di-
rected, possibly cyclic graphs labelled with sorts and
features similar to feature trees. In contrast to fea-
ture trees, nodes of feature graphs may or may not
be labelled with sorts. Feature graphs correspond to
the so-called feature structures commonly found in
linguistically motivated investigations [14, 7].

1.3 Organizat ion of the P a p e r

Section 2 recalls the necessary notions and nota-
tions from Predicate Logic. Section 3 defines the
theory FT by means of three axiom schemes. Sec-
tion 4 establishes the overall structure of the com-
pleteness proof by means of a lemma. Section 5
studies quantifier-free conjunctive formulae, gives a
solved form, and introduces path constraints. Sec-
tion 6 defines feature trees and graphs and estab-
lishes the respective models of FT. Section 7 studies
the properties of so-called prime formulae, which are
the basic building stones of the solved form for gen-
eral feature constraints. Section 8 presents the quan-
tifier elimination lemmas and completes the com-
pleteness proof.

2 P r e l i m i n a r i e s

Throughout this paper we assume a signature SOR~
FEA consisting of an infinite set SOR of unary pred-
icate symbols called sor ts and an infinite set FEA
of binary predicate symbols called fea tures . For
the completeness of our axiomatization it is essen-
tial that there are both infinitely many sorts and
infinitely many features.The letters A, B, C will al-
ways denote sorts, and the letters f , g, h will always
denote features.

A p a t h is a word (i.e., a finite, possibly empty
sequence) over the set of all features. The symbol c
denotes the empty path, which satisfies cp = p = pc
for every path p. A path p is called a pref ix of a
path q, if there exists a path p' such that pp' = q.

We also assume an infinite alphabet of variables
and adopt the convention that x, y, z always de-
note variables, and X, Y always denote finite, pos-
sibly empty sets of variables. Under our signa-
ture SOR ~ FEA, every term is a variable, and an
atomic formula is either a f ea tu re cons t r a in t x fy
(f (x ,y) in standard notation), a sor t cons t r a in t
Ax (A(x) in standard notation), an equation x - y,
_L ("false"), or T ("true"). Compound formulae are
obtained as usual with the connectives A, V, --+, ~-+,
-~ and the quantifiers 3 and V. We use 3¢ [V¢] to de-
note the existential [universal] closure of a formula
¢. Moreover, 1)(¢) is taken to denote the set of all
variables that occur free in a formula ¢. The letters
¢ and ¢ will always denote formulae.

We assume that the conjunction of formulae is an
associative and commutative operation that has T
as neutral element. This means that we identify
e A (¢ A 0) w i t h O A (¢ A ¢) , a n d e A T w i t h ¢ (b u t
not, for example, x fy A x f y with xfy). A conjunc-
tion of atomic formulae can thus be seen as the finite
multiset of these formulae, where conjunction is mul-
tiset union, and T (the "empty conjunction") is the
empty multiset. We will write ¢ C ¢ (or ¢ E ¢, if
¢ is an atomic formula) if there exists a formula ¢~
such that ¢ A ¢1 = ¢.

Moreover, we identify 3x3y¢ with 3y3x¢. If X =
{x l , . . . , xn} , we write 3X¢ for 3xl . . .3xn¢. I f X =
0, then 3X¢ stands for ¢.

Structures and satisfaction of formulae are defined
as usual. A valuation into a structure `4 is a total
function from the set of all variables into the universe
1`4] of`4. A valuation ~' into,4 is called an x - u p d a t e
[X-update] of a valuation a into ,4 if (~' and a a~ree
everywhere but possibly on x [X]. We use ¢ ~ to
denote the set of all valuations c~ such that ,4, c~ ~ ¢.
We write ¢ ~ ¢ ("¢ entails ¢") if CA C ¢ A for all
structures ,4, and ¢ ~ ¢ ("¢ is equivalent to ¢") if
¢.4 = cA for all structures ,4.

