
F E A T U R E - B A S E D A L L O M O R P H Y *

H a n s - U l r i c h K r i e g e r H a n n e s P i r k e r
G e r m a n Resea rch Cen te r for
Art i f ic ial In te l l igence (D F K I)

S t u h l s a t z e n h a u s w e g 3
W-66 Saarbr / icken 11, G e r m a n y
{kr ieger ,p i rker} @dfki .uni -sb .de

John N e r b o n n e
Alfa In fo rma t i ca , P . O . B o x 716

O u d e Ki jk in ' t J a t s t r a a t 41
R i jk sun ive r s i t e i t G r o n i n g e n

NL 9700 AS Gron ingen , H o l l a n d
ne rbonne@ l e t . r ug .n l

A b s t r a c t

Morphotactics and allomorphy are usually
modeled in different components, leading to in-
terface problems. To describe both uniformly,
we define finite automata (FA) for allomorphy in
the same feature description language used for
morphotactics. Nonphonologically conditioned
allomorphy is problematic in FA models but
submits readily to treatment in a uniform for-
malism.

1 B a c k g r o u n d a n d G o a l s

ALLOMORPHY or MORPHOPHONEMICS describes
the variation we find among the different forms
of a morpheme. For instance, the German sec-
ond person singular present ending -st has three
different allomorphs, -st, -est, -t, determined by
the stem it combines with:

'say' 'pray' 'mix'

(1) lsg pres ind
2sg pres ind
3sg pres ind

sag+e
sag+st
sag+t

bet + e
bet+ est
bet-/-et

mix+e
mix+t
mix+t

MORPHOTACTICS describes the arrangement of
morphs in words, including, e.g., the properties
of -st that it is a suffix (and thus follows the
stem it combines with), and that it combines
with verbs. While allomorphy is normally de-
scribed in finite automata (FA), morphotactics
is generally described in syntax-oriented models,
e.g., CFGs or feature-based grammars.

The present paper describes both allomor-
phy and morphotactics in a feature-based lan-
guage like that of Head-Driven Phrase Struc-
ture Grammar (HPSG) (Pollard and Sag 1987).

*This work was supported by research grant ITW
9002 0 from the German Bundesministerium ffir
Forschung und Technologie to the DFKI DISCO
project. We are grateful to an anonymous ACL re-
viewer for helpful comments.

The technical kernel of the paper is a feature-
based definition of FA. 1 While it is unsurprising
that the languages defined by FA may also be
defined by feature description languages (FDL),
our reduction goes beyond this, showing how the
FA themselves may be defined. The significance
of specifying the FA and not merely the lan-
guage it generates is that it allows us to use FA
technology in processing allomorphy, even while
keeping the interface to other grammar compo-
nents maximally transparent (i.e., there is NO
interface--all linguistic information is specified
via FDL).

Our motivation for exploring this application
of typed feature logic is the opportunity it pro-
vides for integrating in a single descriptive for-
malism not only (i) allomorphic and morpho-
tactic information but also (ii) coneatenative
and non-concatenative allomorphy. The latter
is particularly useful when concatenative and
non-concatenative allomorphy coexists in a sin-
gle language, as it does, e.g., in German.

2 F i n i t e A u t o m a t a a s T y p e d
F e a t u r e S t r u c t u r e s

An FA A is defined by a 5-tuple (Q, E, 5, q0, F),
where Q is a finite set of STATES, ~ a finite IN-
PUT ALPHABET, (~ : Q x ~ ---y Q is the TRAN-
SITION FUNCTION, q0 E Q the INITIAL STATE,
and F _C Q the set of FINAL STATES. 2 For
reasons of simplicity and space, we only refer
to the simplest form of FA, viz., DETERMIN-
ISTIC finite automata without e-moves which
consume exactly one input symbol at a time.
This is of course not a restriction w.r.t, ex-
pressivity: given an arbitrary automaton, we
can always construct a deterministic, equiva-

I See Krieger 1993b for the details and several
extensions.