A t h e o r y is a set of closed formulae. A m o d e l of
a theory is a structure that satisfies every formulae
of the theory. A formula ¢ is a consequence of
a t h e o r y T (T ~ ¢) if V¢ is valid in every model
of T. A formula ¢ enta i l s a formula ¢ in a theory
T (¢ ~T ¢) if ¢'4 C_ ¢.4 for every model ,4 of T.
Two formulae ¢, ¢ are equ iva len t in a theory T
(¢ ~T ¢) if cA = ¢.4 for every model ,4 of T.

A theory T is c o m p l e t e if for every closed formula
either ¢ or -,¢ is a consequence of T. A theory is

dec idab le if the set of its consequences is decidable.
Since the consequences of a recursively enumerable
theory are recursively enumerable (completeness of
first-order deduction), a complete theory is decidable
if and only if it is recursively enumerable.

Two first-order structures ,4, B are e l emen ta r i ly
equiva len t if, for every first-order formula ¢, ¢ is
valid in ,4 if and only if ¢ is valid in B. Note that all
models of a complete theory are elementarily equiv-
alent.

3 T h e A x i o m s

The first axiom scheme says that features are func-
tional:

(Ax1) VxVyVz(xfy A z.fz ---* y -- z) (for every
feature f).

The second scheme says that sorts are mutually dis-
joint:

(Ax2) Vx(Ax A Bx --* 1) (for every two distinct
sorts A and B).

The third and final axiom scheme will say that cer-
tain "consistent feature descriptions" are satisfiable.
For its formulation we need the important notion of
a solved clause.

An exc lus ion c o n s t r a i n t is an additional atomic
formula of the form z f I (" f undefined on x") taken
to be equivalent to -~3y (xfy) (for some variable y #
z).

A solved clause is a possibly empty conjunction
¢ of atomic formulae of the form xfy, Ax and xf~
such that the following conditions are satisfied:

1. no atomic formula occurs twice in ¢

2. i f A x E e a n d B x E ¢ , t h e n A = B

3. i f x f y E e a n d x f z E ¢ , t h e n y = z

4. if x fy E ¢, then xfT q~ ¢.
Figure 2 gives a graph representation of the solved
clause

x fu A xgv A zh~ A

195

f - ~ x hT

= ~ B gT
Figure 2: A graph representation of a solved clause.

Cu A uhx A ugy A u f z A

Av ^ vgz ^ vhw ^ vfT A

Bw A wIT A wg T .

As in the example, a solved clause can always be seen
as the graph whose nodes are the variables appearing
in the clause and whose arcs are given by the feature
constraints x fy . The constraints Ax, xfT appear as
labels of the node x.

A variable x is c o n s t r a i n e d in a solved clause ¢
if ¢ contains a constraint of the form Ax, x f y or
xfT. We use CV(¢) to denote the set of all variables
that are constrained in ¢. The variables in V(¢) -
CV(¢) are called the p a r a m e t e r s of a solved clause
¢. In the graph representation of a solved clause the
parameters appear as leaves tha t are not not labeled
with a sort or a feature exclusion. The parameters
of the solved clause in Figure 2 are y and z.

We can now state the third axiom scheme. It says
tha t the constrained variables of a solved clause have
solutions for all values of the parameters:

(Ax3) ~ /qx¢ (for every solved clause ¢ and X =
cv(¢)).

The t h e o r y F T is the set of all sentences tha t can
be obtained as instances of the axiom schemes (Axl) ,
(Ax2) and (Ax3). The t h e o r y FTo is the set of all
sentences tha t can be obtained as instances of the
first two axiom schemes.

As the main result of this paper we will show that
F T is a complete and decidable theory.

By using an adapt ion of the proof of Theorem 8.3
in [15] one can show that FTo is undecidable.

4 O u t l i n e o f t h e C o m p l e t e n e s s P r o o f

The completeness of F T will be shown by exhibit-
ing a simplification algorithm for FT. The following
lemma gives the overall structure of the algorithm,
which is the same as in Maher 's [12] completeness
proof for the theory of constructor trees.

L e m m a 4.1 Suppose there exists a set of so-called
prime formulae such that:

1. every sort constraint Ax, every feature con-
straint x fy , and every equation x - y such that
= ~ y is a prime formula

2. T is a prime formula, and there is no other
closed prime formula

3. for every two prime formulae fl and fl' one can
compute a formula 6 that is either prime or .1_

and satisfies

f l A i ' M F T 6 and)2(6)C_V(f lAff)

4. for every prime formula fl and every variable x
one can compute a prime formula i ' such that

3 x i MFT fl' and Y (t ') C_ Y(3xfl)

5. if i , ill , ' ' ' ,fin are prime formulae, then
f t

^ 3= (t ^
i = 1 i----1

6. for every two prime formulae fl, fl I and every
variable x one can compute a Boolean combina-
tion 6 of prime formulae such that

3~(fl^-,¢) I~FT 6 and Vff) C VO=(fl̂ -~l')).
Then one can compute for every formula ¢ a Boolean
combination ~ of prime formulae such that ¢ MET ~
and V(O C_ V(¢).

P r o o f . Suppose a set of prime formulae as required
exists. Let ¢ be a formula. We show by induction on
the structure of ¢ how to compute a Boolean combi-
nation df of prime formulae such that ¢ MET 6 and
V(O C_ V(¢).

If ¢ is an atomic formula Ax, x f y or x - y, then
¢ is either a prime formula, or ¢ is a trivial equation
z - z, in which case it is equivalent to the prime
formula T.

If ¢ is -~¢, ¢ ^ ¢ ' or ¢ V ¢ ' , then the claim follows
immediately with the induction hypothesis.

It remains to show the claim for ¢ = 3=¢. By the
induction hypothesis we know that we can compute a
Boolean combination df of prime formulae such that
6 MFT ~) and V(6) C_ V(¢). Now ~ can be trans-
formed to a disjunctive normal form where prime
formulae play the role of atomic formulae; tha t is, 6
is equivalent to 6'1 V . . . V ¢ , , where every "clause"
qi is a conjunction of prime and negated prime for-
mulae. Hence

3=¢ 14 3=(o-~ v . . . v ,..) I=13=o-~ v . . . v 3=o-.,
where all three formulae have exactly the same free
variables. It remains to show that one can compute
for every clause ~r a Boolean combinat ion 6 of prime
formulae such that =1=o- MET 6 and Y(6) C_ V(3xa).
We distinguish the following cases.
(i) a = fl for some basic formula i . Then the claim
follows by assumption (4).
Oi) o" i^" ~ , = Ai=I ti n > 0. Then the claim follows
with assumptions (5) and (6).

n T n Oil) tr = Ai=I -~ii, n > 0. Then a MET AA/=I -~fli
and the claim follows with case (it) since T is a prime
formula by assumption (2).
(iv) ~ = i l l ^ . . . ^ t k ^- , i l l ^ . . . h t ' , k > 1, n ___ 0.
Then we know by assumption (3) that either fll A. . .A
flk MFT .L or fll A . . . A flk MET fl for some prime
formula ft. In the former case we choose 8 = - ,T,
and in the latter case the claim follows with case (i)
or (ii). []

196

Note that, provided a set of prime formulae with
the required properties exists, the preceding lemma
yields the completeness of F T since every closed for-
mula can be simplified to T or -~T (since T is the
only closed prime formula).

In the following we will establish a set of prime
formula as required.

5 S o l v e d F o r m u l a e

In this section we introduce a solved form for con-
junctions of atomic formulae.

A b a s i c f o r m u l a is either 3- or a possibly empty
conjunction of atomic formulae of the form Ax, x fy ,
and x - y. Note tha t T is a basic formula since T is
the empty conjunction.

Every basic formula ¢ ~ 3- has a unique decom-
position ¢ = CN ACG into a possibly empty conjunc-
tion CN of equations "x -- y" and a possibly empty
conjunction CG of sort constraints "Ax" and feature
constraints "xfy" . We call CN the n o r m a l i z e r and
and ¢G the g r a p h of ¢.

We say that a basic formula ¢ b i n d s x t o y if
x - y E ¢ and x occurs only once in ¢. Here it
is impor tant to note tha t we consider equations as
directed, that is, assume that x - y is different from
y ~ x i f x ~ y. We say that ¢ e l i m i n a t e s x i f ¢
binds x to some variable y.