2We assume a familiarity with automata theory
(e.g., Hopcroft and Ullman 1979).

140

lent one which recognizes the same language
(see Hopcroft and Ullman 1979). Fortunately,
our approach is also capable of representing and
processing directly non-deterministic FA with e-
moves and allows for edges which are multiple-
symbol consumers.

Specifying an au toma ton in our approach
means introducing for every state q E Q a possi-
bly recursive feature type with the same name as
q. We will call such a type a CONFIGURATION.
Exactly the at tr ibutes EDGE, NEXT, and INPUT
are appropriate for a configuration, where EDGE
encodes disjunctively the outgoing edges of q,
NEXT the successor states of q, and INPUT the
symbols which remain on the input list when
reaching q.S Note tha t a configuration does not
model just a state of the au tomaton , but an en-
tire description at a point in computat ion.

[EDGE input-symb]
(2) proto-confi9 _= | NEXT config |

/ INPUT list(input-symb)J

We now define two natural subtypes of proto-
con fig. The first one represents the non-final
states Q \ F . Because we assume tha t exactly
one input symbol is consumed every t ime an
edge is taken, we are allowed to separate the
input list into the first element and the rest list
in order to structure-share the first element with
EDGE (the consumed input symbol) and to pass
the rest list one level deeper to the next state.

(3) non-final-conflg =_

proto-config "]
EDGE [] /
NEXTIINPUT [] /
INPUT ([-i-]. [])J

The other subtype encodes the final states of
F which possess no outgoing edges and therefore
no successor states. To cope with this fact, we
introduce a special subtype of T, called under,
which is incompatible with every other type. In
addition, successfully reaching a final state with
no outgoing edge implies tha t the input list is
empty.

(4) final-config =

proto- config]
EDGE undef l
NEXT undef l
INP () J

aNote that EDGE is not restricted in bearing only
atomic symbols, but can also be labeled with com-
plex ones, i.e., with a possibly underspecified fea-
ture structure (for instance in the case of 2-1evel
morphology--see below).

A

Figure 1: A finite au toma ton A recognizing the
language £(A) = (a + b)*c.

Of course, there will be final states with out-
going edges, but such states are subtypes of the
following DISJUNCTIVE type specification:

(5) config =_ non-final-con.fig V J~inal-config

To make the idea more concrete, let us s tudy
a very small example, viz., the FA A (see Fig-
ure 1). A consists of the two states X and Y,
from which we define the types X and Y, where
Y (7) is only an instantiat ion of final-config.

In order to depict the states perspicuously, we
shall make use of DISTRIBUTED DISJUNCTIONS.
DSrre and Eisele 1989 and Backofen et al. 1990
introduce distributed disjunctions because they
(normally) allow more efficient processing of dis-
junctions, sometimes obviating the need to ex-
pand to disjunctive normal form. They add no
expressive power to a feature formalism (assum-
ing it has disjunction), but abbreviate some oth-
erwise prolix disjunctions:

{$1 a V
PATH2 $1 ~ V fl} =
PATH3 . . ,] {[PA ,a] [P,THlb]}

PATH2 o~ V PATH2 fl
PATH3 [. . .] PATH3 [. . .]

The two disjunctions in the feature structure
on the left bear the same name '$1' , indicat-
ing that they are a single alternation. The
sets of disjuncts named covary, taken in order.
This may be seen in the r ight-hand side of the
equivalence. 4

We employ distributed disjunctions below (6)
to capture the covariation between edges and

4Two of the advantages of distributed disjunc-
tions may be seen in the artificial example above.
First, co-varying but nonidentical elements can be
identified as such, even if they occur remotely from
one another in structure, and second, features struc-
tures are abbreviated. The amount of abbreviation
depends on the number of distributed disjunctions,
the lengths of the paths PATH1 and PATH2, and--in
at least some competing formalisms--on the size of
the remaining structure (cf. PATH3 [. . .] above).

141

their successor states: if a is taken, we must
take the type X (and vice versa), if b is used,
use again type X, but if c is chosen, choose the
type Y.