A so lved f o r m u l a is a basic formula 7 ~ 3- such
that the following conditions are satisfied:

1. an equation x - y appears in 7 if and only if 7
eliminates x

2. the graph of 7 is a solved clause.
Note tha t a solved clause not containing exclusion
constraints is a solved formula, and that a solved
formula not containing equations is a solved clause.
The letter 7 will always denote a solved formula.

We will see that every basic formula is equivalent
in FT0 to either 3- or a solved formula.

Figure 3 shows the so-called b a s i c s i m p l i f i c a t i o n
ru les . Wi th ¢[x ~-- y] we denote the formula that
is obtained from ¢ by replacing every occurrence of
x with y. We say that a formula ¢ s impl i f ies t o a
formula ¢ by a simplification rule p if ~ is an instance
of p. We say that a basic formula ¢ s impl i f ies t o a
basic formula ¢ if either ¢ = ¢ or ¢ simplifies to ¢
in finitely many steps each licensed by one of basic
simplification rules in Figure 3.

Note that the basic simplification rules (1) and (2)
correspond to the first and second axiom scheme, re-
spectively. Thus they are equivalence transformation
with respect to FTo. The remaining three simplifica-
tion rules are equivalence transformations in general.

P r o p o s i t i o n 5.1 The basic simplification rules are
terminating and perform equivalence transforma-
tions with respect to FT0. Moreover, a basic formula
¢ ~ 3_ is solved if and only if no basic simplification
rule applies to it.

P r o p o s i t i o n 5.2 Let ¢ be a formula built from
atomic formulae with conjunction. Then one can

1. x f y A x f z A ¢
x f z A y - - z A ¢

A x A B x A ¢
2. 3- A # B

Ax A Ax A ¢
3.

A x A ¢

x - - y A ¢
4. z E 13(¢) and x ~ y ~ - y^¢[~,-- y]

z - - x A ¢
5. ¢

Figure 3: The basic simplification rules.

compute a formula 6 that is either solved or 3_ such
that ¢ ~ F T o 6 and r(6) C_ l ;(¢).

In the quantifier elimination proofs to come it
will be convenient to use so-called path constraints,
which provide a flexible syntax for atomic formulae
closed under conjunction and existential quantifica-
tion. We start by defining the denotation of a path.

The interpretations f i t , g~ of two features f , g
in a structure .4 are binary relations on the universe
1"41 of .4; hence their composition fA o g.a is again a
binary relation on 1-41 satisfying

a(f A o gA)b ¢=:¢, 3c ~ 1"41: a f Ac A cfAb

for all a, b E 1"41. Consequently we define the d e n o -
t a t i o n p~t o f a p a t h p = f l "'" .In in a structure .4
as the composition

(fl...fn) A :---- f:o...ofn A,
where the empty path ~ is taken to denote the iden-
tity relation. I f .4 is a model of the theory FTo, then
every paths denotes a unary partial function on the
universe of .4. Given an element a E [.41, p~t is thus
either undefined on a or leads from a to exactly one
b ~ 1.41.

Let p, q be paths, x, y be variables, and A be a
sort. Then p a t h c o n s t r a i n t s are defined as follows:

.4, a ~ zpy :¢:~ o~(x) pA a(y)

.4, a ~ xp.~yq :¢:=~ 3a E 1.41: °t(x)pa a A a (y) q A a

.4, a ~ A z p :~=~3ael.41: a(z)p '4a^aeA "~.
Note that path constraints xpy generalize feature
constraints x fy .

A p r o p e r p a t h c o n s t r a i n t is a path constraint
of the form "Axp" or "xp ~. yq".

Every path constraint can be expressed with the
already existing formulae, as can be seen from the
following equivalences:

x~y ~ x - y

x fpy ~ 3 z (x f z A zpy) (z ~£ x,y)
xpl yq N 3z(xpz ^ uqz) (z # ~, ~)

mxp ~ 3y(xpy A my) (y • x).

197

The c l o s u r e [3`] o f a s o l v e d f o r m u l a 3 ̀ is the
closure of the atomic formulae occurring in 7 with
respect to the following deduction rules:

x - y xpy y f z xpz yqz Ay xpy

xEx xey z p f z xp I Yq Axp

Recall tha t we assume that equations x - y are di-
rected, that is, are ordered pairs of variables. Hence,
xey E [71 and yex ~ [71 if x - y E 7.

The c l o s u r e o f a s o l v e d c l ause 6 is defined anal-
ogously.

P r o p o s i t i o n 5.3 Let 7 be a solved formula. Then:

I. i f ~v E [7], then 7 ~ ~r

2. x e y E [7] iff x = y o r x - - y E 7
3. x f y E [7] iff z f y E 3 ̀ or 3z: z "-- z E

7 and z f y E 7
4. xpfy e [7] iff 3z: xpz e [7] and z f y e 3`
5. if p 7 £ e and xpy, xpz E [3`], then y = z
5. it is decidable whether a path constraint is in [3'].

6 F e a t u r e T r e e s a n d F e a t u r e G r a p h s

In this section we establish three models of F T con-
sisting of either feature trees or feature graphs. Since
we will show that F T is a complete theory, all three
models are in fact elementarily equivalent.

A t r e e d o m a i n is a nonempty set D _C FEA* of
paths tha t is p r e f i x - c l o s e d , tha t is, if pq E D, then
p E D. Note that every tree domain contains the
empty path.

A f e a t u r e t r e e is a partial function a: FEA* --+
SOR whose domain is a tree domain. The paths in
the domain of a feature tree represent the nodes of
the tree; the empty path represents its root. We
use D~ to denote the domain of a feature tree ~. A
feature tree is called f in i t e [inf in i te I if its domain
is finite [infinite]. The letters a and 7. will always
denote feature trees.

The s u b t r e e pa of a feature tree a at a path
p E Da is the feature tree defined by (in relational
notation)

pa := {(q,A) l(pq, A) E a } .

A feature tree a is called a s u b t r e e of a feature tree
7- if ~r is a subtree of 7- at some path p E Dr , and a
d i r e c t s u b t r e e if p = f for some feature f .

A feature tree a is called r a t i o n a l if (1) cr has only
finitely many subtrees and (2) a is finitely branching
(i.e., for every p E D~, the set {p f E D~ [f E FEA}
is finite). Note that for every rational feature tree
a there exist finitely many features f l , . . . , I n such
that Do C_ { f l , . . - , f n } * .

The f e a t u r e t r e e s t r u c t u r e ' T is the S O R ~ F E A -
structure defined as follows:

* the universe of 7- is the set of all feature trees

• (r E A 7- iff a(c) = A (i.e., a ' s root is labeled
with A)

• (~,7-) EfT" iff f E Da and 7- = f a (i.e., r is the
subtree of a at f) .

The r a t i o n a l f e a t u r e t r e e s t r u c t u r e 7~ is the sub-
structure of T consisting only of the rational feature
trees.

T h e o r e m 6.1 The feature tree structures T and 7~
are models of the theory FT.

A f e a t u r e p r e g r a p h is a pair (x, 7) consisting of
a variable x (called the r o o t) and a solved clause
7 not containing exclusion constraints such that, for
every variable y occurring in 7, there exists a path
p satisfying xpy E [7]- If one deletes the exclusion
constraints in Figure 2, one obtains the graphical
representation of a feature pregraph whose root is x.

A feature pregraph (x, 7) is called a s u b p r e g r a p h
of a feature pregraph (y,~) if 7 _C 6 and x -- y or
x E]2(~). Note that a feature pregraph has only
finitely many subpregraphs.

We say that two feature pregraphs are e q u i v a l e n t
if they are equal up to consistent variable renaming.
For instance, (x, x f y A ygx) and (u, u f x A xgu) are
equivalent feature pregraphs.

A f e a t u r e g r a p h is an element of the quotient
of the set of all feature pregraphs with respect to
equivalence as defined above. We use (x, 7) to denote
the feature graph obtained as the equivalence class
of the feature pregraph (x, 7).