(6)
"non-final-config]

X - - EDGE $1{aVbVc}
NEXT $1{X V X V Y}

(7) Y - [f inal-config]

Whether an FA A ACCEPTS the input or not
is equivalent in our approach to the question of
FEATURE TERM CONSISTENCY: if we wish to
know whether w (a list of input symbols) will
be recognized by A, we must EXPAND the type
which is associated with the initial state q0 of A
and say that its INPUT is w. Using the terminol-
ogy of Carpenter 1992: (8) must be a TOTALLY
WELL-TYPED feature structure.

[q°]
(8) INPUT W

Coming back to our example (see Figure 1),
we might ask whether abc belongs to /2(A).
We can decide this question, by expanding the
type X with [INPUT (a ,b ,c)] . This will lead
us to the following consistent feature structure
which moreover represents, for free, the com-
plete recognition history of abc, i.e., all its solu-
tions in the FA.

/ / EDGE [] c

(9)]NEXT [NEXT IEYGE under
| | NEXT]NEXT under
I | [INPUT [] (>
/ | INPUT r-~ (~] . ~])
/ LINPUT~ < [~ ' ~
LINPUT < 5q"

Note that this special form of type expansion
will always terminate, either with a unification
failure (A does not accept w) or with a fully
expanded feature structure, representing a suc-
cessful recognition. This idea leads us to the
following ACCEPTANCE CRITERION:

(10)

w • £(A) ¢=~

(NEXT)" [{NP ()
where f • F

Notice too that the acceptance criterion does not
need to be checked explicitly--it 's only a logi-
cal specification of the conditions under which
a word is accepted by an FA. Rather the effects
of (10) are encoded in the type specifications of
the states (subtypes of f inal-config, etc.).

Now that we have demonstrated the feature-
based encoding of automata, we can abbrevi-
ate them, using regular expressions as "feature
templates" to stand for the initial states of the
automaton derived from them as above. 5 For
example, we might write a feature specification
[NORPHIFORN (a + b)*c] to designate words of
the form accepted by our example automaton.

As a nice by-product of our encoding tech-
nique, we can show that unification, disjunction,
and negation in the underlying feature logic di-
rectly correspond to the intersection, union, and
complementation of FA. Note that this state-
ment can be easily proved when assuming a clas-
sical set-theoretical semantics for feature struc-
tures (e.g., Smolka 1988). To give the flavor of
how this is accomplished, consider the two reg-
ular expressions •1 : ab*c and/22 -- a*bc. We
model them via six types, one for each state of
the automata. The initial state of/21 is A, that
of/22 is X. The intersection of£1 and/22 is given
by the unification of A and X. Unifying A and
X leads to the following structure:

(11)

: |EDGE a
[NEXT BJ [NEXT $1 {XV Y}J [NEXT B A

Now, testing whether w belongs to /21 N/22 is
equivalent to the satisfiability (consistency) of

(12) A A X A [INPUT w],

where type expansion yields a decision proce-
dure. The same argumentation holds for the
union and complementation of FA. It has to be
noted that the intersection and complementa-
tion of FA via unification do not work in general

5'Template' is a mild abuse of terminology since
we intend not only to designate the type correspond-
ing to the initial state of automaton, but also to
suggest what other types are accessible.

142

for FA with e-moves (Ritchie et al. 1992, 33-35).
This restriction is due to the fact, that the in-
tersected FA must run "in sync" (Sproat 1992,
139-140).

The following closure properties are demon-
strated fairly directly.

Let A1 = (Qt,Et ,61,qo, Ft) and As =
(Os, ~2, ~S, q~), Fs).

* A l f 7 A s ~ qoAq~o

• A t U A s ~ qoVqto

• A1 ~ -~qo

In addition, a weak form of functional uncer-
tainty (Kaplan and Maxwell 1988), represented
through recursive type specifications, is appro-
priate for the expression also concatenation and
Kleene closure of FA. Krieger 1993b provides
proofs using auxiliary definitions and apparatus
we lack space for here.