In contrast to feature trees, not every node of a
feature graph must carry a sort.

The f e a t u r e g r a p h s t r u c t u r e ~ is the SOR
FEA-structure defined as follows:

• the universe of ~ is the set of all feature graphs

• (x ,7) E A ~ i f f A x E 7

• ((x, 7), a) E f6 iff there exists a maximal fea-
ture subpregraph (y, ~) of (x, 7) such that x f y E
7 and ~r -- (y, 6).

T h e o r e m 6.2 The feature graph structure ~ is a
model of the theory FT.

Let ~" be the structure whose domain consists of
all feature pregraphs and that is otherwise defined
analogous to G. Note tha t G is in fact the quotient
of jc with respect to equivalence of feature pregraphs.

P r o p o s i t i o n 6.3 The feature pregraph structure yr
is a model of FTo but not of FT.

7 P r i m e F o r m u l a e

We now define a class of prime formulae having the
properties required by Lemma 4.1. The prime for-
mulae will turn out to be solved forms for formulae
built from atomic formulae with conjunction and ex-
istential quantification.

A p r i m e f o r m u l a is a formula 3 X 7 such that

1. 7 is a solved formula

2. X has no variable in common with the normal-
izer of 3'

3. every x E X can be reached from a free variable,
that is, there exists a path constraint ypx E [7]
such that y ~t X.

198

The letter/3 will always denote a prime formula.
Note that T is the only closed prime formula, and

that 3X 7 is a prime formula if 3x3X 7 is a prime
formula. Moreover, every solved formula is a prime
formula, and every quantifier-free prime formula is a
solved formula.

The definition of prime formulae certainly fulfills
the requirements (1) and (2) of Lemma 4.1. The
fulfillment of the requirements (3) and (4) will be
shown in this section, and the fulfillment of the re-
quirements (5) and (6) will be shown in the next
section.

P r o p o s i t i o n 7.1 Let 3X 7 be a prime formula, .A
be a model of FT, and ,4, a ~ 3X7. Then there
exists one and only one X-update (~' of ~ such that
A,a' ~7.

The next proposition establishes that prime formu-
lae are closed under existential quantification (prop-
erty (4) of Lemma 4.1).

P r o p o s i t i o n 7.2 For every prime formula /3 and
every variable x one can compute a prime formula
/3' such thai 3x/3 ~:~FT /3' and Y(/3') C Y(3x/3).

P r o p o s i t i o n 7.3 I f /3 is a prime formula, then
FT p i/3.

The next proposition establishes that prime formu-
lae are closed under consistent conjunction (property
(3) of Lemma 4.1).

P r o p o s i t i o n 7.4 For every two prime formulae /3
and/3' one can compute a formula 8 that is either
prime or _L and satisfies

/3 A/3' ~FT 8 and 1)(6) C 1)(/3 A/3').

P r o p o s i t i o n 7.5 Let ¢ be a formula that is built
from atomic formulae with conjunction and existen-
tial quantification. Then one can compute a formula
6 that is either prime or I such that ¢ ~FT 8 and
Vff) _C V(¢).

The c losu re o f a p r i m e f o r m u l a 3X7 is defined
as follows:

[3 x v] := { ~ e [7] I v (~) n x = ~ or ~ = xc~
or ~ = =¢ 1=~ }-

T h e p r o p e r c losure o f a p r i m e f o r m u l a / 3 is de-
fined as follows:

[/3]* := {Tr • [/3] I r is a proper path constraint}.

P r o p o s i t i o n 7.6 If /3 is a prime formula and r •
[/3], then/3 p ~ (and hence --,,~ p --,/3).

We now know that the closure [ill, taken as an
infinite conjunction, is entailed by/3. We are going to
show that, conversely,/3 is entailed by certain finite
subsets of its closure [/3].

An access f u n c t i o n for a prime formula/3 = 3X 7
is a function that maps every x • 1)(7) - X to the
rooted path x¢, and every x E X to a rooted path
x'p such that x'px • [7] and x' ~ X. Note that
every prime formula has at least one access function,

and that the access function of a prime formula is
injective on 1)(3') (follows from Proposition 5.3 (5)).

The p r o j e c t i o n of a prime formula/3 = 3X7 with
respect to an access function @ for/3 is the conjunc-
tion of the following proper path constraints:

{Ax 'p I Ax E 7, x'p = @x} U

{='pf~y'q [x f y E 7, x 'p = @x, y'q = @y}.

Obviously, one can compute for every prime formula
an access function and hence a projection. Further-
more, if)~ is a projection of a prime formula/3, then
)~ taken as a set is a finite subset of the closure [/3].

P r o p o s i t i o n 7.7 Let)~ be a projection of a prime
formula/3. Then)t C [/3]* and)t ~=~FT /3"

As a consequence of this proposition one can
compute for every prime formula an equivalent
quantifier-free conjunction of proper path con-
straints.

We close this section with a few propositions stat-
ing interesting properties of closures of prime formu-
lae. These propositions will not be used in the proofs
to come.

P r o p o s i t i o n 7.8 I f f l is a prime formula, then
/3 ~ F T [/3]*.
P r o p o s i t i o n 7.9 If/3 is a prime formula, and r is
a proper path constraint, then

~e[Z]* ¢=~ / 3 P r r ~ -

P r o p o s i t i o n 7.10 Let /3, /3' be prime formulae.
Then/3 ~ F T fl' ¢=~ ~]* _D [/3']*.

P r o p o s i t i o n 7.11 Let/3,/3' be prime formulae, and
let)d be a projection of/3'. Then]3 ~FT /3t
[#]* _~ k ' .

Proposition 7.11 gives us a decision procedure for
"/3 ~FT /3" since membership in [/3]* is decidable,
k' is finite, and ,V can be computed from/3'.

8 Q u a n t i f i e r E l i m i n a t i o n

In this section we show that our prime formulae sat-
isfy the requirements (5) and (6) of Lemma 4.1 and
thus obtain the completeness of FT. We start with
the definition of the central notion of a joker.

A r o o t e d p a t h xp consists of a variable x and a
path p. A rooted path xp is called u n f r e e in a prime
formula 13 if

3 prefix p' of p 3 yq: x 5£ y and xp' I Yq E [/3].

A rooted path is called f r ee in a prime formula/3 if
it is not unfree in/3.

P r o p o s i t i o n 8.1 Let/3 = 3X 7 be a prime formula.
Then:

1. i f xp is free in/3, then x does not occur in the
normalizer of 7

2. if x ~ 1)(/3), then xp is free in/3 for every path
p.

199

A proper path constraint 7r is called an z - j o k e r for
a prime formula/3 if r ~ [/3] and one of the following
conditions is satisfied:

1. 7r = Axp and xp is free in fl

2. 7r = xp ~ yq and xp is free in/3

3. 7r = yp ~ xq and xq is free in/3.

P r o p o s i t i o n 8.2 It is decidable whether a rooted
path is free in a prime formula, and whether a path
constraint is an x-joker for a prime formula.

L e m m a 8.3 Let/3 be a prime formula, x be a vari-
able, 7r be a proper path constraint that is not an
x-joker for /3, A be a model of FT, .A,c~ ~ fl,
.4 ,~ ' ~ /3, and t~' be an z-update of c~. Then
A, c~ ~ 7r i f and only if.A, a' ~ 7r.

L e m m a 8.4 Let /3 be a prime formula and
7q , . . . , rn be x-jokers for/3. Then

3x/3 ~FT 3Z(/3A Z"n f f i)"
i=1

The proof of this lemma uses the third axiom
scheme, the existence of infinitely many features, and
the existence of infinitely many sorts.

L e m m a 8.5 Let/3, /3' be prime formulae and a be
a valuation into a model A of F T such that

,4, ~ p 3x(/3 A/3') and .4, ~ p 3x(/3 A -,/3').