3 A l l o m o r p h y

The focus of this section lies in the illustration
of the proposal above and in the demonstration
of some benefits that can be drawn from the in-
tegration of allomorphy and morphotactics; we
eschew here the discussion of alternative the-
ories and concentrate on inflectional morphol-
ogy. We describe inflection using a word-and-
paradigm (WP) specification of morphotactics
(Matthews 1972) and a two-level treatment of
allomorphy (Koskenniemi 1983). We also indi-
cate some potential advantages of mixed models
of allomorphy--finite state and other. 6

3.1 WP M o r p h o t a c t l c s in FDL

Several WORD-GRAMMARS use FDL morphotac-
tics (Trost 1991, Krieger and Nerbonne 1992 on
derivation); alternative models are also avail-
able. Krieger and Nerbonne 1992 propose an
FDL-based WP treatment of inflection. The
basic idea is to characterize all the elements
of a paradigm as alternative specifications of
abstract lexemes. Technically, this is realized
through the specification of large disjunctions
which unify with lexeme specifications. The

SThe choice of two-level allomorphy is justified
both by the simplicity of two-level descriptions and
by their status as a "lingua franca" among compu-
tational morphologists. Two-level analyses in FDLs
may also prove advantageous if they simplify the po-
tential compilation into a hybrid two-level approach
of the kind described in Trost 1991.

three elements of the paradigm in (1) would be
described by the distributed disjunction in (13).

(13) weak-paradigm -

word
FORH ,pp,nd(U,r)
S T E N ~

NORPH I ENDING,s1

SyNILOCIHEADIAGR [N UH
PER

This treatment provides
face to syntactic/semantic
helps realize the goal of
linguistic knowledge in a
(Pollard and Sag 1987).

(+,e) V }
(+,s,t> v
(-I-,t)
sg
, {lv:v3}

a seamless inter-
information, and
representing ALL
single formalism

Nevertheless, the model lacks a treatment
of allomorphy. The various allomorphs of -st
in (1) are not distinguished in the FDL, and
Krieger and Nerbonne 1992 foresaw an interface
to an external module for allomorphy. It would
be possible--but scientifically poor - - to distin-
guish all of the variants at the level of mor-
photactics, providing a brute-force solution and
multiplying paradigms greatly. 7 The character-
ization in Section 2 above allows us to formu-
late WITHIN FDL the missing allomorphy com-
ponent.

3.2 Two-Level A l l o m o r p h y

Two-level morphology has become popular be-
cause it is a declarative, bidirectional and
efficient means of treating allomorphy (see
Sproat 1992 for a comprehensive introduction).
In general, two-level descriptions provide con-
straints on correspondences between underly-
ing (lexical) and surface levels. We shall use
it to state constraints between morphemic units
and their allomorphic realizations. Because two-
level automata characterize relations between
two levels, they are often referred to (and often
realized as) transducers. The individual rules
then represent constraints on the relation being
transduced.

The different forms of the suffix in 2nd person
singular in (1) are predictable given the phono-
logical shape of the stem, and the alternations
can be described by the following (simplified)
two-level rules (we have abstracted away from
inessential restrictions here, e.g., that (strong)
verbs with i /e-umlaut do not show epenthesis):

rTzoukermann and Libermann 1990 show that
multiplying paradigms need not degrade perfor-
mance, however.

143

(14)

e-epenthesis in the bet- case
+ : e . {d,t}_{s,t}

s-deletion in the mix- case
s:O ¢:~ {s , z , z , ch}+:O t

The colon ':' indicates a correspondence be-
tween lexical and surface levels. Thus the
first rule states that a lexical morph bound-
ary + must correspond to a surface e if it oc-
curs after d or t and before s or t. The sec-
ond specifies when lexical s is deleted (corre-
sponds to surface 0). Two-level rules of this
sort are then normally compiled into transduc-
ers (Dalrymple et al. 1987, p.35-45).

3.3 F D L Speci f ica t ion o f Two-Level
M o r p h o l o g y

Two-level descriptions of allomorphy can be
specified in FDLs straightforwardly if we model
not transducers, but rather two-level accep-
tors (of strings of symbol pairs), following
Ritchie et al. 1992. We therefore employ FA
over an alphabet consisting of pairs of symbols
rather than single symbols, s

The encoding of these FA in our approach
requires only replacing the alphabet of atomic
symbols with an alphabet of feature structures,
each of which bears the attributes LEX and SURF.
A pair of segments appearing as values of these
features stand in the lexical-surface correspon-
dence relation denoted by ':' in standard two-
level formalisms. The values of the attributes
STEM and ENDING in (13) are then not lists of
symbols but rather lists of (underspecified) fea-
ture structures. Note that the italicized t etc.
found in the sequences under MORPHIENDING (13)
denote types defined by equations such as (16)
or (17). (To make formulas shorter we abbrevi-
ate 'alphabet' etymologically as 'aft'.)

(15) a]~ =

[LEX $1{"a"V . . " s " V " s " V ' + " V " + " }]
SURF $ d " a " V . " s " V 0 V "e" v 0}

(16) t = ^ [LZX "t"] =] LEX "t"
SURF "t"

(17) + =-- (~ A [LEX "+"] : LEX "+"
SURF "e" v 0

aSince our formalisation of FA cannot allow e-
transitions without losing important properties, we
are in fact forced to this position.

It is the role of the collection of FA to re-
strict underspecifled lexical representations to
those obeying allomorphic constraints. This is
the substance of the allomorphy constraint (18),
which, together with the Acceptance Criterion
(10), guarantees that the input obeys the con-
straints of the associated (initial states of the)
FA.

NORPH]FORM [~]]
(18) allomorphy =_ INPUT []

Rules of the sort found in (14) can be directly
compiled into FA acceptors over strings of sym-
bol pairs (Ritchie et al. 1992, p.19). Making use
of the regular expression notation as templates
(introduced in Section 2 above), (19-21) display
a compilation of the first rule in (14). Here the
composite rule is split up into three different
constraints. The first indicates that epenthesis
is obligatory in the environment specified and
the latter two that each half of the environment
specification is necessary. 9

(19) epenth-1 =_

Nallomorphy]
0RPH [FORM (11"* {t,d} +:0 {s,t} 7r*)]J

(20) epenth-2 =_

allomorphy

(21) epenth.3 =_

allomorphy

+ o

3.4 Limits of Pure FA Morphology

Finite-state morphology has been criticized (i)
for the strict finite-stateness of its handling
of morphotactics (Sproat 1992, 43-66); (ii) for
making little or no use of the notion of inflec-
tional paradigms and inheritance relations be-
tween morphological classes (Cahill 1990); and
(iii) for its strict separation of phonology from
morphology--i.e., standard two-level rules can
only be sensitive to phonological contexts (in-
cluding word and morpheme boundaries), and
apply to all forms where these contexts hold.
In fact, allomorphic variation is often "fos-
silized", having outlived its original phonological
motivation. Therefore some allomorphic rules

97r* denotes the Kleene closure over alphabet 11"
and A the complement of A with respect to ~r.

144

are restricted in nonphonological ways, apply-
ing only to certain word classes, so that some
stems admit idiosyncratic exceptions with re-
spect to the applicability of rules (see Bear 1988,
Emele 1988, Trost 1991)•

To overcome the first difficulty, a number
of researchers have suggested augmenting FA
with "word grammars", expressed in terms of
feature formalisms like PATR II (Bear 1986)
or HPSG (Trost 1990). Our proposal follows
theirs, improving only on the degree to which
morphotactics may be integrated with allomor-
phy. See Krieger and Nerbonne 1992 for pro-
posals for treating morphotactics in typed fea-
ture systems.