Then every projection of/3' contains an z-joker for
/3.
L e m m a 8.6 I f /3, /31,...,/3n are prime formulae,
then

::lz(fl A Z "~/3`) ~::~FT Z 3z(fl A "-,fl,).
i=1 i=l

L e m m a 8.7 For every two prime formulae /3, /3'
and every variable x one can compute a Boolean com-
bination 6 of prime formulae such that

3x(/j A-,/3') ~FT 6 and 12(6) C 12(qx(fl A ~/3')).

T h e o r e m 8.8 For every formula ~b one can compute
a Boolean combination 6 of prime formulae such that

MFT 6 and V(6) C_ V(/3)
C o r o l l a r y 8.9 F T is a complete and decidable the-
ory.

Refe rences

[1] H. A[t-Kaci. An algebraic semantics approach to the
effective resolution of type equations. Theoretical
Computer Science, 45:293-351, 1986.

[2] H. Ait-Kaci and R. Nasr. LOGIN: A logic program-
ming language with built-in inheritance. The Jour-
nal of Logic Programming, 3:185-215, 1986.

[3] H. A~t-Kaci and A. Podelski. Towards a meaning
of LIFE. In Proc. of the PLILP'91, Springer LNCS
vol. 528, pages 255-274. Springer-Verlag, 1991.

[4] H. Ait-Kaci, A. Podelski, and G. Smolka. A feature-
based constraint system for logic programming with
entailment. In Fifth Generation Computer Systems
1992, pages 1012-1021, Tokyo, Japan, June 1992.
Institute for New Generation Computer Technology.

[5] F. Bander, H.-J. Bfirckert, B. Nebel, W. Nutt, and
G. Smolka. On the expressivity of feature logics with
negation, functional uncertainty, and sort equations.
Research Report RR-91-01, German Research Cen-
ter for Artificial Intelligence (DFKI), January 1991.

[6] R. Backofen and G. Smolka. A complete and re-
cursive feature theory. Research Report RR-92-30,
German Research Center for Artificial Intelligence
(DFKI), July 1992.

[7] B. Carpenter. The Logic of Typed Feature Struc-
tures, volume 32 of Cambridge Tracts in Theoreti-
cal Computer Science. Cambridge University Press,
Cambridge, UK, 1992.

[8] A. Colmerauer. Equations and inequations on finite
and infinite trees. In Proceedings of the 2nd Inter-
national Conference on Fifth Generation Computer
Systems, pages 85-99, 1984.

[9] M. Johnson. Attribute-Value Logic and the Theory
of Grammar. CSLI Lecture Notes 16. Center for
the Study of Language and Information, Stanford
University, CA, 1988.

[10] M. Johnson. Logic and feature structures. In Pro-
ceedings oflJCAI-91, Sydney, Australia, 1991.

[11] J.-L. Lassez, M. Maher, and K. Marriot. Unification
revisited. In J. Minker, editor, Foundations of De-
ductive Databases and Logic Programming. Morgan
Kaufmann, Los Altos, CA, 1988.

[12] M. J. Maher. Complete axiomatizations of the al-
gebras of finite, rational and infinite trees. In Pro-
ceedings o£ the 3rd Annual Symposium on Logic in
Computer Science, pages 348-457, Edinburgh, Scot-
land, July 1988.

[13] W. C. Rounds and R. T. Kasper. A complete logical
calculus for record structures representing linguistic
information. In Proceedings of the 1st IEEE Sym-
posium on Logic in Computer Science, pages 38-43,
Boston, MA, 1986.

[14] S. M. Shieber. An Introduction to Unification-Based
Approaches to Grammar, volume 4 of CSLI Lecture
Notes. Center for the Study of Language and Infor-
mation, Stanford University, CA, 1986.

[15] G. Smolka. Feature constraint logics for unification
grammars. Journal of Logic Programming, 12:51-
87, 1992.

[16] G. Smolka, M. Henz, and J. Wfirtz. Object-oriented
concurrent constraint programming in oz. Research
Report RR-93-16, German Research Center for Ar-
tificial Intelligence (DFKI), Apr. 1993.

[17] G. Smolka and R. Treinen. Records for logic pro-
gramming. In Proceedings of the 1992 Joint Inter-
national Conference and Symposium on Logic Pro-
gramming, pages 240-254, Washington, DC, 1992.

200