We illustrate how the FDL approach over-
comes the last two difficulties in a concrete
case of nonphonologically motivated allomor-
phy. German epenthesizes schwa (< e >) at
morph boundaries, but in a way which is sensi-
tive to morphological environments, and which
thus behaves differently in adjectives and verbs•
The data in (22) demonstrates some of these dif-
ferences, comparing epenthesis in phonologically
very similar forms•

free, adj super frei+st freiest
(22) free, v 2s pres be+frei+st befreist

woo, v 2s pres frei+st freist

While the rule stated in (14) (and reformu-
lated in (19)-(21)) treats the verbal epenthesis
correctly, it is not appropriate for adjectives, for
it does not allow epenthesis to take place after
vowels. We thus have to state different rules for
different morphological categories.

The original two-level formalism could only
solve this problem by introducing arbitrary dia-
critic markers• The most general solution is due
to Trost 1991, who associated two-level rules
with arbitrary filters in form of feature struc-
tures. These feature structures are unified with
the underlying morphs in order to check the con-
text restrictions, and thus serve as an interface
to information provided in the feature-based lex-
icon. But Trost's two-level rules are a com-
pletely different data structure from the feature
structures decorating transitions in FA.

We attack the problem head on by restrict-
ing allomorphic constraints to specific classes
of lexical entries, making use of the inheritance
techniques available in structured lexicons• The
cases of epenthesis in (22) is handled by defining
not only the rule in (19-21) for the verbal cases,
but also a second, quite similar rule for the more
liberal epenthesis in adjectives) ° This frees the

1°In fact, the rules could be specified so that the

T

• . °

allomorphy

epenth-1 epenth-2 epenth-3 word

Adj Verb . . .

Figure 2: Nonphonolog ica l Cond i t i on ing of
allomorphy is achieved by requiring that only
some word classes obey the relevant constraints•
Adjectives inherit from two of the epenthesis
constraints in the text, and verbs (without i/e
umlaut) satisfy all three. This very natural
means of restricting allomorphic variation to se-
lected, nonphonologically motivated classes is
only made available through the expression of
allomorphy in type hierarchy of the FDL. (The
types denote the initial states of FA, as ex-
plained in Section 2.)

rule from operating on a strictly phonological
basis, making it subject to lexical conditioning•
This is illustrated in Figure 2.

But note that this example demonstrates not
only how feature-based allomorphy can over-
come the strictly phonological base of two-level
morphology (criticism (iii) above), but it also
makes use of the inheritance structure in mod-
ern lexicons as well.

4 C o n c l u s i o n s

In this section we examine our proposal vis-b.-vis
others, suggest future directions, and provide a
summary.

4.1 Compar i son to o t h e r Work

Computational morphology is a large and ac-
tive field, as recent textbooks (Sproat 1992
and Ritchieet al. 1992) testify• This im-
pedes the identification of particularly im-
portant predecessors, among whom nonethe-
less three stand out. First, Trost 1991's
use of two-level morphology in combination

verbal rule inherited from the more general adjecti-
val rule, but pursuing this here would take us some-
what afield.

145

with feature-based filters was an important
impetus. Second, researchers at Edinburgh
(Calder 1988, Bird 1992) first suggested using
FDLs in phonological and morphological de-
scription, and Bird 1992 suggests describing FA
in FDL (without showing how they might be so
characterized, however--in particular, providing
no FDL definition of what it means for an FA
to accept a string).

Third, Cahill 1990 posed the critical question,
viz., how is one to link the work in lexical inher-
itance (on morphotactics) with that in finite-
state morphology (on allomorphy). This ear-
lier work retained a separation of formalisms
for allomorphy (MOLUSC) and morphotactics
(DATR). Cahill 1993 goes on to experiment with
assuming all of the allomorphic specification into
the lexicon, in just the spirit proposed here. 11
Our work differs from this later work (i) in that
we use FDL while she uses DATR, which are
similar but not identical (cf. Nerbonne 1992);
and (ii) in that we have been concerned with
showing how the standard model of allomorphy
(FA) may be assumed into the inheritance hier-
archy of the lexicon, while Cahill has introduced
syllable-based models.

4.2 F u t u r e Work

At present only the minimal examples in
Section 2 above have actually been imple-
mented, and we are interested in attempting
more. Second, a compilation into genuine fi-
nite state models could be useful. Third,
we are concerned that, in restricting ourselves
thus far to acceptors over two-level alpha-
bets, we may incur parsing problems, which a
more direct approach through finite-state trans-
ducers can avoid (Sproat 1992, p.143). See
Ritchie et al. 1992, 19-33 for an approach to
parsing using finite-state acceptors, however.

4.3 Summary

This paper proposes a treatment of allomor-
phy formulated and processable in typed feature
logic. There are several reasons for developing
this approach to morphology. First, we prefer
the GENERALITY of a system in which linguis-
tic knowledge of all sorts may be expressed--at
least as long as we do not sacrifice processing
efficiency. This is an overarching goal of HPSG
(Pollard and Sag 1987)--in which syntax and
semantics is described in a feature formalism,
and in which strides toward descriptions of mor-
photactics (Krieger 1993a, Riehemann 1993,

lICf. Reinhard and Gibbon 1991 for another sort
of DATR-based allomorphy

Gerdemann 1993) and phonology (Bird 1992)
have been taken. This work is the first to show
how allomorphy may be described here. The
proposal here would allow one to describe seg-
ments using features, as well, but we have not
explored this opportunity for reasons of space.

Second, the uniform formalism allows the ex-
act and more transparent specification of depen-
dencies which span modules of otherwise dif-
ferent formalisms. Obviously interesting cases
for the extension of feature-based descriptions
to other areas are those involving stress and
intonation--where phonological properties can
determine the meaning (via focus) and even syn-
tactic well-formedness (e.g., of deviant word or-
ders). Similarly, allomorphic variants covary in
the style register they belong to: the German
dative singular in -e, dera Kinde, belongs to a
formal register.

Third, and more specifically, the feature-
based treatment of allomorphy overcomes the
bifurcation of morphology into lexical aspects--
which have mostly been treated in lexical in-
heritance schemes--and phonological aspects--
which are normally treated in finite-state mor-
phology. This division has long been recognized
as problematic. One symptom of the problem
is seen in the treatment of nonphonologically
conditioned allomorphy, such as German um-
laut, which (Trost 1990) correctly criticizes as
ad hoc in finite-state morphology because the
latter deals only in phonological (or graphemic)
categories. We illustrated the benefits of the
uniform formalism above where we showed how
a similar nonphonologically motivated alterna-
tion (German schwa epenthesis) is treated in
a feature-based description, which may deal in
several levels of linguistic description simultane-
ously.

References

Backofen, R., L. Euler, and G. G6rz. 1990. Towards
the Integration of Functions, Relations and Types
in an AI Programming Language. In Proc. of
GWAI-90. Berlin. Springer.

Bear, J. 1986. A Morphological Recognizer with
Syntactic and Phonological Rules. In Proc. of
COLING, 272-276.

Bear, J. 1988. Morphology with Two-Level Rules
and Negative Rule Features. In Proc. of COLING,
28-31.

Bird, S. 1992. Finite-State Phonology in HPSG. In
Proc. of COLING, 74-80.

Cahill, L. J. 1990. Syllable-Based Morphology. In
Proc. of COLING, 48-53.

Cahill, L. J. 1993. Morphonology in the Lexicon. In
Proc. of the 7th European A CL, 87-96.

146

Calder, J. 1988. Paradigmatic Morphology. In Proc.
of the 5th European A CL.

Carpenter, B. 1992. The Logic of Typed Feature
Structures. No. 32Tracts in Theoretical Com-
puter Science. Cambridge: Cambridge University
Press.

Dalrymple, M., R. Ka-
plan, L. Karttunen, K. Koskenniemi, S. Shaio,
and M. Wescoat. 1987. Tools for Morphological
Analysis. Technical Report CSLI-1987-108, CSLI,
Stanford University.

DSrre, J., and A. Eisele. 1989. Determining Consis-
tency of Feature Terms with Distributed Disjunc-
tions. In Proc. of GWAI-89 (15th German Work-
shop on AI), ed. D. Metzing, 270-279. Berlin.
Springer-Verlag.

Emele, M. 1988. Uberlegungen zu einer Two-Level
Morphologie fiir das Deutsche. In Proc. der
4. Osterreichischen Artificiai-lntelligence- Tagung
und des WWWS, ed. H. Trost, 156-163. Berlin:
Springer. Informatik-Fachberichte 176.

Gerdemann, D. 1993. Complement Inheritance as
Subcategorization Inheritance. In German Gram-
mar in HPSG, ed. J. Nerbonne, K. Netter, and
C. Ponard. Stanford: CSLI.

Hopcroft, J. E., and J. D. Ullman. 1979. In-
troduction to Automata Theory, Languages, and
Computation. Reading, Massachusetts: Addison-
Wesley.

Kaplan, R., and J. Maxwell. 1988. An Algorithm for
Functional Uncertainty. In Proc. of Coling 1988,
303-305. Budapest.

Koskenniemi, K. 1983. Two-Level Model for Mor-
phological Analysis. In Proc. of IJCAI, 683-685.

Krieger, H.-U. 1993a. Derivation Without Lexi-
cad Rules. In Constraint Propagation, Linguis-
tic Description and Computation, ed. R. Johnson,
M. Rosner, and C. Rupp. Academic Press.

Krieger, H.-U. 1993b. Representing and Pro-
cessing Finite Automata Within Typed Fea-
ture Formalisms. Technical report, Deutsches
Forschungsinstitut fiir Kiinstfiche Intelligenz,
Saarbriicken, Germany.

Krieger, H.-U., and J. Nerbonne. 1992. Feature-
Based Inheritance Networks for Computational
Lexicons. In Default Inheritance within
Unification-Based Approaches to the Lexicon, ed.
T. Briscoe, A. Copestake, and V. de Paiva. Cam-
bridge: Cambridge University Press. Also DFKI
Research Report RR-91-31.

Matthews, P. 1972. Inflectional Morphology: A The-
oretical Study Based on Aspects of Latin Verb
Conjugation. Cambridge, England: Cambridge
University Press.

Nerboune, J. 1992. Feature-Based Lexicons--
An Example and a Comparison to DATR. In
Beitriige des ASL-Lexikon- Workshops, Wandlitz
(bei Berlin), ed. D. Reimann, 36-49. also DFKI
RR-92-04.

Pollard, C., and I. Sag. 1987. Information-Based
Syntax and Semantics, Vol.L Stanford: CSLI.

Reinhard, S., and D. Gibbon. 1991. Prosodic In-
heritance and Morphological Generalizations. In
Proc. of the 6th European ACL, 131-137.

Riehemarm, S. 1993. Word Formation in Lexical
Type Hierarchies. A Case Study of bar-Adjectives
in German. Master's thesis, Eberhard-Karls-
Universit~it Tiibingen, Seminar f/Jr Sprachwis-
senschaft.

Ritchie, G. D., G. J. Russell, A. W. Black, and S. G.
Pulman. 1992. Computational Morphology: Prac-
tical Mechanisms for the English Lexicon. Cam-
bridge: MIT Press.

Smolka, G. 1988. A Feature Logic with Subsorts.
Technical Report 33, WT LILOG-IBM Germany.

Sproat, R. 1992. Morphology and Computation.
Cambridge: MIT Press.

Trost, H. 1990. The Application of Two-Level Mor-
phology to Non-concatenative German Morphol-
ogy. In Proc. of COLING, 371-376.

Trost, H. 1991. X2MORF: A Morphological Com-
ponent Based on Augmented Two-Level Mor-
phology. Technical Report RR-91-04, DFKI,
Saarbrficken, Germany.

Tzoukermann, E., and M. Libermann. 1990. A
Finite-State Morphological Processor for Spanish.
In Proc. of COLING, Vol. 3.

147

